
Sampling Theory, Signal Processing, and Data Analysis (2024) 22:13
https://doi.org/10.1007/s43670-024-00087-9

ORIG INAL PAPER

On numerical realizations of Shannon’s sampling theorem

Melanie Kircheis1 · Daniel Potts1 ·Manfred Tasche2

Received: 30 June 2023 / Accepted: 18 March 2024 / Published online: 16 April 2024
© The Author(s) 2024

Abstract
In this paper, we discuss some numerical realizations of Shannon’s sampling theorem.
First we show the poor convergence of classical Shannon sampling sums by presenting
sharp upper and lower bounds on the norm of the Shannon sampling operator. In addi-
tion, it is known that in the presence of noise in the samples of a bandlimited function,
the convergence of Shannon sampling series may even break down completely. To
overcome these drawbacks, one can use oversampling and regularization with a con-
venient window function. Such a window function can be chosen either in frequency
domain or in time domain.We especially put emphasis on the comparison of these two
approaches in terms of error decay rates. It turns out that the best numerical results
are obtained by oversampling and regularization in time domain using a sinh-type
window function or a continuous Kaiser–Bessel window function, which results in an
interpolating approximation with localized sampling. Several numerical experiments
illustrate the theoretical results.
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1 Introduction

The classical Whittaker–Kotelnikov–Shannon sampling theorem (see [11, 25, 32])
plays a fundamental role in signal processing, since it describes the close relation
between a bandlimited function and its equidistant samples. A function f ∈ L2(R) is
called bandlimited with bandwidth N

2 , if the support of its Fourier transform

f̂ (v) :=
∫
R

f (t) e−2π itv dt, v ∈ R,

is contained in
[− N

2 , N
2

]
. Let the space of all bandlimited functionswith bandwidth N

2
be denoted by

BN/2(R) :=
{

f ∈ L2(R) : supp f̂ ⊆ [ − N
2 , N

2

]}
, (1.1)

which is also known as the Paley–Wiener space. By definition (1.1), the Paley–Wiener
space BN/2(R) consists of equivalence classes of almost equal functions. However, it
can be shown (see e.g. [10, p. 6]) that there is always a smooth representation, since
for each r ∈ N0 we have by inverse Fourier transform that

f (r)(t) =
∫ N/2

−N/2
f̂ (v) (2π iv)r e2π ivt dt

and (2π i ·)r f̂ ∈ L1
([ − N

2 , N
2

])
and therefore f (r) ∈ C0(R), where C0(R) denotes

the Banach space of continuous functions f : R → C vanishing as |t | → ∞ with the
norm

‖ f ‖C0(R) := max
t∈R | f (t)|.

That is to say, we have BN/2(R) ⊆ L2(R) ∩ C0(R) ∩ C∞(R).
Then the Whittaker–Kotelnikov–Shannon sampling theorem states that any ban-

dlimited function f ∈ BN/2(R) can be recovered from its equispaced samples f
( k

L

)
,

k ∈ Z, with L ≥ N as

f (t) =
∑
k∈Z

f
( k

L

)
sinc(Lπ t − πk), t ∈ R, (1.2)

where the sinc function is given by

sinc x :=
{ sin x

x : x ∈ R\{0},
1 : x = 0.

It is well known that the series in (1.2) converges absolutely and uniformly onwholeR.

Unfortunately, the practical use of this sampling theorem is limited, since it requires
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infinitely many samples, which is impossible in practice. Furthermore, the sinc func-
tion decays very slowly such that the Shannon sampling series

∑
k∈Z

f
( k

L

)
sinc(Lπ t − kπ), t ∈ R, (1.3)

with L ≥ N has rather poor convergence, as can be seen from the sharp upper and
lower bounds on the norm of the Shannon sampling operator (see Theorem 2.2). In
addition, it is known (see [6]) that in the presence of noise in the samples f

( k
L

)
, k ∈ Z,

of a bandlimited function f ∈ BN/2(R), the convergence of Shannon sampling series
may even break down completely. To overcome these drawbacks, many applications
employ oversampling, i.e., a function f ∈ L2(R) of bandwidth N

2 is sampled on a
finer grid 1

L Z with L > N , where the oversampling is measured by the oversampling
parameter λ := L−N

N ≥ 0. In addition, we consider several regularization techniques,
where a so-called window function is used. Since this window function can be chosen
in frequency domain or in spatial domain, we study both approaches and compare the
theoretical and numerical approximation properties in terms of decay rates.

On the one hand, we investigate the regularization with a window function in
frequency domain (called frequency window function), cf. e.g. [5, 15, 17, 24, 28].
Here we use a suitable function of the form

ψ̂(v) :=
⎧⎨
⎩
1 : |v| ≤ N

2 ,

χ(|v|) : N
2 < |v| < L

2 ,

0 : |v| ≥ L
2 ,

where χ : [ N
2 , L

2

] → [0, 1] is frequently chosen as some monotonously decreas-
ing, continuous function with χ

( N
2

) = 1 and χ
( L
2

) = 0. Applying inverse Fourier

transform, we determine the corresponding function ψ in time domain. Since ψ̂ is
compactly supported, the uncertainty principle (cf. [18, p. 103, Lemma 2.39]) yields
suppψ = R. Then it is known that the function f can be represented in the form

f (t) =
∑
k∈Z

f
( k

L

) 1

L
ψ

(
t − k

L

)
, t ∈ R.

Using uniform truncation, we approximate a function f ∈ BN/2(R) by the T -th partial
sum

(Pψ,T f )(t) :=
T∑

k=−T

f
( k

L

) 1

L
ψ

(
t − k

L

)
, t ∈ [−1, 1].

On the other hand, we examine the regularization with a window function in time
domain (called time window function), cf. e.g. [10, 13, 14, 21]. Here a suitable window
function ϕ : R → [0, 1] with compact support

[− m
L , m

L

]
belongs to the set �m/L (as

defined in Sect. 4) with some m ∈ N\{1}. Then we recover a function f ∈ BN/2(R)
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by the regularized Shannon sampling formula

(Rϕ,m f )(t) :=
∑
k∈Z

f
( k

L

)
sinc

(
Lπ t − πk

)
ϕ
(
t − k

L

)
, t ∈ R,

with L ≥ N . By defining the set �m/L of window functions ϕ, only small truncation
parameters m are needed to achieve high accuracy, resulting in short sums being
computable very fast. In otherwords, this approach uses localized sampling.Moreover,
this method is an interpolating approximation, since for all n, k ∈ Z we have

sinc
(
Lπ t − πk

)
ϕ
(
t − k

L

)∣∣∣
t= n

L

= δn,k .

In this paper we propose new estimates of the uniform approximation errors

max
t∈[−1, 1]

∣∣ f (t) − (Pψ,T f )(t)
∣∣ and max

t∈R
∣∣ f (t) − (Rϕ,m f )(t)

∣∣,

wherewe apply severalwindow functions ψ̂ andϕ. Note that for the frequencywindow
functions ψ̂ only error estimates on certain compact interval (such as for example
[−1, 1]) can be given, while results on whole R are not feasible. It is shown in the
subsequent sections that the uniform approximation error decays algebraically with
respect to T , if ψ̂ is a frequency window function. Otherwise, if ϕ ∈ �m/L is chosen
as a time window function such as the sinh-type or continuous Kaiser–Bessel window
function, then the uniform approximation error decays exponentiallywith respect tom.

To this end, this paper is organized as follows. First, in Sect. 2 we show the poor
convergence of classical Shannon sampling sums and improve results on the upper and
lower bounds of the norm of the Shannon sampling operator. Consequently, we study
the different regularization techniques. In Sect. 3 we start with the regularization using
a frequency window function. After recapitulating a general result in Theorem 3.3,
we consider window functions of different regularity and present the corresponding
algebraic decay results in Theorems 3.4 and 3.7. Subsequently, in Sect. 4 we proceed
with the regularization using a time window function. Here we also review the known
general result in Theorem 4.1 and afterwards demonstrate the exponential decay of the
considered sinh-type and continuousKaiser–Besselwindow functions inTheorems4.2
and 4.3. Finally, in Sect. 5 we compare the previously considered approaches from
Sects. 3 and 4 to illustrate our theoretical results.

