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Abstract
This study aimed to explore the value of deep learning (DL)-assisted quantitative susceptibility mapping (QSM) in glioma 
grading and molecular subtyping. Forty-two patients with gliomas, who underwent preoperative T2 fluid-attenuated inversion 
recovery (T2 FLAIR), contrast-enhanced T1-weighted imaging (T1WI + C), and QSM scanning at 3.0T magnetic resonance 
imaging (MRI) were included in this study. Histopathology and immunohistochemistry staining were used to determine 
glioma grades, and isocitrate dehydrogenase (IDH) 1 and alpha thalassemia/mental retardation syndrome X-linked gene 
(ATRX) subtypes. Tumor segmentation was performed manually using Insight Toolkit-SNAP program (www. itksn ap. org). 
An inception convolutional neural network (CNN) with a subsequent linear layer was employed as the training encoder to 
capture multi-scale features from MRI slices. Fivefold cross-validation was utilized as the training strategy (seven samples 
for each fold), and the ratio of sample size of the training, validation, and test dataset was 4:1:1. The performance was evalu-
ated by the accuracy and area under the curve (AUC). With the inception CNN, single modal of QSM showed better perfor-
mance in differentiating glioblastomas (GBM) and other grade gliomas (OGG, grade II–III), and predicting IDH1 mutation 
and ATRX loss (accuracy: 0.80, 0.77, 0.60) than either T2 FLAIR (0.69, 0.57, 0.54) or T1WI + C (0.74, 0.57, 0.46). When 
combining three modalities, compared with any single modality, the best AUC/accuracy/F1-scores were reached in grading 
gliomas (OGG and GBM: 0.91/0.89/0.87, low-grade and high-grade gliomas: 0.83/0.86/0.81), predicting IDH1 mutation 
(0.88/0.89/0.85), and predicting ATRX loss (0.78/0.71/0.67). As a supplement to conventional MRI, DL-assisted QSM is a 
promising molecular imaging method to evaluate glioma grades, IDH1 mutation, and ATRX loss.

Keywords Quantitative susceptibility mapping · Glioma classification · Isocitrate dehydrogenase · Alpha thalassemia/
mental retardation syndrome X-linked gene · Deep learning
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NPV  Negative predictive value
ROC  Receiver operating characteristic curve
AUC   Area under the curve
t-SNE  T-distributed stochastic neighbor embedding
SVM  Support vector machine
GLM  Generalized linear model

Introduction

Gliomas are the most common primary intracranial 
tumor, accounting for 81% of all malignant brain tumors 
(Ostrom et  al. 2014). According to the World Health 
Organization (WHO) criteria, gliomas are assigned grades 
I–IV indicating different degrees of malignancy (Weller 
et al. 2015). Patients with gliomas of different grades are 
treated with significantly different surgical plans, radio-
therapy, and adjuvant chemotherapy strategies (Weller 
et al. 2014, 2017). Low-grade gliomas (LGG, grade I–II) 
are typically associated with a longer life expectancy than 
high-grade gliomas (HGG, grade III–IV) (Weller et al. 
2015). Grade I gliomas are characterized by slow growth 
and high possibility of cure by surgical resection alone 
(Weller et al. 2015). Glioblastomas (GBM, grade IV) are 
the most aggressive tumor type, with the median sur-
vival time of about 12–15 months (Louis et al. 2016). In 
contrast to GBMs, the other grade gliomas (OGG, grade 
II–III) show more favorable outcomes and share simi-
lar histopathologic and genomic characteristics (Louis 
et al. 2016). According to the WHO tumor classification, 
the mutation status of isocitrate dehydrogenase (IDH) 1 
codon 132 or IDH2 codon 172 plays a major role in diag-
nosing and treating gliomas (Louis et al. 2016; Weller 
et al. 2017). The presence of IDH mutation (IDH(+)) 
distinguishes glioma entities with distinct biology. In the 
case of gliomas, patients carrying IDH(+) usually have a 
significant favorable response to treatment and outcomes 
compared to the patients with its wild type (IDH(−)) 
(Reifenberger et al. 2017; Weller et al. 2015). Loss of 
nuclear alpha thalassemia/mental retardation syndrome 
X-linked gene (ATRX) expression has never been found 
to be accompanied by 1p/19q codeletion (Ikemura et al. 
2016) and is characteristic in diagnosing diffuse astrocy-
tomas rather than oligodendrogliomas (Louis et al. 2016). 
ATRX loss (ATRX(−)) is also associated with poor out-
comes in LGG patients (Ogishima et al. 2017). Therefore, 
it is critical to distinguish LGG from HGG, GBM from 
OGG, and to identify IDH and ATRX subtypes. Currently, 
histopathology procedures, immunohistochemistry, or 
sequencing following biopsy or surgical resection are the 
main methods used for glioma grading and molecular sub-
typing; however, all of these methods are invasive (Ferris 
et al. 2017).

