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Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with phenotypic and genetic heterogeneity. Recent 
studies have suggested an oligogenic basis of ALS, in which the co-occurrence of two or more genetic variants has additive 
or synergistic deleterious effects. To assess the contribution of possible oligogenic inheritance, we profiled a panel of 43 
relevant genes in 57 sporadic ALS (sALS) patients and eight familial ALS (fALS) patients from five pedigrees in east China. 
We filtered rare variants using the combination of the Exome Aggregation Consortium, the 1000 Genomes and the HuaBiao 
Project. We analyzed patients with multiple rare variants in 43 known ALS causative genes and the genotype–phenotype cor-
relation. Overall, we detected 30 rare variants in 16 different genes and found that 16 of the sALS patients and all the fALS 
patients examined harbored at least one variant in the investigated genes, among which two sALS and four fALS patients 
harbored two or more variants. Of note, the sALS patients with one or more variants in ALS genes had worse survival than 
the patients with no variants. Typically, in one fALS pedigree with three variants, the family member with three variants 
(Superoxide dismutase 1 (SOD1) p.V48A,  Optineurin (OPTN) p.A433V and TANK binding kinase 1 (TBK1) p.R573H) 
exhibited much more severe disease phenotype than the member carrying one variant (TBK1 p.R573H). Our findings suggest 
that rare variants could exert a negative prognostic effect, thereby supporting the oligogenic inheritance of ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurode-
generative disorder with a substantial heritable compo-
nent (Goutman et al. 2022a). Mendelian familial ALS 
(fALS) accounts for 10–15% of individuals with the dis-
ease. Approximately, 90% of cases are sporadic and do 
not have any family history. The pathogenesis of ALS 
remains inadequately understood. Recent studies have 

raised a gene–time–environment hypothesis, which pos-
its that genetic predisposition interacts with environmen-
tal exposures over time leading to ALS (Al-Chalabi and 
Hardiman 2013; Goutman et al. 2022b). Heredity plays 
an important role in the cause of ALS, even in sporadic 
ALS (sALS) patients. The heritability of sALS has been 
estimated to be 12–21% in genome-wide association stud-
ies (Fogh et al. 2014; Keller 2014) to as high as 61% in 
twin studies (Al-Chalabi et al. 2010). The first ALS gene, 
Superoxide dismutase 1 (SOD1), was discovered through 
linkage analysis in 1993 (Rosen et al. 1993). Moreover, 
over the past decade, the number of genes associated with 
ALS has increased dramatically. Currently, more than 150 
genes have been identified to be related to ALS (http://​
alsod.​iop.​kcl.​ac.​uk); among them are approximately 20 
genes are with high penetrance, such as SOD1, Chromo-
some 9 open reading frame 72 (C9ORF72), TAR DNA-
binding protein (TARDBP) and Fused in sarcoma (FUS), 
whereas the rest are reported to increase the risk of ALS 
(Shatunov and Al-Chalabi 2021).

Accordingly, lines of evidence have proposed an oligo-
genic basis of ALS (Al-Chalabi et al. 2017; van Blitterswijk 
et al. 2012). The hypothesis was firstly developed from the 
fact that asymptomatic carriers are common even in pedi-
grees with variants in high-penetrant genes such as SOD1. 
We have reported p.Gly141Ala mutation in the SOD1 gene 
associated with incomplete penetrance (Dong et al. 2020). 
Description of compound heterozygous and recessive SOD1 
mutations suggests that oligogenic inheritance may account 
for incomplete penetrance (Gentile et al. 2021; Kuuluvainen 
et al. 2019). Subsequently, a series of studies have reported 
the coexistence of multiple variants in ALS causal genes in 
both sALS and fALS patients (Cady et al. 2015; Dols-Icardo 
et al. 2018; Giannoccaro et al. 2017; McCann et al. 2020; 
Morgan et al. 2017; Naruse et al. 2019; Pang et al. 2017; 
Scarlino et al. 2020; Shepheard et al. 2021). Among them, 
several studies suggested that the additional variant in the 
ALS causative gene may influence ALS phenotypes such 
as the onset of age (Cady et al. 2015; Naruse et al. 2019; 
Shepheard et al. 2021), survival (Pang et al. 2017; Scarlino 
et al. 2020), and co-occurrence with dementia (Dols-Icardo 
et al. 2018; Giannoccaro et al. 2017) or parkinsonism (Gian-
noccaro et al. 2017).