2 Poor convergence of Shannon sampling sums

In order to show that the Shannon sampling series (1.3) has rather poor convergence,
we truncate the series (1.3) with T ∈ N, and consider the T -th Shannon sampling sum

(ST f )(t) :=
T∑

k=−T

f
( k

L

)
sinc(Lπ t − kπ), t ∈ R. (2.1)
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Obviously, this operator can be formed for each f ∈ C0(R).

Lemma 2.1 The linear operator ST : C0(R) → C0(R) has the norm

‖ST ‖ = max
t∈R

T∑
k=−T

∣∣sinc(Lπ t − kπ)
∣∣. (2.2)

Proof For each f ∈ C0(R) and t ∈ R we have

∣∣(ST f )(t)| ≤
T∑

k=−T

∣∣ f
( k

L

)∣∣ ∣∣sinc(Lπ t − kπ)
∣∣ ≤

T∑
k=−T

∣∣sinc(Lπ t − kπ)
∣∣ ‖ f ‖C0(R),

such that

‖ST f ‖C0(R) ≤ max
t∈R

T∑
k=−T

∣∣sinc(Lπ t − kπ)
∣∣ ‖ f ‖C0(R).

By defining the even nonnegative function

sT (t) :=
T∑

k=−T

∣∣sinc(Lπ t − kπ)
∣∣, t ∈ R, (2.3)

which is contained in C0(R), and assuming that sT has its maximum in t0 ∈ R, this
yields

‖ST ‖ = sup
{‖ST f ‖C0(R) : ‖ f ‖C0(R) = 1

} ≤ sT (t0).

The other way around, we consider the linear spline g ∈ C0(R) with nodes in 1
L Z,

where

g
( k

L

) =
{
sign

(
sinc(Lπ t0 − kπ)

) : k = −T , . . . , T ,

0 : k ∈ Z\{−T , . . . , T }.

Obviously, we have ‖g‖C0(R) = 1 and

(ST g)(t) =
T∑

k=−T

sign
(
sinc(Lπ t0 − kπ)

)
sinc(Lπ t − kπ)

) ≤ sT (t) ≤ sT (t0).

Then

(ST g)(t0) =
T∑

k=−T

∣∣sinc(Lπ t0 − kπ)
∣∣ = max

t∈R sT (t) = sT (t0)
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implies

‖ST ‖ ≥ ‖ST g‖C0(R) = max
t∈R

∣∣(ST g)(t)
∣∣ = sT (t0)

and hence (2.2). 
�
Now we show that the norm ‖ST ‖ is unbounded with respect to T .

Theorem 2.2 The norm of the operator ST : C0(R) → C0(R) can be estimated by

2

π

[
ln T + 2 ln 2 + γ

] − 1

πT (2T + 1)
< ‖ST ‖ <

2

π

[
ln T + 2 ln 2 + γ

]

+ T + 2

πT (T + 1)
, (2.4)

where we use Euler’s constant

γ := lim
T →∞

( T∑
k=1

1

k
− ln T

)
= 0.57721566 . . . .

Proof As suggested in [27, p. 142, Problem 3.1.5], we represent (2.3) in the form

sT (t) =
T +1∑
k=1

ak(t), t ∈ R,

with

ak(t) :=
{ ∣∣sinc(Lπ t − kπ)

∣∣ + ∣∣sinc(Lπ t + (k − 1)π)
∣∣ : k = 1, . . . , T ,∣∣sinc(Lπ t + T π)

∣∣ : k = T + 1.

Since (2.3) is even, we estimate the maximum of sT (t) only for t ≥ 0. For k =
1, . . . , T , we have ak(0) = ak

( 1
L

) = 0 and by trigonometric identities we obtain for
t ∈ (

0, 1
L

)
that

ak(t) = sin(Lπ t)

π

(
1

k − 1 + Lt
+ 1

k − Lt

)
= (2k − 1) sin(Lπ t)

π
[
(k − 1)k + Lt (1 − Lt)

] .

We define the functions bk : (0, 1) → R, k = 1, . . . , T , via

bk(x) := π

(2k − 1)
ak

( x
L

) = sin(πx)

(k − 1)k + x(1 − x)
, x ∈ (0, 1),

such that the symmetry relation bk(x) = bk(1−x) is fulfilled, i.e., each bk is symmetric
with reference to 1

2 . Furthermore, by b′
k(x) ≥ 0 for x ∈ (

0, 1
2

]
, the function bk is

increasing on
(
0, 1

2

]
and therefore has its maximum at x = 1

2 . Thus, the function
ak : [

0, 1
L

] → R has its maximum at t = 1
2L , i.e.,

max
t∈[0, 1/L] ak(t) = ak

( 1
2L

) = 4

(2k − 1)π
.
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Since aT +1(t) can be written as

aT +1(t) = sin(Lπ t)

π (T + Lt)

for t ∈ [
0, 1

L

]
, we obtain

0 < max
t∈[0, 1/L] aT +1(t) <

1

πT
.

Hence, in summary this yields

4

π

T∑
k=1

1

2k − 1
< max

t∈[0, 1/L] sT (t) <
4

π

T∑
k=1

1

2k − 1
+ 1

πT
.

For t ∈ [ n
L , n+1

L

]
with arbitrary n ∈ N, the sum sT (t) is less than it is for t ∈ [

0, 1
L

]
,

since for each n ∈ N and t ∈ (
0, 1

L

)
we have

T∑
k=−T

sin(Lπ t)

|Lπ t − (k − n)π | <

T∑
k=−T

sin(Lπ t)

|Lπ t − kπ |

and therefore sT
( n

L + t
)

< sT (t). Thus, we obtain

4

π

T∑
k=1

1

2k − 1
< max

t∈R sT (t) = ‖ST ‖ <
4

π

T∑
k=1

1

2k − 1
+ 1

πT
. (2.5)

Note that for T  1 the value

sT
( 1
2L

) = 4

π

T∑
k=1

1

2k − 1
+ 2

π (2T + 1)
(2.6)

is a good approximation of the norm ‖ST ‖.
Now we estimate ‖ST ‖ by ln T . For this purpose we denote the T -th harmonic

number by

HT :=
T∑

k=1

1

k
, T ∈ N,

such that

T∑
k=1

1

2k − 1
=

T∑
k=1

(
1

2k − 1
+ 1

2k

)
−

T∑
k=1

1

2k
= H2T − 1

2
HT . (2.7)
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Using Euler’s constant

γ = lim
T →∞

(
HT − ln T

)
,

the estimates

1

2T + 2
< HT − ln T − γ <

1

2T
(2.8)

are known (see [33]). From (2.7) and (2.8) we conclude that

1

2
ln T + ln 2 + 1

2
γ − 1

4T (2T + 1)
< H2T − 1

2
HT

<
1

2
ln T + ln 2 + 1

2
γ + 1

4T (T + 1)
. (2.9)

Therefore, applying (2.5), (2.7), and (2.9) yields the assertion (2.4). 
�
Note that Theorem 2.2 improves a former result of [27, p. 142, Problem 3.1.5],

which only contains a coarse proof sketch for the upper bound, while (2.4) gives
a very precise nesting, see also Fig. 1. Additionally, we remark that Theorem 2.2
immediately implies

lim
T →∞

(
‖ST ‖ − 2

π
ln T

)
= 4

π
ln 2 + 2γ

π
.

Remark 2.3 By Theorem 2.2 and the theorem of Banach–Steinhaus, an arbitrary func-
tion f ∈ C0(R) cannot be represented in the form (1.3), since the norm of the linear
operator ST : C0(R) → C0(R) is unbounded with respect to T . However, as known
from the Whittaker–Kotelnikov–Shannon sampling theorem for bandlimited func-
tions f ∈ BN/2(R), the series (1.3) converges absolutely and uniformly on whole R.

Nevertheless, this convergence is very slow due to the poor decay of the sinc func-
tion, as can be seen from the sharp upper and lower bounds on the norm of the Shannon
sampling operator, see Lemma 2.2. More precisely, rigorous analysis of the approxi-
mation error, cf. [8, Theorem 1], shows that on the fixed interval [−1, 1] we have a
convergence rate of only (T − L)−1/2, which was also mentioned in [29, 34].