Preoperative noninvasive diagnosis of gliomas is made 
mainly based on conventional magnetic resonance imag-
ing (MRI) such as T2 fluid-attenuated inversion recovery 
(T2 FLAIR) and contrast-enhanced T1-weighted images 
(T1WI + C), but with limited value in grading and genetic 
classification (Ly et al. 2020). Pathologically, HGG exhibit 
a higher rate of vascular proliferation, microhemorrhages, 
and small vessels than LGG (Ferris et al. 2017). Intratumoral 
calcification tends to be found in 1p/19 co-deleted oligoden-
drogliomas, which are associated with improved prognosis 
and responsiveness to therapy (Saito et al. 2016). Differ-
ent forms of iron in blood products and calcification inside 
gliomas result in susceptibility variations, all of which can 
be detected by quantitative susceptibility mapping (QSM) 
(Wang et al. 2017a, b).

QSM has become a sensitive and reliable quantitative 
technique to determine the bulk magnetic susceptibility 
distribution caused by iron load of tissues (Langkammer 
et al. 2012). By identifying the magnetic field produced by 
tissue susceptibility and solving the field-to-magnetization 
(tissue susceptibility) inverse problem (Kee et al. 2017), 
QSM deconvolves the blooming artifacts in gradient-echo 
(GRE) phase data and shows much better contrast than R2* 
or T2 methods (Haacke et al. 2015). So far, QSM has been 
widely used in the quantitative study of brain iron content 
(Li et al. 2019). Previous studies have shown the application 
of QSM in distinguishing HGG with hemorrhage and less 
aggressive brain tumors with or without calcification (Bandt 
et al. 2019), and differentiation between blood deposits and 
calcification in GBMs (Deistung et al. 2013).

Recently, machine learning (ML) has been developed to 
capture complex patterns in imaging data that are beyond 
human perception and provide quantitative evaluation of 
radiographic features for data-driven prediction tasks (Hosny 
et al. 2018; Lotan et al. 2019). A large amount of ML-
assisted research has been applied to determine histologi-
cal glioma grade, molecular profiles, and prognosis (Lotan 
et al. 2019). With the huge success of convolutional neural 
networks (CNN) (especially ResNet and its variants etc.) 
in medical image classification tasks (Cheng et al. 2022), 
deep learning (DL) can build a pipeline for feature extrac-
tion and image classification, while reducing the subjective 
bias of manual feature extraction. Especially, inception mod-
ule and pyramid module can benefit the multi-scale feature 
extraction, which is significant in medical image classifi-
cation because the region of interest (ROI) may be small 
and discrete. However, a dataset with a small number of 
samples may suffer from an overfitting problem. Inspired 
by the semi-supervised learning strategy for training a con-
sistency loss, we proposed an inception CNN encoder with 
consistency loss computed by output of adjacent slices for 
glioma diagnosis. The purpose of this study was to explore 



245Deep Learning‑Assisted Quantitative Susceptibility Mapping as a Tool for Grading and Molecular…

1 3

the value of DL-assisted QSM in the prediction of glioma 
grades, IDH1(+), and ATRX(−).

Materials and Methods

Study Population

This study was approved by the Ethics Review Board of 
our institution, and individual consent for this retrospective 
analysis was waived. A total of 51 patients with clinically 
suspected gliomas underwent a unified preoperative MR 
examination protocol. These patients met three main cri-
teria: (1) clinically newly diagnosed primary brain gliomas 
without any pharmacotherapy or radiotherapy; (2) available 
histopathological diagnosis and molecular genetic charac-
teristics including IDH and ATRX; (3) available preopera-
tive MR images, including QSM, T2 FLAIR, and T1WI + C 
sequences. Nine patients were excluded for the following 
reasons: (1) uncommon pathological diagnosis of gliosar-
coma (n = 1) and pleomorphic xanthoastrocytoma (n = 1); 
(2) image artifacts owing to patient movement (n = 3); and 
(3) error in QSM image processing (n = 4). Finally, 42 
patients (18 female and 24 male, mean age: 47 years, age 
range: 26–75 years) were enrolled in this study (Fig. 1).

