
Vol:.(1234567890)

Phenomics (2022) 2:156–183
https://doi.org/10.1007/s43657-022-00048-z

1 3

REVIEW

A Comprehensive Review of High Throughput Phenotyping 
and Machine Learning for Plant Stress Phenotyping

Taqdeer Gill1 · Simranveer K. Gill2 · Dinesh K. Saini3 · Yuvraj Chopra2 · Jason P. de Koff1 · Karansher S. Sandhu4 

Received: 17 August 2021 / Revised: 29 January 2022 / Accepted: 11 February 2022 / Published online: 4 April 2022 
© International Human Phenome Institutes (Shanghai) 2022

Abstract
During the last decade, there has been rapid adoption of ground and aerial platforms with multiple sensors for phenotyping 
various biotic and abiotic stresses throughout the developmental stages of the crop plant. High throughput phenotyping (HTP) 
involves the application of these tools to phenotype the plants and can vary from ground-based imaging to aerial phenotyping 
to remote sensing. Adoption of these HTP tools has tried to reduce the phenotyping bottleneck in breeding programs and 
help to increase the pace of genetic gain. More specifically, several root phenotyping tools are discussed to study the plant’s 
hidden half and an area long neglected. However, the use of these HTP technologies produces big data sets that impede the 
inference from those datasets. Machine learning and deep learning provide an alternative opportunity for the extraction of use-
ful information for making conclusions. These are interdisciplinary approaches for data analysis using probability, statistics, 
classification, regression, decision theory, data visualization, and neural networks to relate information extracted with the 
phenotypes obtained. These techniques use feature extraction, identification, classification, and prediction criteria to identify 
pertinent data for use in plant breeding and pathology activities. This review focuses on the recent findings where machine 
learning and deep learning approaches have been used for plant stress phenotyping with data being collected using various 
HTP platforms. We have provided a comprehensive overview of different machine learning and deep learning tools avail-
able with their potential advantages and pitfalls. Overall, this review provides an avenue for studying various HTP platforms 
with particular emphasis on using the machine learning and deep learning tools for drawing legitimate conclusions. Finally, 
we propose the conceptual challenges being faced and provide insights on future perspectives for managing those issues.

Keywords Biotic and abiotic stresses · Deep learning · Ground-based imaging · High throughput phenotyping · Machine 
learning · Unmanned aerial vehicle

Introduction

The world population is expected to reach approximately 
9 to 10 billion by 2050; therefore a gain of around 25–70% 
above present-day production levels will be required to meet 
these burgeoning population demands (Hunter et al. 2017). 

Further, various biotic and abiotic factors cause adverse 
environmental conditions or stress for crop plants, result-
ing in a significant reduction in their yields. This significant 
reduction in crop yield due to stress can jeopardize global 
food security (Strange and Scott 2005). Enhancement of crop 
yields is an ever-changing global challenge for plant breed-
ers, entomologists, pathologists, and farmers. Hence, an in-
depth understanding of plant stress is pivotal for improving 
yield protection for sustainable production systems (Pessa-
rakli 2019). Plant scientists rely on crop phenotyping for 
precise and reliable trait collection and utilization of genetic 
resources and tools to accomplish their research goals.

Plant phenotyping is defined as the comprehensive 
assessment of complex traits of plants such as develop-
ment, growth, resistance, tolerance, physiology, architecture, 
yield, ecology, and the elementary measurement of indi-
vidual quantitative parameters that form the foundation for 
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complex trait assessment (Li et al. 2014). Breeding programs 
generally aim to phenotype large populations for numerous 
traits throughout the crop cycle (Sandhu et al. 2021b,c). This 
phenotyping challenge is further aggravated by the need to 
sample at multiple environment with replicated trials. Tradi-
tional phenotyping is very costly, laborious, destructive, and 
could decrease the significance or preciseness of the results. 
The development of automated, high throughput phenotyp-
ing (HTP) systems merged with artificial intelligence has 
largely overcome the problems linked with the contemporary 
state-of-the-art crop stress phenotyping. HTP has offered 
great potential for non-destructive and effective field-based 
plant phenotyping. Manual, semi-autonomous or autono-
mous platforms furnished with single or multiple sensors 
record temporal and spatial data, resulting in large amounts 
of data for storage and analysis (Kaur et al. 2021; Sandhu 
et al. 2021c). For the analysis and interpretation of these 
massive datasets, machine learning (ML) and its subtypes, 
i.e. deep learning (DL) approaches, are utilized (Ashourloo 
et al. 2014; Atieno et al. 2017; LeCun et al. 2015; Lin et al. 
2019; Ramcharan et al. 2019; Sandhu et al. 2021a).