Note that general results on whole R are not feasible for arbitrary f ∈ BN/2(R).
Rather, the uniform approximation error ‖ f − ST f ‖C0(R) can only be studied under
the additional assumption that f ∈ BN/2(R) satisfies certain decay conditions, see [9,
12].

Now let f ∈ BN/2(R) be a given bandlimited function with bandwidth N
2 and let

T ∈ N be sufficiently large. For given samples f
( k

L

)
with k ∈ Z and L ≥ N we

consider finitely many erroneous samples

f̃k :=
{

f
( k

L

) + εk : k = −T , . . . , T ,

f
( k

L

) : k ∈ Z\{−T , . . . , T },
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with error terms εk which are bounded by |εk | ≤ ε for k = −T , . . . , T . Then for the
approximation

f̃ (t) :=
∑
k∈Z

f̃k sinc(Lπ t − kπ) = f (t) +
T∑

k=−T

εk sinc(Lπ t − kπ), t ∈ R,

the following error bounds can be shown.

Theorem 2.4 Let f ∈ BN/2(R) be an arbitrary bandlimited function with bandwidth
N
2 . Further let L ≥ N , T ∈ N, and ε > 0 be given. Then we have

‖ f̃ − f ‖C0(R) < ε

(
2

π
ln T + 5

4
+ 1

2T

)
. (2.10)

Moreover, for the special error terms

εk = ε sign
(
sinc(π

2 − kπ)
) = ε (−1)k+1 sign(2k − 1), k = −T , . . . , T ,

we have

‖ f̃ − f ‖C0(R) ≥ ε

(
2

π
ln T + 4

π
ln 2 + 2γ

π

)
> ε

(
2

π
ln T + 5

4

)
, (2.11)

such that the Shannon sampling series is not numerically robust in the worst case
analysis.

Proof By (2.3), (2.5) and (2.9) we are given the upper error bound

‖ f̃ − f ‖C0(R) ≤ ε max
t∈R sT (t) <

4ε

π

T∑
k=1

1

2k − 1
+ ε

πT

<
2ε

π

(
ln T + 2 ln 2 + γ + T + 2

2T (T + 1)

)
.

Since

4

π
ln 2 + 2γ

π
= 1.2500093 . . . (2.12)

and μT := T +2
T +1 = 1+ 1

T +1 is monotonously decreasing with max
T ∈N μT = μ1 = 3

2 , we

have

4

π
ln 2 + 2γ

π
+ 1

πT
μT ≤ 5

4
+ 1

2T
,

which yields (2.10).
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Fig. 1 The norm ‖ f̃ − f ‖C0(R) of (2.13) as well as its lower/upper bounds (2.11) and (2.10) for several T ∈
N and L = N (1 + λ) with λ ∈ {0, 0.5, 1, 2}, where N = 128 and ε = 10−3 are chosen

Next, we proceed with the lower bound. Due to the special choice of the error
terms εk we obtain

f̃ (t) − f (t) = ε

T∑
k=−T

sign
(
sinc(π

2 − kπ)
)
sinc(Lπ t − kπ), t ∈ R. (2.13)

By (2.6) and (2.9) we conclude that

‖ f̃ − f ‖C0(R) ≥ ∣∣ f̃ ( 1
2L ) − f ( 1

2L )
∣∣ = ε

T∑
k=−T

∣∣sinc(π
2 − kπ)

∣∣ = ε sT
( 1
2L

)

= 4ε

π

T∑
k=1

1

2k − 1
+ 2ε

(2T + 1)π
> ε

(
2

π
ln T + 4

π
ln 2 + 2γ

π

)
,

such that (2.12) completes the proof. 
�

Note that (2.10) specifies a corresponding comment of [6, p. 681] as it makes the
constant explicit. In addition, we remark that the norm ‖ f̃ − f ‖C0(R) does not depend
on the special choice of the function f or the oversampling parameter λ, see Fig. 1.
Furthermore, Fig. 1 also illustrates that for T → ∞ the error behavior shown in
Theorem 2.4 is not satisfactory. Thus, in the presence of noise in the samples f

( k
L

)
,

k ∈ Z, the convergence of the Shannon sampling series (1.3) may even break down
completely.

Remark 2.5 In the above worst case analysis we have seen that the approximation of
f ∈ BN/2(R) by the T -th partial sum (2.1) of its Shannon sampling series with L ≥ N
is not numerically robust in the deterministic sense. Otherwise, a simple average case
study (see [31]) shows that this approximation is numerically robust in the stochastic
sense. Therefore,we compute (2.1) as an inner product of the real (2T +1)-dimensional
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vectors

(
f
( k

L

))T

k=−T
and

(
sinc(Lπ t − kπ)

)T
k=−T .

Now assume that instead of the exact samples f
( k

L

)
, k = −T , . . . , T , only perturbed

samples f̃
( k

L

) = f
( k

L

)+ Xk , k = −T , . . . , T , are given, where the real random vari-
ables Xk are uncorrelated, each having expectation E(Xk) = 0 and constant variance
V(Xk) = E(|Xk |2) = ρ2 with ρ > 0. Then we consider the stochastic approximation
error

�T :=
T∑

k=−T

f̃
( k

L

)
sinc(Lπ t − kπ) −

T∑
k=−T

f
( k

L

)
sinc(Lπ t − kπ)

=
T∑

k=−T

Xk sinc(Lπ t − kπ).

Obviously, this error term �T has the expectation

E(�T ) =
T∑

k=−T

sinc(Lπ t − kπ)E(Xk) = 0

and the variance

V(�T ) =
T∑

k=−T

∣∣sinc(Lπ t − kπ)
∣∣2 V(Xk) = ρ2

T∑
k=−T

∣∣sinc(Lπ t − kπ)
∣∣2.

From [27, p. 89, Problem 1.10.9] it follows that

∑
k∈Z

∣∣sinc(Lπ t − kπ)
∣∣2 = 1,

such that V(�T ) ≤ ρ2.

3 Regularization with a frequency window function

To overcome the drawbacks of poor convergence and numerical instability, one can
apply regularizationwith a convenientwindow function either in the frequency domain
or in the time domain. Often one employs oversampling, i.e., a bandlimited function
f ∈ BN/2(R) of bandwidth N

2 is sampled on a finer grid 1
L Z with L = N (1 + λ),

where λ > 0 is the oversampling parameter.
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First, together with oversampling, we consider the regularization with a frequency
window function of the form

ψ̂(v) :=
⎧⎨
⎩
1 : |v| ≤ N

2 ,

χ(|v|) : N
2 < |v| < L

2 ,

0 : |v| ≥ L
2 ,

(3.1)

cf. [5, 17, 28], whereχ : [ N
2 , L

2

] → [0, 1] is frequently chosen as somemonotonously
decreasing, continuous function with χ

( N
2

) = 1 and χ
( L
2

) = 0. Applying the inverse
Fourier transform, we determine the corresponding function in time domain as

ψ(t) =
∫
R

ψ̂(v) e2π ivt dv = 2
∫ L/2

0
ψ̂(v) cos(2πvt) dv. (3.2)

Example 3.1 A simple example of a frequencywindow function is the linear frequency
window function (cf. [5, pp. 18–19] or [17, pp. 210–212])

ψ̂lin(v) :=
⎧⎨
⎩
1 : |v| ≤ N

2 ,

1 − 2|v|−N
L−N : N

2 < |v| < L
2 ,

0 : |v| ≥ L
2 .

(3.3)

Note that in a trigonometric setting a function of the form (3.3) is also often referred to
as trapezoidal or de La Vallée-Poussin type window function, respectively. Obviously,
ψ̂lin(v) is a continuous linear spline supported on

[ − L
2 , L

2

]
, see Fig. 2a. By (3.2) we

receive ψlin(0) = N+L
2 . For t ∈ R\{0} we obtain

ψlin(t) = 2
∫ N/2

0
cos(2πvt) dv + 2

∫ L/2

N/2

(
1 − 2v − N

L − N

)
cos(2πvt) dv

= N + L

2
sinc

( N+L
2 π t

)
sinc

( L−N
2 π t

)
. (3.4)

This function 1
L ψlin is even, supported on whole R, has its maximum at t = 0 such

that

∥∥∥∥ 1

L
ψlin

∥∥∥∥
C0(R)

= 1

L
ψlin(0) = 2 + λ

2 + 2λ
< 1.