In the present study, three stratified detection tasks were 
designed: (1) the detection of glioma grades (LGG and 
HGG, OGG and GBM); (2) the detection of gliomas with 

IDH1(+) or IDH1(−); (3) the detection of IDH1 mutated 
glioma with ATRX(−) or ATRX retention (ATRX(+)).

Pathology Data Collection

The histopathologic grading and molecular subtyping data 
of gliomas were collected from an electronic database in the 
Neuropathology Department of our institution. Each resec-
tion specimen was sectioned and stained with hematoxylin 
and eosin. IDH1 and ATRX molecular status were tested 
by immunohistochemical staining. According to the latest 
WHO classification, two experienced neuropathologists 
consistently diagnosed the glioma grades and performed 
molecular classification.

MRI Acquisition

MR images were acquired on a 3.0T MRI system (Discovery 
750; GE Healthcare, Milwaukee, WI) with an eight-channel 
phased-array head coil (GE Medical Systems). The QSM 
was generated from a three-dimensional multi-echo GRE 
sequence. Each patient received the unified preoperative 
MR scan in the following order: axial T1WI, T2-weighted 
image (T2WI), T2 FLAIR, multi-echo GRE, and T1WI + C 
sequences. Specific parameters were as follows: T1WI 
with FLAIR technique: repetition time (TR)/echo time 
(TE) = 3195/24 ms, field of view (FOV) = 240 × 240 mm, 
matrix size = 256 × 256, slice thickness = 4  mm, 

Fig. 1  Flowchart of the study 
population. IDH1(+): IDH1 
mutation; IDH1(−): IDH1 
wildtype; ATRX(−): ATRX 
expression loss; ATRX(+): 
ATRX retention

Suspected brain gliomas (n=51) 

Preoperative MRI including QSM, T2 FLAIR and T1WI+C 
and postoperative pathological examination

IDH1(+) glioma (n=23)
IDH1(-) glioma (n=18)
Indefinite IDH1(-/+) (n=1)

Patients with the pathological diagnosis of pleomorphic 
xanthoastrocytoma or gliosarcoma (n=2)
Unsatisfactory MRI quality with motion artifact (n=3)
Error in QSM image processing (n=4)

IDH1(+) and ATRX(-) glioma (n=11)
IDH1(+) and ATRX(+) glioma (n=11)
Indefinite ATRX(-/+) (n=1)

Final enrolled cases (n=42):
Diffuse glioma, Grade II (n=18)
Anaplastic glioma, Grade III (n=10)
Glioblastoma, Grade IV (n=14)

Excluded
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number of slices = 28; T2WI: TR/TE = 9185/108  ms, 
FOV = 240 × 240  mm, matrix size = 256 × 256, slice 
thickness = 4  mm, number of slices = 28; T2 FLAIR: 
TR/TE = 9491/140  ms, inversion time = 2200  ms, 
FOV = 240 × 240 mm, matrix size = 256 × 256, slice thick-
ness = 4 mm, number of slices = 28; and multi-echo GRE: 
TR = 41.6 ms, number of echoes = 16, first TE = 3.2 ms, TE 
spacing = 2.4 ms, bandwidth = 62.50 kHz, flip angle = 12°, 
FOV = 256 × 256  mm, matrix size = 256 × 256, slice 
thickness = 1 mm, voxel size = 1 × 1 × 1  mm3, number of 
slices = 140, acceleration factor = 2, acquisition time = 9 min. 
Array spatial sensitivity encoding technique was employed 
to accelerate the multi-echo GRE. Contrast-enhanced images 
were obtained immediately after administering a standard 
dose (0.1 mmol/kg body weight) of gadopentetate dimeglu-
mine (Beilu, Beijing, China) at approximately 3–4 mL/s via 
the dorsal hand or elbow vein.

Image Reconstruction and Tumor Segmentation

QSM reconstructions were performed using susceptibil-
ity tensor imaging (STI) Suite software (Duke University) 
with reference to the previous studies (Li et al. 2011, 2015). 
First, the multi-echo phase images for each channel of the 
coil were collected and then averaged after subtracting the 
receiver phase of each channel. The phase was unwrapped 
with a Laplacian method. The unwrapped phase images were 
normalized by the corresponding echo times and averaged to 
determine the frequency shift. Second, the background phase 
was removed by the sophisticated harmonic artifact reduc-
tion for phase data method, and the filter radius was set as 
eight (Schweser et al. 2011). Third, the susceptibility map of 
the brain tissue was obtained from the frequency map by an 
improved least-squares method, and the regulatory threshold 
of Laplace filtering was set to 0.04 (Li et al. 2011, 2015).