Machine learning is a multidisciplinary approach that 
largely relies on probability and decision theories, visuali-
zation, and optimization. Machine learning approaches can 
handle large amounts of data effectively and allow plant 
researchers to search massive datasets to discover patterns 
by concurrently looking at a combination of traits rather 
than analyzing each trait or feature separately. The capability 
of identifying a hierarchy of features and inferring general-
ized trends from given data is one of the major attributes 
responsible for the immense success of ML tools. Super-
vised and unsupervised learning are the two major ML 
techniques, which have been extensively used for biotic and 
abiotic stress phenotyping in crops (Ashourloo et al. 2014; 
Peña et al. 2015; Raza et al. 2015; Naik et al. 2017; Zhang 
et al. 2019c). Traditional ML approaches require significant 
efforts for feature designing, which is a laborious procedure 
and calls for expertise in computation and image analysis, 
thereby hindering traditional ML approaches for trait phe-
notyping applications. DL has emerged as a potential ML 
approach that incorporates benefits of both the advanced 
computing power and massive datasets and allows for hier-
archical data learning (LeCun et al. 2015; Min et al. 2017). 
Further, DL also bypasses the need for feature designing, 
as the features are learned automatically from the data. The 
important DL models include multilayer perceptron (MLP), 
generative adversarial networks (GAN), convolutional neu-
ral network (CNN), and recurrent neural network (RNN) 
(LeCun et al. 2015). Deep CNNs primarily use DL architec-
ture that have now attained state-of-the-art performance for 
crucial computer vision tasks; for instance, image classifi-
cation, object recognition, and image segmentation (Pérez-
Enciso and Zingaretti 2019).

In this article, we review state-of-the-art image-based 
HTP methods with discussion on different imaging plat-
forms, imaging techniques, and spectral indices deployed for 
plant stress phenotyping. Furthermore, we provide a com-
prehensive overview of the different ML and DL tools avail-
able with their comparative advantages and shortcomings. 
We focus more on DL applications that mainly use image 
data because digital imaging is comparatively cheap, may 
be combined with the ground, manual and aerial platforms 
employed in a scalable manner, and do not require much 
technical expertise to install with off-the-shelf components 
for HTP of plant stress. Furthermore, we also summarize 
several recent studies involving ML and DL approaches for 
phenotyping different biotic and abiotic stresses in plants.

Phenotyping Platforms

The area of plant stress phenotyping is steadily progress-
ing, with destructive, low throughput phenotyping protocols/
methods being substituted by non-invasive high-throughput 
methods (Barbedo 2019). Expeditious developments in 
non-invasive affordable sensors and imaging techniques 
and tools over the decades have transformed plant phenom-
ics. Moreover, these developments have brought harmony 
between the sensors, imaging techniques and analytical 
tools. This consonance has led to the development of one-
piece compact imaging platforms for HTP studies. Several 
HTP platforms exist and are presently employed to pheno-
type different biotic and abiotic stress-associated traits in 
various crops (Table 1). Examples of these platforms include 
an automated platform i.e. “PHENOPSIS” for phenotyping 
plant responses to soil water stress in Arabidopsis (Granier 
et al. 2006); “GROWSCREEN FLUORO” to phenotype 
leaf growth and chlorophyll fluorescence which allowed the 
detection of tolerance to different abiotic stresses in Arabi-
dopsis (Arabidopsis thaliana L.) (Jansen et al. 2009); “Lem-
naTec 3D Scanalyzer system” for non-invasive screening of 
different salinity tolerance traits in rice (Oryzae sativa L.) 
(Hairmansis et al. 2014); “HyperART” for non-destructive 
quantification of leaf traits such as leaf chlorophyll content 
and disease severity on leaves in four different crop species 
(barley, maize, tomato and rapeseed) (Bergsträsser et al. 
2015); “PhenoBox” for detection of head smut and corn 
smut diseases on Brachypodium and maize (Zea mays L.), 
respectively, and salt stress response in tobacco (Nicotiana 
tabacum L.) (Czedik-Eysenberg et al. 2018); “PHENOVI-
SION” for detection of drought stress and recovery in maize 
plants (Asaari et al. 2019); “PhénoField” for characteriza-
tion of different abiotic stresses in wheat (Triticum aestivum 
L.) (Beauchêne et al. 2019); and the “PlantScreen™ Robotic 
XYZ System” for analyzing different traits associated with 
drought tolerance in rice (Kim et al. 2020).
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Data has also been recorded in an automated and high 
throughput manner for root and shoot related traits, leaf traits, 
plant height, plant biomass, early vigor, radiation use effi-
ciency, photosynthesis in different plant species such as rice, 
wheat, maize, sorghum (Sorghum bicolor L.), cotton (Gos-
sypium hirsutum L.), Arabidopsis, Brachypodium (Brachy-
podium distachyon L.), rapeseed (Brassica napus L.), and 
barley (Hordeum vulgare L.) among others using different 
phenotyping platforms such as RootReader3D (Clark et al. 
2011), GROWSCREEN-Rhizo (Nagel et al., 2012), Zeppe-
lin NT aircraft (Liebisch et al. 2015), Phenocart (Crain et al. 
2016), Phenovator (Flood et al. 2016), PHENOARCH (Brichet 
et al. 2017), Field Scanalyzer (Virlet et al. 2016), CropQuant 
(Zhou et al. 2017), and MVS-Pheno (Wu et al. 2020) (Table 
1). These platforms have the potential to be utilized for HTP 
of traits associated with stress tolerance/resistance in different 
crops.