Although oligogenic inheritance is reported in several 
studies, further studies in different ethnic populations are 
crucial. In this study, to assess the contribution of possible 
oligogenic inheritance, by profiling a panel of 43 relevant 
genes in 57 sALS patients and eight familial fALS patients 
from five pedigrees in east China, we have demonstrated 
that ALS patients can carry more than one variant in ALS 
causative genes, and that the presence of rare variants is 
associated with poorer survival in both sALS patients and 
an ALS pedigree. Our findings suggested that rare variants 

http://alsod.iop.kcl.ac.uk
http://alsod.iop.kcl.ac.uk
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could exert a negative prognostic effect, supporting the oli-
gogenic inheritance of ALS.

Materials and Methods

Subjects

Between 2011 and 2020, ALS patients who were diagnosed 
and followed up at Huashan Hospital, Shanghai were sys-
tematically enrolled. All subjects were evaluated by neu-
romuscular specialists and fulfilled the criteria for definite 
ALS, probable ALS, or probable ALS-laboratory-supported 
based on the revised El Escorial criteria (Brooks et al. 2000). 
Data on sex, age, site of onset, and treatment with riluzole 
were recorded and those on survival, defined as the time 
from symptom onset to permanent assisted ventilation 
(≥ 23 h per day noninvasive ventilation), tracheostomy, or 
death, whichever is earlier, were recorded. Written informed 
consent was obtained from all the participating subjects.

Controls

An exon database named "HuaBiao" (https://​www.​biosi​no.​
org/​wepd), which contains deep sequencing (> 100 ×) of 
5000 healthy samples collected mainly from three represent-
ative Han Chinese populations at Zhengzhou, Taizhou and 
Nanning, was used for case–control association tests (Hao 
et al. 2021). High-quality reads (mean Phred score > 30) 
and high sequencing depth of samples (mean depth > 100 ×) 
were processed by the same procedures as ALS subjects. 
Only protein-coding regions were included for downstream 
analyses.

Genotyping and Rare Variant Filtering

Genomic DNA was extracted from the whole blood of 
individual subjects according to standard protocols. Next-
generation sequencing (NGS) library preparation and 
whole-exome sequencing (WES) was performed using 
commercial assay kits (NGS Library Prep kits and Nim-
blegen SeqCap EZ Human Exome Kit v3.0 kits, Roche). 
NGS was performed by Illumina HiSeq system with 
140 bp of paired-end reads. The mean sequencing depth 
of the targeted exome region reached at least 60 × in both 
cases and controls. The WES data were processed through 
the Genome Analysis Toolkit best practice pipeline before 
variant calling, and HaplotypeCaller was used (www.​biost​
ars.​org/) to call the variants in parallel. Variant annotation 
and filtering were performed by ANNOVAR with sorting 
intolerant from torelant (SIFT, http://​sift.​jcvi.​org/) and 
PolyPhen2 (http://​genet​ics.​bwh.​harva​rd.​edu/​pph2/), and 
by SnpEff with GENCODE (http://​snpeff.​sourc​eforge.​net/) 

as an annotation database. Population frequencies for each 
variant were determined in dbSNP, the 1000 Genomes 
Project, and the Exome Aggregation Consortium (ExAC) 
(http://​exac.​broad​insti​tute.​org). Under the "rare disease, 
rare mutation" criteria, only non-synonymous variants 
with minor allele frequency (MAF) of less than 0.01% 
across all populations in ExAC and 1000 Genomes Project 
datasets were selected. All of the variants had a sequenc-
ing quality score (Phred) of at least 50 and a mapping 
quality score of at least 20.