In addition, 1
L ψlin(t) has a faster decay than sinc(Nπ t) for |t | → ∞, cf. Fig. 2b. Note

that we have

lim
L→+N

1

L
ψlin(t) = sinc(Nπ t).
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Fig. 2 The frequency window function (3.3) and its scaled inverse Fourier transform (3.4)

Remark 3.2 Note that
{
1
L ψlin

( · − k
L

)}
k∈Z is a Bessel sequence in L2(R) with the

bound 1
L , i.e., for all f ∈ L2(R) we have

∑
k∈Z

∣∣∣〈 f , 1
L ψlin

( · − k
L

)〉
L2(R)

∣∣∣2 ≤ 1
L ‖ f ‖2L2(R)

.

However,
{
1
L ψlin

( · − k
L

)}
k∈Z is not an orthonormal sequence and also not a Riesz

sequence. To see this, we consider the 1-periodic function

(v) := 1

L2

∑
k∈Z

∣∣ψ̂lin(Lv + Lk)
∣∣2, v ∈ R.

By (3.3) we have

ψ̂lin(Lv) =
⎧⎨
⎩
1 : |v| ≤ 1

2+2λ ,

1 − (2+2λ)|v|−1
λ

: 1
2+2λ < |v| < 1

2 ,

0 : |v| ≥ 1
2 ,

i.e., (v) ≤ 1
L2 for all v ∈ R and (v) = 0 for v ∈ 1

2 + Z. Then [4, Theorem 9.2.5]
yields the result.

Analogous to [5, p. 19] and [17, Theorem 7.2.5], we obtain the following represen-
tation result, see also [28, p. 4].

Theorem 3.3 Let f ∈ BN/2(R) be a bandlimited function with bandwidth N
2 , N ∈ N,

and let L = N (1 + λ) with λ > 0 be given. Assume that the samples f
( k

L

)
, k ∈ Z,
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fulfill the condition

∑
k∈Z

∣∣ f
( k

L

)∣∣ < ∞. (3.5)

Using oversampling and regularization with a frequency window function ψ̂ of the
form (3.1), the function f can be represented as

f (t) =
∑
k∈Z

f
( k

L

) 1

L
ψ

(
t − k

L

)
, t ∈ R, (3.6)

where the series (3.6) converges absolutely and uniformly on R.

Proof Since by assumption f ∈ BN/2(R), we have supp f̂ ⊆ [− N
2 , N

2

] ⊂ [− L
2 , L

2

]
and therefore the function f̂ restricted on

[− L
2 , L

2

]
canbe represented by its L-periodic

Fourier series

f̂ (v) =
∑
k∈Z

ck( f̂ ) e2π ikv/L , v ∈ [ − L
2 , L

2

]
, (3.7)

with the Fourier coefficients

ck( f̂ ) = 1

L

∫ L/2

−L/2
f̂ (v) e−2π ikv/L dv.

Using the inverse Fourier transform, we see that

ck( f̂ ) = 1

L

∫
R

f̂ (v) e−2π ikv/L dv = 1

L
f
( − k

L

)
.

Hence, we may write f̂ given by (3.7) as

f̂ (v) = 1

L

∑
k∈Z

f
( k

L

)
e−2π ikv/L , v ∈ [ − L

2 , L
2

]
. (3.8)

By the Weierstrass M-test and assumption (3.5), the Fourier series (3.8) converges
absolutely and uniformly on

[ − L
2 , L

2

]
. Additionally, we have ψ̂(v) = 1 for v ∈[ − N

2 , N
2

]
by (3.1) as well as supp f̂ ⊆ [ − N

2 , N
2

]
by assumption, such that f̂ (v) =

f̂ (v) ψ̂(v) for all v ∈ R. Therefore, we obtain

f (t) =
∫
R

f̂ (v) e2π itv dv =
∫ L/2

−L/2
f̂ (v) e2π itv dv =

∫ L/2

−L/2
f̂ (v) ψ̂(v) e2π itv dv

=
∑
k∈Z

1

L
f
( k

L

) ∫ L/2

−L/2
ψ̂(v) e2π i(t−k/L) v dv =

∑
k∈Z

f
( k

L

) 1

L
ψ

(
t − k

L

)
, t ∈ R,
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where summation and integration may be interchanged by the theorem of Fubini–
Tonelli, since we have (3.5) and |ψ̂(v)| ≤ 1 by definition (3.1). Additionally, note that
from (3.1) and (3.2) it follows that

|ψ(t)| ≤ 2
∫ L/2

0

∣∣ cos(2πvt)
∣∣ dv < L, t ∈ R.

Hence, we have 1
L

∣∣∣ψ(
t − k

L

)∣∣∣ < 1 for all t ∈ R and k ∈ Z, and consequently the

series (3.6) converges absolutely and uniformly on R by (3.5) and the Weierstrass
M-test. 
�

Note that (3.6) is not an interpolating approximation, since in general we have

1

L
ψ

(
t − k

L

) ∣∣∣∣
t= n

L

�= δn,k, n, k ∈ Z.

Moreover, since the frequency window function ψ̂ in (3.1) is compactly supported,
the uncertainty principle (cf. [18, p. 103, Lemma 2.39]) yields suppψ = R, such
that (3.6) does not imply localized sampling for any choice of ψ̂ . In other words, the
representation (3.6) still requires infinitely many samples f

( k
L

)
. Thus, for practical

realizations we need to consider a truncated version of (3.6) and hence for T ∈ N we
introduce the T -th partial sum

(Pψ,T f )(t) :=
T∑

k=−T

f
( k

L

) 1

L
ψ

(
t − k

L

)
, t ∈ [−1, 1]. (3.9)

Then for the linear frequency window function (3.3) we show the following con-
vergence result.

Theorem 3.4 Let f ∈ BN/2(R) be a bandlimited function with bandwidth N
2 , N ∈ N,

and let L = N (1 + λ) with λ > 0 be given. Assume that the samples f
( k

L

)
, k ∈

Z, fulfill the condition (3.5). Using oversampling and regularization with the linear
frequency window function (3.3), the T -th partial sums Plin,T f converge uniformly
to f on [−1, 1] as T → ∞. For T > L the following estimate holds

max
t∈[−1, 1]

∣∣ f (t) − (Plin,T f )(t)
∣∣ ≤

√
2L

3

2 (1 + λ)

π2λ
(T − L)−3/2 ‖ f ‖L2(R). (3.10)

Proof By (3.6) and (3.9) we have

f (t) − (Plin,T f )(t) =
∑

|k|>T

f
( k

L

) 1

L
ψlin

(
t − k

L

)
,
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such that Cauchy–Schwarz inequality implies

∣∣ f (t) − (Plin,T f )(t)
∣∣ ≤

( ∑
|k|>T

∣∣ f
( k

L

)∣∣2
)1/2 ( ∑

|k|>T

∣∣ 1
L ψlin

(
t − k

L

)∣∣2
)1/2

. (3.11)

For f ∈ BN/2(R) the Parseval equality implies

1

L

∑
k∈Z

∣∣ f
( k

L

)∣∣2 = ‖ f ‖2L2(R)
,

see [10, Formula (3.8)], and thereby we have

( ∑
|k|>T

∣∣ f
( k

L

)∣∣2
)1/2

≤ √
L ‖ f ‖L2(R). (3.12)

It can easily be seen that (3.4) satisfies the decay condition

∣∣ 1
L ψlin(x)

∣∣ ≤ 2

L Nλ π2 x−2, x ∈ R\{0},

and thereby

∣∣ 1
L ψlin

(
t − k

L

)∣∣2 ≤ 4 (1 + λ)2

λ2π4 (Lt − k)−4.

Thus, for T > L and t ∈ [−1, 1] we obtain
( ∑

|k|>T

∣∣ 1
L ψlin

(
t − k

L

)∣∣2
)1/2

≤ 2 (1 + λ)

λπ2

( ∑
|k|>T

(Lt − k)−4
)1/2

≤ 2
√
2 (1 + λ)

λπ2

( ∞∑
k=T +1

(k − L)−4
)1/2

.