In the last decade, several state-of-the-art phenomics cent-
ers have been established across the world which utilize sensor 
platforms for phenotyping under controlled conditions. Major 
phenomics centers include ‘High-Resolution Plant Phenomics 
Center’ and ‘Plant Accelerator’ in Australia; ‘Leibniz Institute 
of Plant Genetics and Crop Plant Research’ and the ‘Julich 
Plant Phenotyping Center’ in Germany; the ‘National Plant 
Phenomics Center’ in the United Kingdom and the ‘Nanaji 
Deshmukh Plant Phenomics Center’ in India (Mir et al. 2019). 
To disseminate information about HTP, an international asso-
ciation of major plant phenotyping centers was also established 
in Germany, known as the International Plant Phenotyping 
Network (https:// www. plant- pheno typing. org/ IPPN_ home).

Significant efforts are also being made to develop 
advanced technologies for use under field conditions at 
industrial and experimental scales. Some private compa-
nies, including ‘LemnaTec’, ‘PhenoSpex’, ‘Phenokey’, 
‘WIWAM’, ‘Photon System Instruments’, and ‘We Provide 
Solutions’ provide large-scale, customized HTP platforms 
for both controlled and field environments (Gehan and Kel-
logg 2017; Mir et al. 2019). A list of major HTP platforms 
being utilized in different laboratories is given in Table 1. 
These imaging platforms can be broken down into their 
components to understand the evolution and scope of HTP 
studies. Understanding the subunits of imaging platforms 
that include imaging sensors, imaging techniques, and ana-
lytical tools such as spectral indices, would help justify the 
role of ML and DL in HTP studies and these have been 
summarized below.

Imaging Techniques

Phenomics has been extensively used to monitor diseases, 
pest infestations, drought stress, nutrient status, growth, 
presence of weeds and yield under stresses and normal Ta
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conditions in different crop species (Barbedo 2019). Tech-
nological advancement has made novel imaging techniques 
available for use in HTP. Imaging techniques range from 
handheld mobile phones to highly flexible drone imag-
ing using unmanned aerial vehicles (UAV). UAVs offer a 
platform that rapidly records data using different imaging 
sensors over large areas and potentially gives images with 
high spatial resolution. UAV can be used to cover plots or 
multiple fields in one flight, but their limited battery capac-
ity reduces their utility for very large-scale HTP. Remote 
sensing using satellites imagery has been extensively used 
in assessing plant stresses since the early 1970s (Saini et al. 
2022; Sishodia et al. 2020). Multispectral images obtained 
from satellites can be used to assess drought conditions in a 
particular area, crop damage due to insect pests, for example, 
tracking the damages caused by a swarm of locusts, or crop 
damage due to diseases (Kaur et al. 2021). As mentioned 
earlier, the field of HTP is an evolving area with consistent 
changes and same is true for the imaging techniques. To 
score minute changes in plant development with more detail 
and automate the imaging process, ground-based imag-
ing platforms are also put to use. Although ground-based 
imaging platforms has the same limitation as drones due 
to limited battery capacity, but they provide more detailed 
and accurate images at the individual plant to individual 
branches, even down to the single leaf level. More detail pro-
vides more data and thus build accurate models and assess-
ments. Moreover, the ground-based imaging platforms can 
be programmed to engage in a time-scheduled analysis even 
in the absence of the researcher, making it more convenient 
and efficient. All of these imaging techniques generate tera-
bytes of data per day and thus cannot be handled manually 
hence they need the assistance of ML and DL programs for 
their management. Different machine learning methods, spe-
cifically deep learning, may efficiently deal with the millions 
of images quickly and with high reliability (Ashourloo et al. 
2014; LeCun et al. 2015; Atieno et al. 2017). Now we are 
providing a brief overview of different imaging techniques 
used for plant stress phenotyping.