ALS Candidate Genes

Genes for the ALS panel were selected from the Amyo-
trophic Lateral Sclerosis online Database (ALSoD, http://​
alsod.​iop.​kcl.​ac.​uk/) and the Online Mendelian Inherit-
ance in Man (OMIM, http://​www.​omim.​org/) databases 
and two latest studies (Goutman et al. 2022b; Mohassel 
et al. 2021). Forty-one causative ALS genes (Amyotrophic 
lateral sclerosis 2  (ALS2), Angiogenin (ANG), Annexin 
A11 (ANXA11), Cilia and flagella associated protein 410 
(C21orf2), Calmodulin binding transcription activator 1 
(CAMTA1), Cyclin F (CCNF), Coiled-coil-helix-coiled-
coil-helix domain containing 10 (CHCHD10), Charged 
multivesicular body protein 2B (CHMP2B), Cylindroma-
tosis (CYLD), Dynactin subunit 1 (DCTN1), DnaJ heat 
shock protein family member C7 (DNAJC7), Elonga-
tor acetyltransferase complex subunit 3 (ELP3), Ephrin 
type-A receptor 4 (EPHA4), Erb-B2 receptor tyrosine 
kinase 4 (ERBB4), Fig4 phosphoinositide 5-phosphatase 
(FIG4), Fused in sarcoma (FUS),  Glycosyltransferase 8 
domain containing 1 (GLT8D1), Heterogeneous nuclear 
ribonucleoprotein A1 (HNRNPA1), Heterogeneous nuclear 
ribonucleoprotein A2/B1 (HNRNPA2B1), Kinesin family 
member 5A (KIF5A), Lectin galactoside binding like pro-
tein (LGALSL), Matrin 3 (MATR3), Neurofilament heavy 
chain (NEFH), NIMA related kinase 1 (NEK1), Optineurin 
(OPTN), Profilin 1 (PFN1), Peripherin (PRPH),  Sena-
taxin (SETX), Sigma non-opioid intracellular receptor 
1 (SIGMAR1), Superoxide dismutase 1 (SOD1), Spas-
tic paraplegia 11 (SPG11), Serine palmitoyltransferase 
long chain base subunit 1 (SPTLC1), Sequestosome 1 
(SQSTM1), TAR DNA binding protein (TARDBP), TANK 
binding kinase 1 (TBK1), Cytotoxic granule associated 
RNA binding protein (TIA1), Tubulin alpha 4A (TUBA4A), 
Ubiquilin 2 (UBQLN2), Unc-13 homolog A (UNC13A), 
Vesicle-associated membrane protein associated protein 
B/C (VAPB), and Valosin containg protein (VCP)) were 
examined for rare variants. The Chromosome 9 open read-
ing frame 72 (C9orf72) repeat expansion and Ataxin 2 
(ATXN2) repeat expansion were analyzed in all the patients 
using repeat-primed polymerase chain reactions.

https://www.biosino.org/wepd
https://www.biosino.org/wepd
http://www.biostars.org/
http://www.biostars.org/
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://snpeff.sourceforge.net/
http://exac.broadinstitute.org
http://alsod.iop.kcl.ac.uk/
http://alsod.iop.kcl.ac.uk/
http://www.omim.org/
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Statistical Analysis

Statistical analyses were performed in R v4.0.3 to identify 
any association between clinical variables including sex, age 
at disease onset, site of disease onset (bulbar or spinal), and 
disease duration. A χ2 analysis was performed between sex 
and site of onset, whereas Welch's t-tests were performed 
between the age of onset and both sex and site of onset. The 
Kaplan–Meier survival analyses were performed between 
disease duration and both sex and site of onset. Survival 
was defined as the time from symptom onset to permanent 
assisted ventilation (≥ 23 h per day noninvasive ventila-
tion), tracheostomy, or death. In addition, a linear regression 
model was fitted between age of onset and duration.