Using the integral test for convergence of series, we conclude

∞∑
k=T +1

(k − L)−4 ≤
∫ ∞

T
(t − L)−4 dt = 1

3 (T − L)−3,

which yields

( ∞∑
k=T +1

(k − L)−4
)1/2

≤ 1√
3

(T − L)−3/2. (3.13)

Therefore, (3.11), (3.12), and (3.13) imply the estimate (3.10). 
�
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Fig. 3 Maximum approximation
error (3.14) (solid) and error
constant (3.10) (dashed) using
the linear frequency window
ψlin from (3.4) in (3.9) for the
function f (t) = √

N sinc(Nπ t)
with N = 128, T = 2c ,
c ∈ {0, . . . , 15}, and
λ ∈ {0.5, 1, 2}

Example 3.5 Next, we visualize the error bound of Theorem 3.4, i.e., for a given
function f ∈ BN/2(R) with L = N (1 + λ), λ > 0, we show that the approximation
error satisfies (3.10). For this purpose, the error

max
t∈[−1, 1]

∣∣ f (t) − (Plin,T f )(t)
∣∣ (3.14)

is estimated by evaluating the given function f as well as its approximation Plin,T f ,
cf. (3.9), at equidistant points ts ∈ [−1, 1], s = 1, . . . , S, with S = 105. Here we
study the function f (t) = √

N sinc(Nπ t), t ∈ R, such that ‖ f ‖L2(R) = 1. We fix
N = 128 and consider the error behavior for increasing T ∈ N. More specifically,
in this experiment we choose several oversampling parameters λ ∈ {0.5, 1, 2} and
truncation parameters T = 2c with c ∈ {0, . . . , 15}. The corresponding results are
depicted in Fig. 3. Note that the error bound in (3.10) is only valid for T > L .
Therefore, we have additionally marked the point T = L for each λ as a vertical
dash-dotted line. It can easily be seen that also the error results are much better when
T > L . Note, however, that increasing the oversampling parameter λ requires a much
larger truncation parameter T to obtain errors of the same size.

In order to obtain convergence rates better than the one in Theorem 3.4, one may
consider frequency window functions (3.1) of higher smoothness.

Example 3.6 Next, we construct a continuously differentiable frequencywindow func-
tion by polynomial interpolation. Since the frequency window function (3.1) is even,
it suffices to consider only χ : [ N

2 , L
2

] → [0, 1] at the interval boundaries N
2 and L

2 .

Clearly, the linear frequency window function ψ̂lin in (3.3) fulfills

lim
v→ N

2

χ(v) = 1, lim
v→ L

2

χ(v) = 0.
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Thus, to obtain a smoother frequency window function, we need to additionally satisfy
the first order conditions

lim
v→ N

2

χ ′(v) = 0, lim
v→ L

2

χ ′(v) = 0.

Then the corresponding interpolation polynomial yields the cubic frequency window
function

ψ̂cub(v) :=

⎧⎪⎨
⎪⎩
1 : |v| ≤ N

2 ,
16

(L−N )3

(|v| − L
2

)2(|v| − 3N−L
4

) : N
2 < |v| < L

2 ,

0 : |v| ≥ L
2 ,

(3.15)

see Fig. 4a. By (3.2) we see that the inverse Fourier transform of (3.15) is given by

ψcub(t) = L + N

2
sinc

( L+N
2 π t

) · 12
(
sinc

( L−N
2 π t

) − cos
( L−N

2 π t
))

π2t2(L − N )2
, (3.16)

for t ∈ R\{0} and ψcub(0) = L+N
2 , cf. Fig. 4b.

Analogous to Theorem 3.4, the following error estimate can be derived.

Theorem 3.7 Let f ∈ BN/2(R) be a bandlimited function with bandwidth N
2 , N ∈ N,

and let L = N (1 + λ) with λ > 0 be given. Assume that the samples f
( k

L

)
, k ∈

Z, fulfill the condition (3.5). Using oversampling and regularization with the cubic
frequency window function (3.15), the T -th partial sums Pcub,T f converge uniformly
to f on [−1, 1] as T → ∞. For T > L the following estimate holds

max
t∈[−1, 1]

∣∣ f (t) − (Pcub,T f )(t)
∣∣ ≤

√
2L

5

24 (1 + λ)2

π3λ2
(T − L)−5/2 ‖ f ‖L2(R).

(3.17)

Example 3.8 Another continuously differentiable frequency window function is given
in [24] as the raised cosine frequency window function

ψ̂cos(v) :=

⎧⎪⎨
⎪⎩
1 : |v| ≤ N

2 ,
1
2 + 1

2 cos
(
2|v|−N

L−N π
)

: N
2 < |v| < L

2 ,

0 : |v| ≥ L
2 ,

(3.18)

see Fig. 4a. By (3.2) the corresponding function in time domain can be determined as

ψcos(t) = L + N

2
sinc

( L+N
2 π t

) · cos
( L−N

2 π t
)

1 − t2(L − N )2
, t ∈ R\{± 1

L−N

}
, (3.19)
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Fig. 4 The frequency window functions (3.15) and (3.18), and their scaled inverse Fourier transforms

and ψcos

(
± 1

L−N

)
= L−N

4 cos
( Nπ

L−N

)
, see Fig. 4b. Note that since ψ̂cos in (3.18)

possesses the same regularity as ψ̂cub in (3.15), both frequency window functions
meet the same error bound (3.17), cf. Fig. 7.

Note that by (3.4) and the convolution property of the Fourier transform, for L > N
the linear frequency window function (3.3) can be written as

ψ̂lin(v) = 2

L − N

(
1(N+L)/4 ∗ 1(L−N )/4

)
(v).

Therefore, instead of determining smooth frequency window functions of the
form (3.1) by means of interpolation as in Example 3.6, they can also be constructed
by convolution, cf. [15].

Lemma 3.9 Let L > N be given. Assume that ρ : R → [0, ∞) is an even integrable
function with supp ρ = [ − L−N

4 , L−N
4

]
and

∫
R

ρ(v) dv = 1. Then the convolution

ψ̂conv(v) = (
1(N+L)/4 ∗ ρ

)
(v), v ∈ R, (3.20)

is a frequency window function of the form (3.1).

Proof By assumptions we have

ψ̂conv(v) = (
1(N+L)/4 ∗ ρ

)
(v) =

∫ (N+L)/4

−(N+L)/4
ρ(v − w) dw =

∫ v+(N+L)/4

v−(N+L)/4
ρ(w) dw.

(3.21)

Since the convolution of two even functions is again an even function, it suffices to
consider (3.21) only for v ≥ 0. For v ∈ [

0, N
2

]
we have v− L+N

4 ≤ − L−N
4 < L−N

4 ≤



13 Page 20 of 33 M. Kircheis et al.

v + L+N
4 and therefore

ψ̂conv(v) =
∫ (L−N )/4

−(L−N )/4
ρ(w) dw = 1.

For v ∈ [ N
2 , L

2

]
we can write

ψ̂conv(v) =
∫ (L−N )/4

v−(L+N )/4
ρ(w) dw ≥ 0,

such that ψ̂conv
( N
2

) = 1, ψ̂conv
( L
2

) = 0, and ψ̂conv : [ N
2 , L

2

] → [0, 1] is
monotonously non-increasing, since ρ(w) ≥ 0 by assumption. For v ∈ [ L

2 , ∞)
we have v − L+N

4 ≥ L−N
4 , which implies by assumption supp ρ = [ − L−N

4 , L−N
4

]
that

ψ̂conv(v) =
∫ v+(L+N )/4

v−(L+N )/4
ρ(w) dw = 0.

This completes the proof. 
�
Given such a frequency window function ψ̂conv as in (3.20), its inverse Fourier

transform (3.2) is known by the convolution property of the Fourier transform as

ψconv(t) = N + L

2
sinc

( N+L
2 π t

)
ρ̌(t). (3.22)

Thus, to obtain a suitable window function (3.20), we need to assure that the inverse
Fourier transform ρ̌ of ρ is explicitly known. Since ρ is even by assumption, we
have ρ̌ = ρ̂ with

ρ̌(t) =
∫
R

ρ(v) e2π itv dv = 2
∫ ∞

0
ρ(v) cos(2πvt) dv.