Satellite Imagery

Satellite imagery or remote sensing is the oldest of all HTP 
method. Satellites can cover a large area from 1,000 hec-
tares to an entire county at a time. Earth observation satel-
lites installed with multiple sensors having large apertures 
are used to capture ground information. These sensors vary 
from RGB, multispectral, hyperspectral, thermal and time of 
flight sensors. The multispectral sensors collect information 
in specific wavelengths (bands) out of the electromagnetic 
(EM) spectrum. With an ability to target 2–10 bands out of 
the EM spectrum at a time, these sensors generally target 
Red (R), Blue (B), and Green (G) bands which are visible 

to the human eye. The information collected from each spe-
cific band is then overlapped with the other bands to gener-
ate high-resolution RGB images. Other than these bands, 
near infra-red (NIR) bands or infrared (IR) bands are also 
used (Pineda et al. 2020). Multispectral sensors can have a 
spectral resolution as high as 0.25 m, and is continuously 
improving with advancements in technology.

Hyperspectral sensors can target numerous bands (up 
to thousands), but in a narrower spectral range (Pettorelli 
2019). As they target multiple bands, their spectral reso-
lution is higher than multispectral sensors. Studies have 
been conducted to use hyperspectral images for plant dis-
ease identification (Das et al. 2015; Nagasubramanian et al. 
2019). Most of multispectral and hyperspectral sensors use 
the reflected sunlight from the earth’s surface to gather infor-
mation which make these passive sensors. Conversely, active 
sensors include RADAR (Radio Detection and Ranging) and 
LiDAR (Light Detecting and Ranging), which both emit 
radiation to gather ground information (Teke et al. 2013). 
The band information gathered from multispectral and 
hyperspectral sensors is evaluated using different spectral 
indices to assess plant health and conditions.

One of the biggest limitations of satellite imaging is the 
high cost associated with constructing and launching satel-
lites. A list of unique satellite sensors with their spatial reso-
lution is provided by Pettorelli (2019). Some of the satellite 
involved in plant stress assessment include Resourcesat-2 
and Resourcesat-2A (Indian Space Research Organization), 
Sentinel-2 A + B twin platform (European Space Agency) 
(Segarra et al. 2020), EO-1 Hyperion (National Aeronautics 
and Space Administration) (Apan et al. 2004), Spot-6 and 
Spot-7 (Centre national d'études spatiales), and KOMPSAT-
3A (Korean Aerospace Industries, Ltd.).

Mobile Cameras/Imaging

Mobile phones are equipped with high-quality cameras 
limited to basic photography, but some manufacturers add 
advanced sensors like LiDAR for 3D imaging. The rapid 
development of smartphones with powerful computing and 
high-resolution cameras has also facilitated the creation of 
mobile applications with expanding utility. Moreover, fea-
tures of smartphone technology are also being incorporated 
into other portable devices/instruments, thereby expanding 
the range of sensors and strengthening the portability and 
connectivity of conventional phenotyping equipment. These 
advancements put researchers at an advantage as they can 
conveniently record the phenotype with a portable handheld 
device. These advances, however, do not provide any practi-
cal use for research purposes, as taking pictures of each plant 
in the field is not practical using this method. It is equivalent 
to manual phenotyping as researchers would still need to go 
and look at every plant or its parts. Although mobile imaging 
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can help diagnose biotic (Hallau et al. 2017) and abiotic 
stresses (Naik et al. 2017) using ML and DL, it doesn’t have 
any utility in HTP studies. Many mobile applications are 
available that can help a researcher or even a farmer run a 
quick diagnostic of symptoms before an in-depth analysis. 
Such mobile applications may be adapted to other impor-
tant crops and their diseases, thereby contributing to better 
decision-making in integrated disease management but this 
utility is limited.