Whether the number of ALS-implicated variants carried 
by individuals influenced their clinical presentation was also 
assessed. To identify rare and novel single-nucleotide poly-
morphisms (SNPs) that might be overrepresented in sALS 
subjects, Fisher's exact tests were used to compare each 
candidate SNV's allele frequency in sALS versus controls. 
One-way analysis of variance was used to assess the associa-
tion between the number of rare non-synonymous variants 
(Non-syn RV) and age at onset. The Kaplan–Meier survival 
analyses were performed between disease duration and the 
presence of both non-synonymous rare variants (Non-syn 
RV) and synonymous rare variants (Syn RV). After adjust-
ment for onset age, sex and site of onset, the hazard ratio 
between the number of rare variants and survival status was 
estimated by Cox regression. All the hazard ratios in this 
paper were estimated by penalized regression model using 
glmnet v4.1 to correct left-truncation bias that might arise 
from death before being able to undergo the genetic tests 
(McGough et al. 2021).

Results

Subject Phenotypic Characteristics

Demographic characteristics for all 57 sequenced sALS sub-
jects and eight fALS subjects from five pedigrees are shown 
in Table 1. The mean (SD) age of onset was 55.0 ± 10.7 years 
in sALS patients and 43.1 ± 7.7 in eight fALS patients. Of 
sALS and fALS patients, 68.4% and 60% were male, respec-
tively. Bulbar onset was present in 14 sALS patients (24.6%) 
but not in fALS patients. Riluzole was administered in 46 
sALS patients and all fALS patients for at least one month. 
After a median of 29 (interquartile range 19–45) months, 
53 sALS patients had reached the end point. The follow-up 
time of eight fALS patients (i.e., Pedigree A: III7 and IV4, 
Pedigree B:III1, Pedigree C: II7, Pedigree D: III18, three 
members of Pedigree E not shown) was short, thus, only two 
patients reached the end point, the survival time of which 

was 24 months (Pedigree A, III7) and 47 months (Pedigree 
E, III2) (Table 1, Fig. 1). 

Statistical analyses were performed to identify any asso-
ciation between clinical variables, namely sex, age at disease 
onset, site of disease onset and disease duration (Fig. 2a–f). 
There was no significant association between gender and 
any of the other three indicators (Fig. 2a–c); however, there 
was a high propensity for women to develop bulbar onset 
and for men to present with spinal onset (Fig. 2c). The cases 
with bulbar onset were more likely to have later age of onset 
(p = 0.0159, Fig. 2d) and reduced life expectancy (p = 0.031, 
Fig. 2e). There was also a tendency that patients with later 
onset present shorter disease duration (Fig. 2f).

Rare Variant Identifications

Of the 43 causative genes examined, 43 missense variants 
with MAF < 0.01% in ExAC and 1000 Genomes were fil-
tered, as shown in Table 2. The pathogenicity of each variant 
was evaluated according to the American College of Medical 
Genetics and Genomics (ACMG) standards (Richards et al. 
2015). Considering the heterogeneity of common SNPs in 
different ethnic populations, the frequency of the loci found 
in the HuaBiao database was also explored, which consists 
of 5000 healthy Han Chinese. Fisher's exact tests were per-
formed to calculate whether there was a significant differ-
ence in the frequency of these SNPs between the ALS cohort 
and the Chinese healthy population. We identified 13 of the 
variants with MAF < 0.01 in the ExAC and 1000 Genomes, 
which are relatively common (p > 0.05) in the Chinese popu-
lation (Table 2, common variants in the Chinese population), 
whereas the other 30 variants in 16 different genes are rare 
in both Chinese and Caucasian populations (Table 2, rare 
variants in the Chinese population). Some synonymous vari-
ants of 30 genes were also found (Supplementary Table 1).