Tumor segmentation was performed on axial T2 FLAIR, 
T1WI + C, and QSM images, respectively, using the Insight 
Toolkit-SNAP program (University of Pennsylvania, www. 
itksnap.org). With reference to T1WI, T2WI, T2 FLAIR, and 
T1WI + C, one neuroradiologist (WTR), who was blinded to 
the histopathologic and molecular information, delineated 
the tumor ROI guided by an experienced neuroradiologist 
(ZWY) with 20 years’ experience in neuroradiology using 
the same criteria: at the image section with maximum diam-
eter of solid tumor in each sequence, an arbitrarily shaped 
ROI was delineated around the area of tumor but avoiding 
peritumoral edema as much as possible (Rui et al. 2018).

Deep Learning

To avoid the potential data gap between training, valida-
tion and test dataset, intensity normalization across each 
individual modality was conducted. Then, MRI slices were 
center cropped, minimizing the impact of background. There 
was a binary mask over the specific slice, which could be 
a weak annotation to help guide the classification task. The 
binary mask was concatenated in the channel dimension for 
the guidance. As shown in Fig. 2, there are two paths in 
our proposed inception CNN—labeled path for annotated 
MRI slices and label-free path for unlabeled data. To auto-
matically extract the efficient feature from the MRI slices, 
an inception module was introduced to capture potential 
biomarkers for glioma classification. For each path, three 
inception layers were employed to enhance the representa-
tion ability, followed by a global average pooling layer and 
a linear layer. For the multi-modality data, image slices were 
concatenated in the channel dimension (e.g., T1WI + C, T2 
FLAIR, QSM for three modalities). To alleviate the influ-
ence of dataset split bias, fivefold cross-validation was lever-
aged and the ratio of training and validation and test dataset 

Fig. 2  Pipeline of proposed 
inception convolutional neural 
network. For the ensemble of 
multi-modality, image slices of 
the same subject are concate-
nated in the channel dimension. 
Only one slice is annotated with 
a tumor mask, which is fed to 
the inception CNN for supervi-
sion and the adjacent slices 
are fed to the shared-weight 
encoder to achieve the similar 
output
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was 4:1:1. The classification algorithms aim to classify 
specific models via targeted metrics. For the grading task, 
we denoted the true labels with numbers 1, 2 and 3 corre-
sponding to grade II, III and IV. For the prediction of IDH1 
mutation, the labels were divided into two classes: + and −. 
For the prediction of ATRX loss, − and + were the binary 
classification labels. For the proposed inception CNN and 
algorithms for comparison, each fold of dataset split was the 
same. The deep learning methods including inception CNN 
and standard CNN were trained through loss back propaga-
tion. For the corresponding details, refer to Supplementary 
Material 1.

The model performance (recorded as mean ± standard 
deviation) was evaluated by computing the total prediction 
accuracy, sensitivity/recall, specificity, positive predictive 
value (PPV)/precision, negative predictive value (NPV), and 
F1 score (defined as the harmonic mean of sensitivity and 
PPV) using the confusion matrix. A receiver operating char-
acteristic (ROC) curve was also drawn and the area under 
the curve (AUC) was calculated to assess the discriminative 
ability of the model in the test dataset. To present the advan-
tage of QSM in glioma classification, t-distributed stochas-
tic neighbor embedding (t-SNE) and Shapley value analysis 
were employed to visualize the feature distribution of dif-
ferent modalities and the contribution to the model output 
of each modality. The standard pipeline of t-SNE was from 
manifold package in the scikit-learn, and the code of Shap-
ley value analysis followed the official demo. To illustrate 
the effectiveness of proposed inception CNN, support vector 
machine (SVM), standard CNN (three-layer), and general-
ized linear model (GLM) were used for comparisons in the 
three-modality fusion classification tasks.