UAV Imaging

Imaging using UAV is considered the most convenient and 
economical for large-scale HTP studies (Ehsani and Maja 
2013). UAVs take multiple photographs during their flight. 
The images captured include parts of the whole field which 
are then stitched together to form a larger image called an 
orthomosaic providing an overall view of the field. Open 
drone map, Pix4D and QGIS are some of the software 
applications that can be used to create these orthomosaics. 
Images from UAVs have high resolution as they fly closer 
to the ground compared to satellites. This can be particu-
larly helpful for hyperspectral sensors as they have a low 
spatial resolution. UAVs can carry all the sensors that can 
be installed on any satellite due to increase of their payload 
capacity. Still, they cannot cover as much spatial area as 
satellites because of their limited battery capacity and flight 
height. Like the satellites, UAVs provide data in the form of 
various spectral bands that are further evaluated using spec-
tral indices. Numerous studies have been conducted where 
drone imaging is used to assess biotic and abiotic stresses in 
plants. Some of these are provided in Table 2.

Ground Based Imaging Platforms

Imaging using ground-based platforms is the most advanced 
of all of the techniques. Ground-based platforms provide 
very close range imaging for plant stress assessment (Mishra 
et al. 2020). The proximity provides human-like manual phe-
notyping with greater efficiency (Atefi et al. 2019). Most 
of the ground based platforms are autonomous systems, 
they can be integrated with onboard chips to evaluate the 
parameters of each phenotype (Vougioukas 2019). Such 
autonomous systems, alongside test images, add much more 
information to the project, such as phenotype score, met-
rics, parameters, generating up to terabytes of data per day. 
To organize all of the generated information, it becomes 
important to have efficient workflow managers such as Phy-
toOracle (Peri 2020) for improved data management and 
processing. Ground-based platforms are the perfect example 
of IoT-based intelligent systems for plant stress assessment 
and HTP studies (Das et al., 2019).

Spectral Indices for Plant Stress 
Phenotyping

Images captured by the aforementioned techniques need to 
be decoded, and spectral indices (SIs) are used to assess 
the information in these images (Hunt et al. 2013). SIs 
involve conducting various sets of operations on differ-
ent spectral layers of an image. These sets of operations 
include some mathematical calculations and combination 
of spectral reflectance from two or more wavelengths. The 
result of this mathematical combination generates a num-
ber that denotes the relative abundance of the feature of 
interest (Jackson and Huete 1991). Various types of SIs are 
available to assess different types of features captured in 
an image. For the purposes of this review, we will discuss 
only vegetation indices (VIs) which are a spectral calcula-
tion conducted using different spectral bands, for decoding 
features and information about vegetation captured in an 
image. VIs can provide a plethora of information such as 
plant phenotype, plant architecture, stress level, and bio-
mass (Kokhan and Vostokov 2020). The most important 
factor in using VIs is determining is the right kind of VIs 
to be incorporated for a particular application (Xue and Su 
2017). Various types of VIs can be used for plant assess-
ment studies in HTP programs. Because healthy plants 
reflect more IR radiation than stressed plants (Xue and Su 
2017), mostly NIR or IR bands are used to monitor aspects 
like biotic (Mahlein et al. 2012a; Oerke et al. 2014) and 
abiotic stresses (Prashar and Jones 2016). Therefore, VIs 
involving NIR/IR data such as normalized difference veg-
etation index (NDVI) become of prime importance in plant 
stress assessment studies. A list of various types of VIs is 
provided in Table 3.

Big Data and Machine Learning

With the rapid adoption of HTP platforms in agriculture, 
it has created enormous volume, variety, and veracity of 
the data with collection at multiple time points, causing 
big data issues. The ability to analyze and understand data 
is becoming critical for the development of new tools and 
findings. A report from the Mckinsey industry (Man-
yika et al. 2011) shows that the amount of data gener-
ated is increasing at approximately 50% per year, which is 
equivalent to a 40-fold rise in data since 2001. Even a few 
years ago storing such enormous data was challenging, 
but with better storage capacities, it is now possible for 
such data to be efficiently archived and potentially used 
in the near future. The biggest hesitation in adopting HTP 
for most agriculture operations at a massive scale is the 
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challenge with analysis and interpretation of the informa-
tion. Machine learning and deep learning approaches act 
as a valuable computer science technique, which could be 
adopted for increasing its utilization in agriculture, espe-
cially in monitoring plant stresses. There are numerous 
studies available where ML approaches have been used for 
processing images to identify different types and levels of 
stresses such as powdery mildew in cucumber (Cucumis 
sativus L.) (Lin et al. 2019), aflatoxin level in maize (Yao 
et al. 2013), leaf rust in wheat (Ashourloo et al. 2014), and 
salinity stress in chickpea (Cicer arietinum L.) (Atieno 
et al. 2017) and many more examples (Table 4). These 
studies provided an excellent avenue for how ML could 
be used for managing plant stresses.