Patients with Multiple Rare Variants

After the exclusion of the 10 relatively common variants 
in the Chinese population, all eight fALS patients from 

Table 1   Demographics of ALS patients

ALS, amyotrophic lateral sclerosis; sALS, sporadic ALS; fALS, 
familial ALS; IQR, interquartile range

sALS patient fALS patients

Self-reported Han Chinese 57 (100%) 8 (100%)
Male sex, num (%) 39 (68.4%) 3 (37.5%)
Bulbar onset, num (%) 15 (26.3%) 0 (0%)
Age at onset, year mean ± SD 55.0 ± 10.7 43.1 ± 7.7
Riluzole use 46 (80.7%) 8 (100%)
Survival, month median (IQR) 29 (19–45) 35.5
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five different pedigrees examined had at least one rare non-
synonymous variant within the 30 causative ALS genes. 
Three fALS patients (37.5%) from different families har-
bored two variants (SOD1 p.G94R + SQSTM1 p.G262R; 
SOD1 p.F22G + FUS p.P151S; TARDBP p.G298V + SETX 
p.I1304W) and one patient (12.5%) harbored three vari-
ants (SOD1 p.V48A + OPTN p.A433V + TBK1 p.R573H). 
The four pedigrees with multiple rare variants are shown 
in Fig. 1.

Only one out of five pedigrees exhibited monogenic 
nature, albeit with incomplete penetrance, which we have 
reported before (Dong et al. 2020). Of the sALS patients, 
18 (31.6%) had at least one rare non-synonymous variant 

within the 30 causative ALS genes; one (3.5%) harbored 
two variants (SETX p.I1520T + C21orf2 p.R172W), and 
one harbored three variants (ALS2 p.E697K + SPG11 
p.C1734F + NEFH p.P933S).

Effect of Rare Variants on Survival

Within 43 causative ALS genes, we found that presence 
of non-synonymous variants is associated with lower sur-
vival probability in sALS patients (log-rank test, p = 0.007, 
Fig. 3b), whereas the presence of synonymous variants is 
not associated with lower survival probability (log-rank 
test, p = 0.59, Fig. 3c). After adjustment for age of onset, 

Fig. 1   ALS pedigrees with multiple variants of interest. Examined 
subjects are indicated by the crosses above the pedigree symbol. The 
arrows indicate the probands. The age at onset and the age at death or 

current age are indicated at the top of the symbols. The variants har-
bored are indicated at the bottom of the symbols. ALS amyotrophic 
lateral sclerosis
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sex and bulbar onset, it was found that the presence of rare 
non-synonymous still remained associated with survival, 
increasing the risk of death/ventilator dependence (hazard 
ratio = 3.93, 95% CI = 1.53–79, p < 0.05). Patients with two 
or more variants did not exhibit reduced survival probabil-
ity when compared with patients with one variant, which 
may be explained by the too-small sample size, as only two 
sALS patients harbored more than one rare variant, the 
duration of which was 24 and 31 months. Bulbar onset also 
increased the hazard risk of death/ventilator dependence 
when compared with spinal onset (hazard ratio = 2.43, 95% 
CI = 1.23–4.82, p < 0.05). However, there is no significance 
between the number of non-synonymous variants and age 
at onset (Fig. 3a).

Interestingly, although the fALS patients were not 
included in the survival analysis for insufficient sample 
size, we still observed significant heterogeneity of sur-
vival in Pedigree A (Fig. 1). Three family members, that 
is II1, III4 and III7 in Pedigree A, presented with a typical 
rapid ALS progression, whereas two other members, I1 and 

IV4, manifested a prolonged duration of disease. Whole-
exome sequencing demonstrated a novel SOD1 p.V48A 
(c.T143 > C) variant in addition to the OPTN p.A433V 
(c.C1298 > T) and TBK1 p.R573H (c.G1718 > A) variants 
in III7, whereas only the TBK1 variant was detected in IV4. 
This finding suggests that the burden of rare variants is asso-
ciated with survival, consistent with what we found in sALS 
patients.

Discussion

In this study, we profiled a panel of 43 relevant genes in 
57 sALS patients and five ALS pedigrees from east China. 
Overall, we detected 30 rare variants in 16 different genes 
and found that the presence of rare variants is associated 
with poorer survival in both sALS patients and an ALS pedi-
gree with three variants.