Results

Independent Efficiency of T2 FLAIR, T1WI + C, 
and QSM by DL in Glioma Tasks

The diagnostic performance of each MRI modality by DL for 
predicting glioma grades and the molecular subtype is listed 
in Table 1. For the grading task, QSM modality showed 
higher diagnostic accuracy of 0.80 and F1 score of 0.75 in 
differentiating OGG from GBM than T2 FLAIR (0.69, 0.60) 
and T1WI + C (0.74, 0.70); however, T1WI + C modality 
(0.74, 0.72) performed better in distinguishing LGG from 
HGG than QSM (0.69, 0.64) and T2 FLAIR (0.69, 0.61). 
For the IDH1 task, QSM modality (accuracy: 0.77, F1 score: 
0.70) was superior to T2 FLAIR (0.57, 0.53) and T1WI + C 
(0.57, 0.52) in predicting IDH1(+). For the ATRX task, QSM 
modality (accuracy: 0.60, F1 score: 0.52) showed a better 
performance than T2 FLAIR (0.54, 0.46) and T1WI + C 
(0.46, 0.42) in diagnosing ATRX(−). The figures of exem-
plary gliomas of different grades and phenotypes can be 
found in the Supplementary Figs. 1–3.

Importance of Different MRI Modalities and Clinical 
Features in Glioma Classification

Feature importance explanations showed that QSM modal-
ity feature was the most important variable for the classifi-
cation of OGG/HGG, IDH1(+) or IDH1(−),  ATRX(−), or 
ATRX(+) (Fig. 3). The spread of the Shapley values reflects 
the corresponding impacts on the model output of four clas-
sification tasks. t-SNE plot showed QSM modality feature 
extracted by inception network could partially identify 

Table 1  Comparisons of the 
performance for prediction of 
glioma grades and molecular 
subtypes on different MR 
modalities by fivefold cross-
validation of deep learning

OGG other grade glioma (grade II + III), GBM glioblastoma multiforme (grade IV), LGG low-grade gli-
oma (grade II), HGG high-grade glioma (grade III + IV), IDH1(+) IDH1 mutation, IDH1(−) IDH1 wild, 
ATRX(−) ATRX expression loss, ATRX(+) ATRX retention, PPV positive predictive value, NPV negative 
predictive value
The best results are marked in bold

Tasks Modality Accuracy Sensitivity Specificity PPV NPV F1-score

OGG/GBM T2 FLAIR 0.69 ± 0.11 0.75 ± 0.22 0.60 ± 0.25 0.75 ± 0.14 0.65 ± 0.18 0.60 ± 0.12
T1WI + C 0.74 ± 0.11 0.75 ± 0.22 0.73 ± 0.25 0.83 ± 0.15 0.64 ± 0.08 0.70 ± 0.14
QSM 0.80 ± 0.07 0.86 ± 0.12 0.73 ± 0.25 0.84 ± 0.13 0.75 ± 0.13 0.75 ± 0.14

LGG/HGG T2 FLAIR 0.69 ± 0.11 0.80 ± 0.19 0.53 ± 0.16 0.70 ± 0.07 0.67 ± 0.18 0.61 ± 0.13
T1WI + C 0.74 ± 0.14 0.76 ± 0.16 0.73 ± 0.25 0.81 ± 0.17 0.62 ± 0.10 0.72 ± 0.17
QSM 0.69 ± 0.11 0.70 ± 0.19 0.67 ± 0.21 0.76 ± 0.14 0.59 ± 0.08 0.64 ± 0.12

IDH1(+)/(−) T2 FLAIR 0.57 ± 0.20 0.65 ± 0.26 0.47 ± 0.16 0.60 ± 0.17 0.48 ± 0.17 0.53 ± 0.19
T1WI + C 0.57 ± 0.20 0.60 ± 0.26 0.53 ± 0.27 0.63 ± 0.22 0.57 ± 0.28 0.52 ± 0.19
QSM 0.77 ± 0.11 0.86 ± 0.12 0.67 ± 0.30 0.81 ± 0.17 0.72 ± 0.16 0.70 ± 0.18

ATRX(−)/(+) T2 FLAIR 0.54 ± 0.17 0.60 ± 0.26 0.47 ± 0.27 0.62 ± 0.22 0.54 ± 0.26 0.46 ± 0.13
T1WI + C 0.46 ± 0.11 0.50 ± 0.16 0.40 ± 0.13 0.52 ± 0.11 0.38 ± 0.10 0.42 ± 0.09
QSM 0.60 ± 0.11 0.65 ± 0.20 0.53 ± 0.27 0.69 ± 0.17 0.59 ± 0.22 0.52 ± 0.09
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GBM patients from OGG patients and distinguish IDH1(+) 
or IDH1(−), while T1WI + C and T2 FLAIR modality fea-
tures could not (Fig. 4).