ML provides an alternative opportunity to extract valu-
able information for making conclusions, which were previ-
ously difficult because of issues discovering patterns from 
the datasets (Sandhu et al. 2020, 2021b). ML is an interdis-
ciplinary approach for data analysis using probability, statis-
tics, classification, regression, decision theory, data visuali-
zation, and neural networks to relate information extracted 
with the phenotype obtained (Samuel 1959). ML provides 
a significant advantage to plant breeders, pathologists, 
physiologists and agronomists for the extraction of multiple 
parameters to analyze traits together instead of traditional 
methods that focused on a single feature at a time. The other 

important advantage with ML is directly linking the vari-
ables extracted from HTP data to plant stresses (Zhang et al. 
2019c), biomass accumulation (Busemeyer et al. 2013b), 
grain yield (Crain et al. 2018), and soil characteristics. ML’s 
greatest success involves inferring trends from the data and 
generalizing the results by training the model. There has 
been a recent adoption of ML in bioinformatics (Min et al. 
2017), cell biology, epigenetics (Samantara et al. 2021), 
plant breeding (Sandhu et al. 2021a), pathology (Ashour-
loo et al. 2014), computer vision, image processing (Rous-
seau et al. 2013), voice recognition, and disease classifica-
tion (Fuentes et al. 2017). The main driving forces behind 
applying these techniques in agriculture involve their use by 
commercial companies and a reduction in the cost of sensors 
and imaging platforms (Araus and Cairns 2014).

ML involves learning the patterns from the dataset using 
computerized models to make reliable conclusions with-
out being explicitly told (Sandhu et al. 2022a, 2022b). ML 
efficiently uses its experience for identifying the underly-
ing structure, pattern, similarities, or dissimilarities in the 
provided dataset for classification and prediction problems 
(LeCun et al. 2015). Typically, an ML model consists of a 
calibration process where a model is trained on a given large 
data set called a training set. The remaining dataset on which 
the model’s performance is validated is called the testing set. 
The accuracy and precision of the calibrated model classify 

Table 3  Commonly used vegetation indices for plant stress phenotyping. Rn, Rre, Rr, Rg, and Rb are the reflectance bands for NIR, Red Edge, 
red, green, and blue wavelengths

Index name Formula Relevance References

Normalized difference vegetation 
Index

(Rn − Rr)/(Rn + Rr) Plant health monitoring, assess 
plant stress

Tucker (1979)

Triangular vegetation index 0.5 [120(Rn − Rg) − 200 (Rr − Rg)] Leaf chlorophyll measurements and 
leaf area index

Broge and Leblanc (2001)

Triangular greenness index Rg − 0.39·Rr − 0.61·Rb Leaf chlorophyll measurements Hunt et al. (2011)
Normalized green red difference 

index
(Rg − Rr)/(Rg + Rr) Biomass measurements Tucker (1979)

Green normalized difference vegeta-
tion index

(Rn − Rg)/(Rn + Rg) Leaf chlorophyll measurements Gitelson et al. (1996)

Enhanced vegetation index 2.5(Rn − Rr)/
(Rn + 6·Rr − 7.5·Rb + 1)

Improved vegetation monitoring 
and biomass measurements

Huete et al. (2002)

Chlorophyll vegetation index Rn·Rr/Rg2 Leaf chlorophyll measurements Vincini et al. (2008)
Chlorophyll index—green Rn/Rg − 1 Leaf chlorophyll measurements Gitelson et al. (2003)
Chlorophyll index—red edge Rn/Rre − 1 Leaf chlorophyll measurements Gitelson et al. (2003)
Visible atmospherically resistant 

index
(Rg − Rr)/(Rg + Rr − Rb) Highlights vegetation in images Gitelson et al. (2002)

Triangular chlorophyll index 1.2(R700 −  R550) − 1.5(R670 −  R550)·
√(R700/R670)

Leaf chlorophyll measurements Haboudane et al. (2008)

Green leaf index (2·Rg − Rr − Rb)/(2·Rg + Rr + Rb) Differentiates vegetation from bare 
soil

Louhaichi et al. (2001)

Normalized difference red edge 
index

(Rn − Rre)/(Rn + Rre) Leaf chlorophyll measurements Gitelson and Merzlyak (1994)

MERIS total chlorophyll index (R750 −  R710)/(R710 −  R680) Leaf chlorophyll measurements Dash and Curran (2004)



164 T. Gill et al.

1 3

Table 4  Studies using various machine and deep learning tools for abiotic stress management in field crops during the last decade