Note that the convolutional approach (3.20) has the substantial advantage that the
smoothness of (3.20) is determined by the smoothness of the chosen function ρ.

Remark 3.10 The frequency window functions ψ̂cub in (3.15) and ψ̂cos in (3.18) lack
a convolutional representation (3.20). Although the corresponding functions (3.16)
and (3.19) in spatial domain are of the form (3.22), for both frequency windows the
Fourier transform of the respective function ρ̌ is only known in the sense of tempered
distributions.

Example 3.11 For the special choice of ρ(v) = 2n
L−N Mn

( 2n
L−N v

)
with n ∈ N, where

Mn is the centered cardinal B-spline of order n, we have

ρ̌(t) =
(
sinc

( L−N
2n π t

))n
.
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Using n = 1 this again yields (3.4), whereas for n = 2 we obtain

ψconv,2(t) = N + L

2
sinc

( N+L
2 π t

) (
sinc

( L−N
4 π t

))2
. (3.23)

Note that the frequency window function ψ̂conv,2, cf. (3.23), possesses the same reg-
ularity as ψ̂cub in (3.15) and ψ̂cos in (3.18), and therefore they all meet the same error
bound (3.17), cf. Fig. 7.

Example 3.12 In [15] the infinitely differentiable function

ρ∞(v) =
{

c exp
([( 4v

L−N

)2 − 1
]−1) : |v| < L−N

4 ,

0 : otherwise,

with the scaling factor

c = 1

2

(∫ (L−N )/4

0
exp

([( 4v
L−N

)2 − 1
]−1) dv

)−1

,

is considered. The corresponding frequencywindow function (3.20) is denoted by ψ̂∞.
However, since for this function ρ∞ the inverse Fourier transform ρ̌∞ cannot explicitly
be stated, the function (3.22) in time domain can only be approximated, which was
done by a piecewise rational approximation ρ̌rat in [15].We remark that because of this
additional approximation a numerical decay of the expected rate is doubtful, since the
issue of robustness of the corresponding regularized Shannon series remains unclear.
This effect can also be seen in Fig. 7, where the corresponding frequency window
function (3.20), denoted by ψ̂rat, shows similar behavior as the classical Shannon
sampling sums (2.1).

The same comment also applies to [28], where an infinitely differentiable win-
dow function ψ̂ is aimed for as well. Since such ψ̂ with explicit inverse Fourier
transform (3.2) is not known, in [28] the function ψ is estimated by some Gabor
approximation. Although an efficient computation scheme via fast Fourier transform
(FFT) was introduced in [29], the numerical nonrobustness by this approximation
seems to be neglected in this work.

Finally, we remark that already in [5, p. 19] it was stated that a faster decay than
for ψ̂lin from (3.3) can be obtained by choosing ψ̂ in (3.1) smoother, but at the price of
a very large constant. This can also be seen in Fig. 7, where the results for the window
functions ψ̂cub in (3.15), ψ̂cos in (3.18), ψ̂conv,2 in (3.23), and ψ̂rat from Example 3.12
are plotted as well. For this reason many authors restricted themselves to the linear
frequency window function ψ̂lin in (3.3). Furthermore, the numerical results in Fig. 7
encourage the suggestion that in practice only algebraic decay rates are achievable by
regularization with a frequency window function.
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4 Regularization with a time window function

To preferably obtain better decay rates, we now consider a second regularization tech-
nique, namely regularization with a convenient window function in the time domain.
To this end, for L > N and any m ∈ N\{1} with 2m � L , we introduce the set �m/L

of all window functions ϕ : R → [0, 1] with the following properties:

• Each ϕ ∈ �m/L is supported on
[ − m

L , m
L

]
. Further, ϕ is even and continuous on[ − m

L , m
L

]
.

• Each ϕ ∈ �m/L restricted on
[
0, m

L

]
is monotonously non-increasing with ϕ(0) =

1.

As examples of such window functions we consider the sinh-type window function

ϕsinh(t) :=
⎧⎨
⎩

1
sinh β

sinh
(
β

√
1 − ( Lt

m

)2 )
: t ∈ [ − m

L , m
L

]
,

0 : t ∈ R\[ − m
L , m

L

]
,

(4.1)

with β = πm (L−N )
L , and the continuous Kaiser–Bessel window function

ϕcKB(t) :=
⎧⎨
⎩

1
I0(β)−1

(
I0

(
β

√
1 − ( Lt

m

)2 )
− 1

)
: t ∈ [ − m

L , m
L

]
,

0 : t ∈ R\[ − m
L , m

L

]
,

(4.2)

with β = πm (L−N )
L , where I0(x) denotes the modified Bessel function of first kind

given by

I0(x) :=
∞∑

k=0

1(
(2k)!!)2 x2k, x ∈ R.

Both window functions are well-studied in the context of the nonequispaced fast
Fourier transform (NFFT), see e.g. [19] and references therein.

A visualization of the continuous Kaiser–Bessel window function (4.2) as well as
the corresponding regularization ξcKB(t) := sinc(Lπ t) ϕcKB(t) of the sinc function
can be found in Fig. 5. We remark that in contrast to Fig. 2 here the function ξcKB
in time domain is compactly supported and its Fourier transform ξ̂cKB is supported
on whole R, where for the frequency window function (3.3) it is vice versa (see [18,
p. 103, Lemma2.39]). Note that a visualization for the sinh-typewindow function (4.1)
would look the same as Fig. 5.

Then we approximate a bandlimited function f ∈ BN/2(R) by the regularized
Shannon sampling formula

(Rϕ,m f )(t) :=
∑
k∈Z

f
( k

L

)
sinc(Lπ t − πk) ϕ

(
t − k

L

)
, t ∈ R, (4.3)
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Fig. 5 The regularized sinc function ξcKB(t) := sinc(Lπ t) ϕcKB(t) using the continuous Kaiser–Bessel
window function (4.2) and its Fourier transform ξ̂cKB

with L ≥ N . Since by assumption sinc(π(n − k)) = δn,k for all n, k ∈ Z with the
Kronecker delta δn,k and ϕ(0) = 1, this procedure is an interpolating approximation
of f , because

sinc(Lπ t − πk) ϕ
(
t − k

L

) ∣∣∣
t= n

L

= δn,k .

Furthermore, the use of the compactly supported window function ϕ ∈ �m/L leads to
localized sampling of the bandlimited function f ∈ BN/2(R), i.e., the computation of
(Rϕ,m f )(t) for t ∈ R\ 1

L Z requires only 2m + 1 samples f
( k

L

)
, where k ∈ Z fulfills

the condition |k − Lt | ≤ m. Consequently, for given f ∈ BN/2(R) and L ≥ N ,
the reconstruction of f on the interval [−1, 1] requires 2m + 2L + 1 samples f

( k
L

)
with k = −m − L, . . . , m + L . In addition, we again employ oversampling of the
bandlimited function f ∈ BN/2(R), i.e., f is sampled on a finer grid 1

L Zwith L > N .
This concept of regularized Shannon sampling formulas with localized sampling

and oversampling has already been studied by various authors. A survey of different
approaches for window functions can be found in [22], while the prominent Gaussian
window function was e.g. considered in [13, 21, 23, 26, 30]. Since this Gaussian
window function has also been studied in [10], where the superiority of the sinh-type
window function (4.1)was shown,we now focus on timewindow functionsϕ ∈ �m/L ,
such as (4.1) and (4.2).

Similar as in [10], for given f ∈ BN/2(R) andϕ ∈ �m/L the uniformapproximation
error ‖ f −Rϕ,m f ‖C0(R) of the regularized Shannon sampling formula can be estimated
as follows.