Added Value of QSM in Contrast to Conventional 
MRI

Performance metrics of multi-modal MRI in glioma tasks 
by DL are presented in Table 2. For the OGG and GBM 
classification, T1WI + C plus T2 FLAIR showed a diagnos-
tic accuracy of 0.80 and F1 score of 0.78, and improved 
diagnostic efficiency could be achieved by adding the QSM 

modality (accuracy: 0.89, F1-score: 0.87, sensitivity or 
recall: 0.90, specificity: 0.87, PPV or precision: 0.91, NPV: 
0.82). Similarly, better diagnostic performance (accuracy: 
0.86, F1-score: 0.81) was acquired with QSM modality 
added than only routine T2 FLAIR plus T1WI + C (0.77, 
0.76) in discriminating LGG from HGG. For the IDH1 
task, diagnostic efficacy of T1WI + C plus QSM (accuracy: 
0.80, F1 score: 0.74) or T2 FLAIR plus QSM (0.80, 0.75) 
was superior to T1WI + C plus T2 FLAIR modalities (0.69, 
0.60). By combining the three modalities, satisfactory diag-
nostic efficiency was obtained (accuracy: 0.89, F1-score: 
0.85, sensitivity: 0.81, specificity: 1.00, PPV: 1.00, NPV: 

Fig. 3  Shapley values for analyzing importance scores of image fea-
tures extracted by inception network, when the extracted features are 
combined with the non-imaging features (sex, age) for glioma clas-

sification (a for OGG/GBM, b for LGG/HGG, c for IDH1 (±), and d 
for ATRX (±))

Fig. 4  t-distributed stochastic neighbor embedding (t-SNE) visualization of modality (T1WI, T2 FLAIR, and QSM) feature distribution of four 
glioma classification tasks (a for OGG/GBM, b for LGG/HGG, c for IDH1 (±) and d for ATRX (±))
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Table 2  Performance metrics 
of the deep learning model 
on multi-modal MRI for 
glioma grading and molecular 
subtyping

A T2 FLAIR, B T1WI + C, C QSM, OGG other grade glioma (grade II + III), GBM glioblastoma multi-
forme (grade IV), LGG low-grade glioma (grade II), HGG high-grade glioma (grade III + IV), IDH1(+) 
IDH1 mutation, IDH1(−) IDH1 wildtype, ATRX(−) ATRX expression loss, ATRX(+) ATRX retention, PPV 
positive predictive value, NPV negative predictive value
The best results are marked in bold

Tasks Modality Accuracy Sensitivity Specificity PPV NPV F1-score

OGG/GBM A + B 0.80 ± 0.07 0.76 ± 0.16 0.87 ± 0.16 0.91 ± 0.11 0.67 ± 0.05 0.78 ± 0.09
A + C 0.83 ± 0.11 0.90 ± 0.12 0.73 ± 0.25 0.82 ± 0.15 0.82 ± 0.15 0.77 ± 0.17
B + C 0.77 ± 0.07 0.80 ± 0.19 0.73 ± 0.25 0.84 ± 0.13 0.74 ± 0.14 0.71 ± 0.12
A + B + C 0.89 ± 0.11 0.90 ± 0.12 0.87 ± 0.16 0.91 ± 0.11 0.82 ± 0.15 0.87 ± 0.11

LGG/HGG A + B 0.77 ± 0.11 0.71 ± 0.19 0.87 ± 0.16 0.89 ± 0.14 0.64 ± 0.08 0.76 ± 0.12
A + C 0.74 ± 0.14 0.76 ± 0.16 0.73 ± 0.25 0.81 ± 0.17 0.62 ± 0.10 0.72 ± 0.17
B + C 0.83 ± 0.11 0.86 ± 0.20 0.80 ± 0.27 0.89 ± 0.14 0.79 ± 0.18 0.77 ± 0.17
A + B + C 0.86 ± 0.09 0.91 ± 0.11 0.80 ± 0.27 0.89 ± 0.14 0.82 ± 0.15 0.81 ± 0.17