Considering the heterogeneity of common SNPs in dif-
ferent ethnic populations, we adopted the HuaBiao database, 

Fig. 2   Statistical analysis of clinical variables for 57 sALS cases. a 
Association between sex and age at onset. b Kaplan–Meier survival 
curves for ALS patients stratified by gender. c Association between 
sex and site of onset. d Association between the site of onset and 

age at onset. e Kaplan–Meier survival curves for ALS patients strati-
fied by site of onset. f Association between survival and age at onset. 
ALS, amyotrophic lateral sclerosis; sALS, sporadic ALS
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which consists of 5000 healthy Han Chinese as controls. 
Cases and control WES were performed by utilizing the 
same library preparation kits. However, we were unable to 
perform variant calling jointly in the case and control data-
sets. We identified 13 variants that were rare in the ExAC 
and 1000 Genomes but were relatively common (p > 0.05 
by Fisher exact test) in the Chinese population. Interest-
ingly, eight of the 13 variants have been reported before 
in other Amyorophic lateral slerosis and Frontotemporal 
dementia (ALS-FTD) studies (Kim et al. 2016, 2018; Nahm 
et al. 2020; Naruse et al. 2019; Pang et al. 2017; Zhang 
et al. 2018a, b), namely ERBB4 p.I658F, NEK1 p.287A, 
SETX p.1331L, SETX p.E756V, SETX p.E813D, ANXA11 
p.T321N, SPG11 p.L1982S and NEFH p.A380T (Table 2, 
common variants in the Chinese population). Our study sug-
gests that these variants may not be directly associated with 
the disease, whereas the other 30 variants that are rare in the 
ExAC, 1000 Genomes and HuaBiao database may be caus-
ally associated with the disease. Among them, 12 variants 
(TARDBP p.G298S, SQSTM1 p.G262R, SETX p.M1912T, 
TBK1 p.R573H, SPG11 p.H235fs, FUS p.P151S, FUS 
p.R520C, SOD1 p.E22G, SOD1 p.V48A, SOD1 p.G94R, 
SOD1 p.G142A, and NEFH p.T642M) have been reported 
in ALS-FTD studies (Cirulli et al. 2015; Dong et al. 2020; 
Elshafey et al. 1994; Fujisawa et al. 2012; Giau et al. 2019; 
Kim et al. 2018; Kwiatkowski et al. 2009; Narain et al. 
2018; Siddique and Deng 1996; Stevanin et al. 2008; Tunca 
et al. 2020; Zhang et al. 2018a), and three variants (ALS2 
p.E697K, OPTN p.D527fs, and C21orf2 p.R172W) were not 
reported, but recorded in ALS databases (ALSoD, ALSdb 
or Project MinE). Fifteen variants (DCTN1 p.R651Q, 
DCTN1 p.Y224F, ALS2 p.L385S, CHMP2B p.T156A, 
SETX p.I1520T, SETX p.L1304W, OPTN p.A433V, KIF5A 
p.P1024S, TBK1 p.S398P, SPG11 p.C1734F, SPG11 
p.Q809P, SPG11 p.H86D, UNC13A p.P431L, SOD1 
p.E134X, and NEFH p.P933S) were novel, which have 
not been reported in ALS-FTD studies or recorded in ALS 
databases. Our study provided support for the association of 
these variants with disease. However, because it is difficult 
to conclusively demonstrate pathogenicity without pedigree 
information, most of the rare variants we identified were 
classified as variants of uncertain significance according to 
the ACMG. Eight rare variants (TARDBP p.G298V, SPG11 
p.H235fs, FUS p.R521C, SOD1 p.E22G, SOD1 p.V48A, 
SOD1 p.G94R, SOD1 p.E134X and SOD1 p.142A) are clas-
sified as pathogenic or likely pathogenic (Table 2). Apart 
from SOD1 p.E134X, all other variants have been reported. 
Of note, SPG11 p.H235fs was heterozygous, whereas SPG11 
mutations are usually autosomal recessive. Resultantly, the 
clinical significance of SPG11 p.H235fs is uncertain.