Plant Plant trait/disease Spectral range 
(nm)

Domain (field/lab) Sensing modality Data analysis References

Barley Drought 400–900 Greenhouse Hyperspectral 
imaging

Simplex volume 
maximization

Mer et al. (2012)

Barley Drought 430–890 Field Hyperspectral 
imaging

Support vector 
machine

Behmann et al. 
(2014)

Barley Drought 400–1000 Field Hyperspectral 
imaging

Dirichlet aggrega-
tion regression

Kersting et al. 
(2012)

Chickpea Salinity 380–760 Greenhouse RGB imaging PLS and correla-
tion analysis

Atieno et al. (2017)

Chilean straw-
berry (Fragraria 
chiloensis)

Salt stress 350–2500 Greenhouse Spectral reflec-
tance imaging

ANOVA, SRI 
linear regression 
analysis, multi-
linear regression 
analysis

Garriga et al. (2014)

Citrus Chlorophyll fluo-
rescence water 
Stress

400–885 Field Non-imaging Regression Zarco-Tejada et al. 
(2012)

Cotton Water stress 490–900
7500–13,500

Field Thermal Imaging Mapping and Cor-
relation

Bian et al. (2019)

Maize Water stress 475–840 Field Non-imaging Correlations 
among Indices

Zhang et al. (2019c)

Maize Nitrogen, Oxygen, 
and Ash

400–2500 Field Non-imaging ANOVA and 
regression

Cabrera-Bosquet 
et al. (2011)

Maize Weeds 380–760 Field RGB imaging Image process-
ing and color 
segmentation

Burgos-Artizzu 
et al. (2011)

Maize Weeds 380–760 Field RGB imaging Support vector 
machine for 
separating plants 
based on spectral 
components

Guerrero et al. 
(2012)

Oilseed rape Proteins 500–900 Laboratory Near-infrared and 
hyperspectral 
imaging

PLS Zhang et al. (2015)

Pepper Nitrogen 380–1030 Laboratory Hyperspectral 
imaging

PLSR Yu et al. (2014)

Rice Nitrogen 400–1000 Field Hyperspectral 
imaging

PLSR Onoyama et al. 
(2013)

Rice Salinity 380–760 Field RGB imaging Smoothing splines 
curves and gene 
mapping

Al-Tamimi et al. 
(2016)

Rice Salt stress 400–500 Greenhouse Fluorescence 
imaging

Hierarchical 
clustering, 
Pearson cor-
relation analysis, 
non-linear mixed 
model

Campbell et al. 
(2015)

Soybean Iron 380–760 Field RGB imaging Decision trees, 
random forests, 
KNN, LDA and 
QDA

Naik et al. (2017)

Soybean Drought 400–780 Greenhouse Hyperspectral 
fluorescence 
imaging

PLSR Mo et al. (2015)

Spinach Quality 400–1000 Lab Hyperspectral 
imaging

PLS-DA Diezma et al. 
(2013)
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its use for future applications. Generally, during the model 
training process, two approaches, namely, supervised and 
unsupervised machine learning are used. Supervised ML 
models involve providing a label for the data during the 
training process; for example, differentiating wheat and rice 
images, labels are provided for the two crops while training 
the model. On the other hand, the unsupervised model does 
not involve the use of labels during the training process, 
while the model attempts to differentiate both crops on its 
own by learning similarities and dissimilarities. Numer-
ous studies have used ML for managing biotic and abiotic 
stresses in HTP and involve applications like support vector 
machine, discriminant analysis, k-means clustering, neural 
networks, clustering, dimensional reduction, and least dis-
criminant analysis (Table 4). All of these models help to 
identify, classify, quantify, and predict different phenotyping 
components in plants. The overview of all these ML learning 
models can be found in Fig. 1 and the section below.

Supervised Learning

Supervised learning provides the power to process data using 
machine language. The main goal of supervised learning is 
to use the input and output variables for mapping the rela-
tionship. The main interest is to build a mapping function 
such that if you used new input data, predictions could be 
made about the output. Training supervised learning models 
involves learning its parameters and is focused on lowering 
the training data’s loss function. Supervised learning can be 

further classified into classification and regression problems 
(Fig. 1). A classification problem involves categorizing the 
output variables by building a relationship within them. For 
example, grouping plants based on disease severity rating. 
Here, we review the studies using classification algorithms 
for plant stress detection. While in case of regression prob-
lems, the output consists of real values, and the model aims 
to predict the data using a trained model on the training data 
set. For example, the prediction of a plant’s grain yield can 
be done by training the model on the previous year’s data 
set. There are various supervised machine learning models 
which have been used for plant stress phenotyping and are 
described below.