IDH1(+)/(−) A + B 0.69 ± 0.11 0.75 ± 0.22 0.60 ± 0.25 0.75 ± 0.14 0.65 ± 0.18 0.60 ± 0.12
A + C 0.80 ± 0.07 0.86 ± 0.12 0.73 ± 0.25 0.84 ± 0.14 0.75 ± 0.13 0.75 ± 0.14
B + C 0.80 ± 0.07 0.81 ± 0.19 0.80 ± 0.27 0.84 ± 0.13 0.74 ± 0.14 0.74 ± 0.14
A + B + C 0.89 ± 0.11 0.81 ± 0.19 1.00 ± 0.00 1.00 ± 0.00 0.80 ± 0.17 0.85 ± 0.14

ATRX(−)/(+) A + B 0.51 ± 0.15 0.55 ± 0.19 0.47 ± 0.16 0.57 ± 0.14 0.45 ± 0.15 0.48 ± 0.14
A + C 0.66 ± 0.15 0.65 ± 0.20 0.67 ± 0.30 0.72 ± 0.16 0.62 ± 0.22 0.60 ± 0.16
B + C 0.63 ± 0.15 0.60 ± 0.12 0.67 ± 0.30 0.75 ± 0.21 0.54 ± 0.14 0.59 ± 0.16
A + B + C 0.71 ± 0.13 0.70 ± 0.19 0.73 ± 0.25 0.81 ± 0.17 0.60 ± 0.10 0.67 ± 0.15

Fig. 5  Fivefold ROC curves of the proposed method combining three MRI modalities for four glioma classification tasks (a for OGG/GBM, b 
for LGG/HGG, c for IDH1 (±), and d for ATRX (±)). The shadow range represents the standard deviation of fivefold
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0.80) in determining IDH1(+). For the ATRX task, diag-
nostic performance of T1WI + C plus T2 FLAIR modalities 
was unsatisfactory (accuracy: 0.51, F1 score: 0.48), and the 
efficacy was slightly better when using T1WI + C plus QSM 
(0.63, 0.59) or T2 FLAIR plus QSM modalities (0.66, 0.60). 
When the three modalities participated together, moderate 
diagnostic ability (accuracy: 0.71, F1-score: 0.67, sensitiv-
ity: 0.70, specificity: 0.73, PPV: 0.81, NPV: 0.60) could be 
achieved in predicting ATRX(−). ROC curves in diagnosing 
gliomas based on three MRI modalities by DL are shown in 
Fig. 5. The mean AUC was 0.83 in differentiating LGG from 
HGG, 0.91 in discriminating OGG from GBM, and 0.88 
and 0.78 in predicting IDH1(+) and ATRX(−), respectively. 
The comparisons of glioma classification results based on 
GLM, SVM, CNN, and our method are shown in Fig. 6. 
Performance comparisons of simpler histogram analysis and 
inception CNN model on QSM modality in glioma classifi-
cation tasks are listed in Supplementary Table 1.

Discussion

QSM has shown a high degree of reproducibility on one 
scanner, and across different vendors, field strengths, and 
sites (Deh et al. 2015; Wang et al. 2017a, b), although its 

accuracy can be affected by spatial resolution, echo time, 
tissue orientation and other factors (Karsa et  al. 2019; 
Lancione et al. 2017, 2019; Li et al. 2012). QSM has been 
widely used in brain diseases involving susceptibility varia-
tions (Bandt et al. 2019; Wang et al. 2017a, b). Radiomics or 
ML-based study using QSM has been applied for the diag-
nosis of Parkinson’s disease and early Alzheimer’s disease 
(Kim et al. 2020; Li et al. 2019). To the best of our knowl-
edge, no ML-assisted QSM studies on glioma grading and 
molecular subtyping have been reported till now. Recently, 
DL-based methods have been widely used in medical image 
classification. Generally, consistency loss was utilized in 
the semi-supervised learning. In our research, although the 
binary masks over tumor regions could not directly provide 
the result of tumor classification, it can be used as an approx-
imate guidance for classification. Thus, the inception module 
with consistency loss could enhance the ability of efficient 
feature extraction.