Theorem 4.1 Let f ∈ BN/2(R) be a bandlimited function with bandwidth N
2 , N ∈ N,

and let L > N , and m ∈ N\{1} be given. Further let ϕ ∈ �m/L . Then the regularized
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Shannon sampling formula (4.3) satisfies

‖ f − Rϕ,m f ‖C0(R) ≤ (
E1(m, N , L) + E2(m, L)

) ‖ f ‖L2(R),

with the corresponding error constants

E1(m, N , L) := √
N max

v∈[−N/2, N/2]

∣∣∣∣1 −
∫ v+L/2

v−L/2
ϕ̂(u) du

∣∣∣∣, (4.4)

E2(m, L) :=
√
2L

π m
ϕ
(m

L

)
. (4.5)

Proof For a proof of Theorem 4.1 see [10, Theorem 3.2]. 
�
Note that it is especially beneficial for the estimation of the error constant (4.4), if

the Fourier transform

ϕ̂(v) =
∫
R

ϕ(t) e−2π ivt dt = 2
∫ m/L

0
ϕ(t) cos(2πvt) dt, v ∈ R, (4.6)

of ϕ ∈ �m/L is explicitly known.
Now we specify the result of Theorem 4.1 for certain window functions. To this

end, assume that f ∈ BN/2(R) with N ∈ N and L = N (1+ λ), λ > 0. Additionally,
we choose m ∈ N\{1}. We demonstrate that for the window functions (4.1) and (4.2)
the approximation error of the regularized Shannon sampling formula (4.3) decreases
exponentially with respect tom. For the sinh-typewindow function (4.1) the following
result is already known.

Theorem 4.2 Let f ∈ BN/2(R) be a bandlimited function with bandwidth N
2 , N ∈ N,

and let L = N (1 + λ) with λ > 0 and m ∈ N\{1} be given.
Then the regularized Shannon sampling formula (4.3) with the sinh-type window

function (4.1) satisfies the error estimate

‖ f − Rsinh,m f ‖C0(R) ≤ √
N e−mπλ/(1+λ) ‖ f ‖L2(R). (4.7)

Proof For a proof of Theorem 4.2 see [10, Theorem 6.1]. 
�
Next, we continue with the continuous Kaiser–Bessel window function (4.2).

Theorem 4.3 Let f ∈ BN/2(R) be a bandlimited function with bandwidth N
2 , N ∈ N,

and let L = N (1 + λ) with λ ≥ 1
m−1 and m ∈ N\{1} be given.

Then the regularized Shannon formula (4.3) with the continuous Kaiser–Bessel
window function (4.2) satisfies the error estimate

‖ f − RcKB,m f ‖C0(R) ≤ 7
√

N mπλ (1 + λ + 4mλ)

4 (1 + λ)2
e−mπλ/(1+λ) ‖ f ‖L2(R).

(4.8)
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Proof By means of Theorem 4.1 we only have to compute the error constants (4.4)
and (4.5). Note that (4.2) implies ϕcKB

(m
L

) = 0, such that the error constant (4.5)
vanishes. For computing the error constant (4.4) we introduce the function η : [ −
N
2 , N

2

] → R given by

η(v) = 1 −
∫ v+L/2

v−L/2
ϕ̂cKB(u) du. (4.9)

As known by [16, p. 3, 1.1, and p. 95, 18.31], the Fourier transform of (4.2) has the
form

ϕ̂cKB(v) = 2m(
I0(β) − 1

)
L

·
⎧⎨
⎩

(
sinh

(
β
√
1−w2

)
β
√
1−w2 − sinc(βw)

)
: |w| < 1,(

sinc
(
β
√

w2 − 1
) − sinc(βw)

) : |w| ≥ 1,

(4.10)

with the scaled frequency w = 2πm
βL v. Thus, substituting w = 2πm

βL u in (4.9) yields

η(v) = 1 − βL

2πm

∫ a(v)

−a(−v)

ϕ̂cKB
( βL
2mπ

w
)
dw

with the increasing linear functiona(v) := 2mπ
βL

(
v+ L

2

)
. By the choice of the parameter

β = mπλ
1+λ

with λ ≥ 1
m−1 we have a

( − N
2

) = 1 and a(v) ≥ 1 for all v ∈ [ − N
2 , N

2

]
.

Using (4.10), we decompose η(v) in the form

η(v) = η1(v) − η2(v), v ∈ [ − N
2 , N

2

]
,

with

η1(v) = 1 − β

π
(
I0(β) − 1

)
∫ 1

−1

(
sinh

(
β
√
1 − w2

)
β
√
1 − w2

− sinc(βw)

)
dw,

η2(v) = β

π
(
I0(β) − 1

)
( ∫ −1

−a(−v)

+
∫ a(v)

1

)(
sinc

(
β
√

w2 − 1
) − sinc(βw)

)
dw.

By [7, 3.997–1] we have

∫ 1

−1

sinh
(
β
√
1 − w2

)
β
√
1 − w2

dw = 2

β

∫ 1

0

sinh
(
β
√
1 − w2

)
√
1 − w2

dw

= 2

β

∫ π/2

0
sinh(β cos s) ds = π

β
L0(β),
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Fig. 6 Visualization of[
I0(β)−L0(β)−1+ 2

π Si(β)
] ∈

(0, 1) for suitable β = mπλ
1+λ

where L0(x) denotes the modified Struve function given by (see [1, 12.2.1])

L0(x) :=
∞∑

k=0

(x/2)2k+1

(
�

(
k + 3

2

))2 = 2x

π

∞∑
k=0

x2k

(
(2k + 1)!!)2 .

Note that the function I0(x) − L0(x) is completely monotonic on [0, ∞) (see [3,
Theorem 1]) and tends to zero as x → ∞. Applying the sine integral function

Si(x) :=
∫ x

0

sinw

w
dw =

∫ x

0
sincw dw, x ∈ R,

implies

∫ 1

−1
sinc(βw) dw = 2

∫ 1

0
sinc(βw) dw = 2

β
Si(β).

Hence, we obtain

η1(v) = 1 − 1

I0(β) − 1

(
L0(β) − 2

π
Si(β)

)

= 1

I0(β) − 1

(
I0(β) − L0(β) − 1 + 2

π
Si(β)

)
.

Note that for suitable β = mπλ
1+λ

we find
[
I0(β) − L0(β) − 1 + 2

π
Si(β)

] ∈ (0, 1), cf.
Fig. 6. In addition, it is known that I0(x) ≥ 1, x ∈ R, such that η1(v) > 0.
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Now we estimate η2(v) for v ∈ [ − N
2 , N

2

]
by the triangle inequality as

|η2(v)| ≤ β

π
(
I0(β) − 1

)
( ∫ −1

−a(−v)

+
∫ a(v)

1

)∣∣∣sinc(β√
w2 − 1

) − sinc(βw)

∣∣∣ dw.

By [20, Lemma 4] we have for |w| ≥ 1 that

∣∣∣sinc(β√
w2 − 1

) − sinc(βw)

∣∣∣ ≤ 2

w2 .

Thus, we conclude

|η2(v)| ≤ 4β

π
(
I0(β) − 1

)
∫ ∞

1

1

w2 dw = 4β

π
(
I0(β) − 1

)

and using Fig. 6 we therefore obtain

|η(v)| ≤ η1(v) + |η2(v)| ≤ 1

I0(β) − 1

(
I0(β) − L0(β) − 1 + 2

π
Si(β) + 4β

π

)

≤ 1

I0(β) − 1

(
1 + 4β

π

)
.

By [2] the function ex

I0(x)
is strictly decreasing on [0,∞) and tends to zero as x → ∞.

Numerical experiments have shown that ex

x (I0(x)−1) is strictly decreasing on [π,∞),

too. By the assumption λ ≥ 1
m−1 we have β = πmλ

1+λ
≥ π for all m ∈ N\{1}. Hence,

it follows that

eβ

β (I0(β) − 1)
≤ eπ

π (I0(π) − 1)
= 1.644967 . . . <

7

4

and thus we conclude that

1

I0(β) − 1

(
1 + 4β

π

)
<

7β

4

(
1 + 4β

π

)
e−β = 7πmλ

4 (1 + λ)

(
1 + 4mλ

1 + λ

)
e−πmλ/(1+λ)

for all m ∈ N\{1}. This completes the proof. 
�
As seen in Theorem 2.4, if the samples f

( k
L

)
, k ∈ Z, of a bandlimited func-

tion f ∈ BN/2(R) are not known exactly, i.e., only erroneous samples f̃k := f
( k

L

)+εk

with |εk | ≤ ε, k ∈ Z, with ε > 0 are known, the corresponding Shannon sampling
series (1.3) may differ appreciably from f . Here we denote the regularized Shannon
sampling formula with erroneous samples f̃k by

(Rϕ,m f̃ )(t) =
∑
k∈Z

f̃k sinc(Lπ t − πk) ϕ
(
t − k

L

)
, t ∈ R.
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Then, in contrast to the Shannon sampling series (1.3), the regularized Shannon sam-
pling formula (4.3) is numerically robust in the worst case analysis, i.e., the uniform
perturbation error ‖Rϕ,m f̃ − Rϕ,m f ‖C0(R) is small.