We identified several patients who carry more than one 
variant, accounting for 3.51% of sALS and 50% of fALS 
patients who we examined, suggesting a possible oligogenic Ta
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basis. Furthermore, we used a chord diagram to show 
patients with multiple rare variants (Fig. 4). ALS genes were 
divided into four categories based on previous literature 

(Nguyen et  al. 2018), including "impaired autophagy/
proteostasis", "cytoskeletal defect", "mitochondrial dys-
function and impaired DNA repair", and "disturbed RNA 

Fig. 3   Effect of rare variants on disease onset and survival. a Asso-
ciation between the number of rare non-synonymous variants (Non-
syn RV) and age at onset. b Kaplan–Meier survival curves for ALS 
patients stratified by the presence of non-synonymous rare variants 

(Non-syn RV) in 43 ALS causative genes. c Kaplan–Meier survival 
curves for ALS patients stratified by the presence of synonymous rare 
variants (Syn RV) in 43 ALS causative genes. ALS, amyotrophic lat-
eral sclerosis

Fig. 4   Patients with multiple rare variants. a Biological process 
affected by mutations in ALS genes: different colors represent differ-
ent biological processes, and illustrations are also applicable in pan-
els b and c. b Chord diagram illustrating patients with multiple rare 
variants in our study. The x-axis represents the number of times one 

gene variant was detected alongside another; the width of the chord 
connecting the two genes represents the number of times they occur 
together. Different colors represent different biological processes. c 
Chord diagram illustrating reported multiple gene rare variant carri-
ers with ALS or ALS-FTD. ALS, amyotrophic lateral sclerosis
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metabolism" (Fig. 4a). Patients harbored multiple rare vari-
ants discovered in our study are presented in Fig. 4b. SOD1 
was the most detected gene, which was detected simultane-
ously with four other genes, three of which were related to 
autophagy. We also reviewed reported multiple gene rare 
variant carriers with ALS or ALS-FTD (Farhan et al. 2018; 
Keogh et al. 2018; Lamp et al. 2018; Lattante et al. 2021; 
Liu et al. 2021a, b; McCann et al. 2020; Müller et al. 2018; 
Narain et al. 2019; Naruse et al. 2019; Nguyen et al. 2018; 
Pang et al. 2017; Ross et al. 2020; Scarlino et al. 2020; 
Sghaier et al. 2022; Tripolszki et al. 2019; Vazquez-Costa 
et al. 2019; Yang et al. 2021; Yilmaz et al. 2022; Zhang et al. 
2018a) (Supplementary Table 2, Fig. 3c). C9orf72 was the 
most detected gene, accounting for 112 times, which may be 
because C9orf72 mutation is the most common known cause 
of ALS. However, C9orf72 G4C2 expansion is extremely 
rare in the Chinese population (Zou et al. 2013) and was 
not detected in our cohort. Similarly, SOD1 accounted for 
a large proportion, which was 59 times. It is worth noting 
that several autophagy genes, including TBK1, OPTN and 
SQSTM1, the mutations of which were not common in ALS-
FTD patients, account for a considerable proportion in mul-
tiple gene rare variant carriers, accounting for 38, 42 and 36 
times, respectively. The co-occurrence of TBK1 and OPTN, 
TBK1 and SQSTM1 was frequently detected. In addition, 
these three genes frequently coexist with SOD1 and genes 
relating to RNA metabolism, such as C9orf72 and FUS.