In this study, we extracted features of all ROIs from MR 
images automatically and assigned them to the final linear 
classifiers for glioma grading, IDH1(+), and ATRX(−) pre-
diction. DL-assisted T1WI + C and T2 FLAIR exhibited the 
diagnostic accuracy of < 80% in glioma grading, which is 
similar to the published computer-aided performance and 
not ideal for clinical practice (Hsieh et al. 2017). DL-assisted 

Fig. 6  Glioma classification results based on different algorithms (GLM, SVM, and CNN (three-layer convolution)) and our method using three 
modalities concatenated in the channel dimension (a for OGG/GBM, b for LGG/HGG, c for IDH1 (±), and d for ATRX (±))
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QSM was superior to conventional MRI modalities in dis-
tinguishing OGG from GBM, but not as good as T1WI + C 
in differentiating LGG from HGG. This is likely because 
GBM is characterized by microvascular proliferation and 
necrosis and is more prone to hemorrhage than OGG (Ferris 
et al. 2017), the induced susceptibility changes of which can 
be easily detected by QSM (Zhang et al. 2019). In addition, 
grade II and III oligodendrogliomas both feature extensive 
calcifications and a branching network of delicate capillaries 
in the appearance of “chicken wire” (Wesseling et al. 2015), 
which increases the confusion of QSM in differentiating 
between grade II and III gliomas. After adding QSM to con-
ventional MRI modalities, the accuracy of glioma grading 
could be improved to 85%–90%, and the AUC was 0.91 in 
identifying OGG from GBM. As OGGs share many similar 
histologic and genomic characteristics and therapeutic strat-
egies, which are quite different from GBMs (Reifenberger 
et al. 2017), distinguishing OGG from GBM is very critical, 
and DL-assisted QSM shows great clinical significance.

Single-modal T1WI + C and T2 FLAIR showed limited 
value in determining the molecular subtypes of gliomas. A 
previous study has shown that IDH(+) gliomas have lower 
levels of hypoxia-inducible-factor 1-alpha and decreased angi-
ogenesis and vasculogenesis in comparison with IDH(−) ones 
through the 2-hydroxyglutarate-mediated prolyl hydroxylase 
enzymes (EGLN, also called PHD) inhibition (Kickingereder 
et al. 2015). The resulting magnetic susceptibility differences 
between gliomas with IDH(+) and IDH(−) make it possible 
for QSM to distinguish between molecular subtypes of IDH1. 
When conventional T1WI + C and T2 FLAIR were combined 
with QSM modality during DL, satisfactory efficiency with 
AUC of 0.88 and accuracy of 0.89 could be achieved in pre-
dicting IDH1(+). DL-assisted QSM showed greater potential 
for both the IDH1 and ATRX task than conventional MRI. 
ATRX(−) is associated with alternate telomere lengthening, 
which can promote cellular immortality (Venneti and Huse 
2015). In diagnosing ATRX(−), three MRI modalities together 
displayed a moderate accuracy with AUC of 0.78. In the four 
glioma classification tasks, QSM modality features were 
superior to demographic characteristics (age and sex), and 
QSM features were the most important variables for the clas-
sification of OGG/HGG, IDH1(+) or IDH1(−), ATRX(−) or 
ATRX(+). Compared with GLM, SVM, and standard CNN, 
our proposed inception CNN performed best in the three-
modality fusion classification tasks.

Our previous study has shown the potential of multi-
parametric MR radiomic features in predicting IDH1 and 
ATRX subtypes in LGGs (Ren et al. 2019). In recent years, 
many ML-based studies have been reported to be effective 
in determining glioma grades and IDH and 1p/19q status by 
multi-modal MRI (Lu et al. 2018; Sengupta et al. 2019), but 
the contribution of intratumoral hemorrhage and calcification 
has not yet been studied. One study showed the potential of 

deep learning based on susceptibility-weighted imaging in 
detecting cerebral microbleeds (Liu et al. 2019). Consider-
ing the susceptibility variations of gliomas, the present study 
explored the highly reproducible QSM technique in combi-
nation with an inception CNN network, which revealed a 
great potential of DL-assisted QSM in glioma grading and 
molecular subtyping.

This study had some limitations. First, due to the small 
sample size, IDH1 prediction task was not performed in 
OGGs and GBMs separately, and the results of DL need to be 
externally verified in larger study samples. Second, patients 
with HGG who were unable to tolerate long MR scans were 
underrepresented during the course of patient enrollment. 
Third, the volume information was not considered when 
delineating the tumor ROIs. In future studies, we plan to 
include multi-center QSM and perfusion MRI data to pre-
dict the molecular subtypes of OGG and GBM, respectively.

Conclusion

In conclusion, compared to conventional MRI modalities, 
DL-assisted QSM shows great advantages in distinguishing 
OGG from GBM, and predicting IDH1 and ATRX subtypes.
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