Theorem 4.4 Let f ∈ BN/2(R) be a bandlimited function with bandwidth N
2 , N ∈ N,

and let L > N , and m ∈ N\{1} be given. Further let ϕ ∈ �m/L as well as f̃k =
f ( k

L ) + εk, where |εk | ≤ ε for all k ∈ Z, with 0 < ε � 1. Then the regularized
Shannon sampling sum (4.3) satisfies

‖Rϕ,m f̃ − Rϕ,m f ‖C0(R) ≤ ε
(
2 + L ϕ̂(0)

)
,

‖ f − Rϕ,m f̃ ‖C0(R) ≤ ‖ f − Rϕ,m f ‖C0(R) + ε
(
2 + L ϕ̂(0)

)
. (4.11)

Proof For a proof of Theorem 4.4 see [10, Theorem 3.4]. 
�
Note that it is especially beneficial for obtaining explicit error estimates, if the

Fourier transform (4.6) of ϕ ∈ �m/L is explicitly known. In the following, we
demonstrate that for the window functions (4.1) and (4.2) the perturbation error of
the regularized Shannon sampling formula (4.3) only grows as O(

√
m).

Theorem 4.5 Let f ∈ BN/2(R) be a bandlimited function with bandwidth N
2 , N ∈ N,

and let L = N (1+λ) with λ > 0 and m ∈ N\{1} be given. Further let f̃k = f
( k

L

)+εk,

with |εk | ≤ ε for all k ∈ Z and 0 < ε � 1.
Then the regularized Shannon sampling formula (4.3) with the sinh-type window

function (4.1) satisfies the error estimate

‖Rsinh,m f̃ − Rsinh,m f ‖C0(R) ≤ ε

(
2 +

√
2 + 2λ

λ

1

1 − e−2β

√
m

)
.

Proof For a proof of Theorem 4.5 see [10, Theorem 6.3]. 
�
Theorem 4.6 Let f ∈ BN/2(R) be a bandlimited function with bandwidth N

2 , N ∈ N,

and let L = N (1+λ) with λ > 0 and m ∈ N\{1} be given. Further let f̃k = f
( k

L

)+εk,

with |εk | ≤ ε for all k ∈ Z and 0 < ε � 1.
Then the regularized Shannon sampling formula (4.3) with the continuous Kaiser–

Bessel window function (4.2) satisfies the error estimate

‖RcKB,m f̃ − RcKB,m f ‖C0(R) ≤ ε

(
2 +

√
2 + 2λ

λ

√
m

)
. (4.12)

Proof By Theorem 4.4 we have to compute ϕ̂cKB(0) for the continuous Kaiser–Bessel
window function (4.2), which is given by (4.10) as

ϕ̂cKB(0) = 2m(
I0(β) − 1

)
L

(
sinh(β)

β
− 1

)
= 2m

L
√

β
· sinh(β) − β√

β
(
I0(β) − 1

) .
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By [1, 9.7.1] we have

lim
x→∞

√
2πx e−x I0(x) = 1

and hence

lim
x→∞

√
2πx e−x (

I0(x) − 1
) = 1.

Moreover, for β > 0 the term sinh(β)−β√
β
(

I0(β)−1
) is monotonously increasing with

lim
β→∞

sinh(β) − β√
β

(
I0(β) − 1

) = lim
β→∞

1 − e−2β − 2β e−β

2
√

β e−β
(
I0(β) − 1

) =
√

π

2
,

such that (4.11) and β = πmλ
1+λ

yields the assertion (4.12). 
�

5 Comparison of the two regularizationmethods

Finally, we compare the behavior of the regularization methods presented in Sects. 3
and 4 to the classical Shannon sampling sums (2.1). For a given function f ∈ BN/2(R)

with L = N (1 + λ), λ > 0, we consider the approximation errors

max
t∈[−1, 1]

∣∣ f (t) − (ST f )(t)
∣∣ and max

t∈[−1, 1]
∣∣ f (t) − (Pψ,T f )(t)

∣∣ (5.1)

for ψ ∈ {ψlin, ψcub, ψcos, ψconv,2, ψrat}, cf. (3.4), (3.16), (3.19), (3.23), and Exam-
ple 3.12, as well as the corresponding error constants (3.10) and (3.17). In addition,
we study the approximation error

max
t∈[−1, 1] | f (t) − (Rϕ,m f )(t)| (5.2)

with ϕ ∈ {ϕsinh, ϕcKB}, cf. (4.1) and (4.2), and the corresponding error constants (4.7)
and (4.8). By the definition of the regularized Shannon sampling formula in (4.3) we
have

(Rϕ,m f )(t) =
L+m∑

k=−L−m

f ( k
L ) ξ(t − k

L ), t ∈ [−1, 1], (5.3)

with the regularized sinc function

ξ(t) := sinc(Lπ t) ϕ(t). (5.4)

Thus, to compare (5.3) to ST f in (2.1) and Pψ,T f in (3.9), we set T = L+m, such that
all approximations use the same number of samples. As in Example 3.5 the errors (5.1)
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Fig. 7 Maximum approximation
error (solid) and error constants
(dashed) using classical Shannon
sampling sums compared to
regularizations (3.6) with several
frequency window functions and
regularizations (4.3) with time
window functions ϕsinh
and ϕcKB, cf. (5.4), for the
function (5.5) with N = 256,
m ∈ {2, 3, . . . , 10}, and
λ ∈ {0.5, 1, 2}

and (5.2) shall be estimated by evaluating a given function f and its approximation
at equidistant points ts ∈ [−1, 1], s = 1, . . . , S, with S = 105. Analogous to [16,
Section IV, C], we choose the function

f (t) =
√

4N
5

[
sinc(Nπ t) + 1

2 sinc(Nπ(t − 1))
]
, t ∈ R, (5.5)
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Table 1 Summary of the
theoretical results on decay rates
for the window functions
considered in Sects. 3 and 4

Window function Error decay rate See

sinc(Lπ ·) (T − L)−1/2 [8, Theorem 1]

ψ̂lin in (3.3) (T − L)−3/2 Theorem 3.4

ψ̂cub in (3.15) (T − L)−5/2 Theorem 3.7

ψ̂cos in (3.18) (T − L)−5/2 Example 3.8

ψ̂conv,2, cf. (3.23) (T − L)−5/2 Example 3.11

ϕsinh in (4.1) e−mπλ/(1+λ) Theorem 4.2

ϕcKB in (4.2) e−mπλ/(1+λ) Theorem 4.3

with ‖ f ‖L2(R) = 1. We fix N = 256 and consider several values of m ∈ N\{1} and
λ > 0.

The associated results are displayed in Fig. 7. We see that for all window functions
the theoretical error behavior perfectly coincides with the numerical outcomes. In
this regard, see also Table 1 which summarizes the theoretical results. Moreover, it
can clearly be seen that for higher oversampling parameter λ and higher truncation
parameter m, the error results using (4.3) get much better than the ones using (3.6),
due to the exponential error decay rate shown for (4.3).

This is to say, our numerical results show that regularization with a time window
function performs much better than regularization with a frequency window function,
since an exponential decay can (up to now) only be realized using a time window
function. Furthermore, the great importance of an explicit representation of the Fourier
transform of the regularizing window function can be seen, cf. Example 3.12.

Note that the code files for this and all the other experiments are avail-
able on https://github.com/melaniekircheis/On-numerical-realizations-of-Shannons-
sampling-theorem.

In summary,we found that the regularized Shannon sampling formulawith the sinh-
type time window function is the best of the considered methods, since this approach
is the most accurate, easy to compute, robust in the worst case error, and requires
less data (for comparable accuracy) than the classical Shannon sampling sums or the
regularization with a frequency window function.
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