Although a series of papers have reported the co-
occurrence of variants in ALS genes (Cady et al. 2015; 
Dols-Icardo et  al. 2018; McCann et  al. 2020; Morgan 
et al. 2017; Naruse et al. 2019; Pang et al. 2017; Scar-
lino et al. 2020; Shepheard et al. 2021), the presence of 
the oligogenic nature of ALS remains debatable. Notably, 
the reported percentage of patients who harbored more 
than one variant varied much, from as low as 1% (Morgan 
et al. 2017) to as high as 19.5% (Pang et al. 2017). This 
difference is caused by the inconsistency in the selection 
of sequenced genes and criteria for filtering potentially 
pathogenic variants. Some studies adopted very rigorous 
filtering criteria that only include pathogenic or likely 
pathogenic variants in high-penetrant genes, whereas 
other studies, including ours, also had some variants of 
uncertain significance according to the ACMG standards 
(Richards et al. 2015). The ACMG standards are very 
practical for clinical use, but for non-strictly Mendelian 
diseases such as ALS, only including variants that are 
classified as pathogenic or likely pathogenic may lead to 
underestimation of the significance of some variants in 
low-penetrant or risk genes. Some other studies did not 
exclude SNPs that were relatively common in the con-
trol population, resulting in a falsely high proportion of 
patients with multiple rare variants. In our study and some 
other studies (Shepheard et al. 2021), population-matched 

WES data were adopted to avoid such flaws. In addition, 
Keogh et al. (2018) suggested that individuals with ALS 
are more likely to harbor a known genetic risk factor, and 
it is the burden of these variants in combination with rare 
benign alleles that is likely to be responsible for some 
oligogenic associations. Therefore, further mechanistic 
functional analyses or segregation studies are warranted 
to scrutinize the pathogenicity of each of the variants that 
we identified and the synergy of these variants.

Next, we explored whether the presence of rare variants 
was associated with the survival of ALS patients, and we 
found that sALS patients with one or more variants in ALS 
causative genes had worse survival than patients with no 
variants. In addition, in an ALS pedigree with three vari-
ants, the family member III7 with three variants (SOD1 
p.V48A, OPTN p.A433V and TBK1 p.R573H) exhibited 
much more severe disease phenotype than IV4 who car-
ries one variant (TBK1 p.R573H). This observation pro-
vides strong support for our conclusions in sALS patients. 
However, Pang and Scarlino reported that patients with 
two variants exhibited reduced survival probability when 
compared with patients with one variant (Pang et al. 2017; 
Scarlino et al. 2020). This phenomenon was not observed 
in our cohort, possibly because of our insufficient sample 
size, as only two sALS patients harbored more than one 
rare variant.

Few studies have examined genotype–phenotypic rela-
tionships within patients from the same family, where the 
genetic background is so uniform that the effects of oligo-
genic can be seen. Although here we have reported a pos-
sible genotype–phenotype correlation within Pedigree A, the 
pathogenicity of each variant needs to be investigated. The 
SOD1 p.V48A variant was recorded in the ALSoD and was 
reported in a Chinese cohort study (Tang et al. 2019). It was 
classified as pathogenic according to the ACMG standards. 
In contrast, the absence of the SOD1 variant in the proband 
who presented slow disease progression indicates that SOD1 
is not the only pathogenic gene in this pedigree. We consid-
ered the TBK1 variant to contribute to the disease, as it was 
recorded in the ALSdb database, and was identified by a 
genome-wide association study (Cirulli et al. 2015). Patients 
carrying mutations in TBK1 and other ALS genes simultane-
ously have been frequently reported (Liu et al. 2021a), espe-
cially in the genes related to the autophagy pathway (OPTN 
and SQSTM1) (Black et al. 2017; Dols-Icardo et al. 2018; 
Lattante et al. 2019; Liu et al. 2021a; Pottier et al. 2015) 
or RNA homeostasis and trafficking (C9ORF72, FUS, and 
TARDBP) (Black et al. 2017; de Majo et al. 2018; Muller 
et al. 2018; van der Zee et al. 2017). These studies as well 
as ours have suggested that TBK1 belongs to the genes that 
might cause an increased risk of developing the disease or 
an earlier onset of the disease, supporting the oligogenic 
hypothesis.
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Conclusions

In this study, we demonstrated that ALS patients can carry 
more than one variant in ALS causative genes, and that the 
presence of rare variants is associated with survival in both 
sALS patients and an ALS pedigree. Our findings suggested 
that rare variants could exert a negative prognostic effect, 
thereby supporting the oligogenic inheritance of ALS.
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