Linear Discriminant Analysis 

Linear discriminant analysis (LDA) uses a linear combina-
tion of features for categorizing the output into two or more 
classes. LDA has continuous independent variables with a 
categorical dependent variable (Kim et al. 2011). Kim et al. 
(2011) applied the discriminant analysis to classify 14 dif-
ferent Arabidopsis seeds into two groups using direct analy-
sis in real-time and mass spectrometry. LDA and support 
vector machine (SVM) were used for the early detection of 
almond (Prunus dulcis) red leaf blotch using high-resolu-
tion hyperspectral and thermal imagery, and it was helpful 
for the differentiation between the trees that did not have 
symptoms and those with high infestation (Peña et al. 2015). 
In another study, various classification algorithms such as 

Table 4  (continued)

Plant Plant trait/disease Spectral range 
(nm)

Domain (field/lab) Sensing modality Data analysis References

Spinach Drought 380–760, and 
8000–14,000

Field Visible and ther-
mal imaging

Support vector 
machine and 
Gaussian pro-
cesses classifier

Raza et al. (2014)

Spring Wheat Water Stress 350–2500 Field Non-imaging Vegetation indices 
and regression

Wang et al. (2015)

Sunflower Weed 450–780 Field Visible light and 
multispectral 
imaging

Classification Peña et al. (2015)

Vineyard Water stress vari-
ability

530–800 Field Thermal and 
multispectral 
Imaging

Regression Baluja et al. (2012)

Wheat Water stress 841–1652 Landsat data Multispectral 
imaging

Indices and regres-
sion

Dangwal et al. 
(2016)

Wheat Nitrogen 400–1000 Both Hyperspectral 
imaging

PLSR Vigneau et al. 
(2011)

Wheat Nitrogen, phos-
phorus, potas-
sium, sulfur

350–2500 Field Hyperspectral 
imaging

Regression Mahajan et al. 
(2014)

Wheat Ozone 300–1100 Field Non-imaging Correlation 
analysis

Chi et al. (2016)
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LDA, quadratic discriminant analysis (QDA), KNN and 
soft independent modelling of classification analogies were 
used to detect Huanglongbing in citrus orchards using the 
images acquired through visible-near infrared spectroscopy. 
The classification accuracies of QDA and SIMCA were 95% 
and 92%, respectively (Sankaran et al. 2011).

Support Vector Machine

The support vector machine (SVM) develops a hyperplane 
to have a maximum distance from the nearest example in the 
training data set. This hyperplane helps in the clear sepa-
ration between different classes with maximization of the 
difference between the classes (Eichner et al. 2011). Eich-
ner et al. (2011) utilized the support vector machines for 
detecting the intron retentions and exon skipping in tiling 
arrays. SVM was used for the segmentation of images, which 
were helpful in the analysis of Salmonella typhimurium 
(human pathogen) attack on Arabidopsis spp (Schikora et al. 
2012). LDA and SVM classification methods were used to 
detect verticillium wilt in olive (Olea europaea) by using 
thermal and hyperspectral images. SVM performed bet-
ter, having a classification accuracy of 79.2% as compared 
to LDA, which only had an accuracy of 59.0% (Calderón 
et al. 2015). This method was used to identify regions of 
canopy showing response to soil water deficit in spinach 
(Spinacia oleracea) using infrared thermal images. Results 
indicated that an average accuracy of 96.3% was obtained 
for SVM (Raza et al. 2014). In another study, SVM was 
used to detect drought stress in barley (Hordeum vulgare) 
plants from a series of hyperspectral images. The final data 
set contained 211,500 tests and 211,500 training instances. 
Five supervised prediction methods for deriving local stress 

levels were evaluated: one-vs.-one Support Vector Machine 
(SVM), one-vs.-all SVM, Support Vector Regression (SVR), 
Support Vector Ordinal Regression (SVORIM) and Lin-
ear Ordinal SVM classification. The highest accuracy was 
achieved by the one-vs.-one SVM (83%) (Behmann et al. 
2014). Furthermore, SVM was used to identify weeds with 
green spectral components masked and unmasked. The 
masked plants were detected by identifying support vectors 
(Guerrero et al. 2012).

Logistic Regression

Logistic regression uses a logistic function for classifying 
binary variables. A logistic function usually classifies the 
dependent variable into two classes using all of the predic-
tors with the odds ratio. Output with more than two values 
can be applied using multinomial logistic regression. Hyper-
spectral imaging was used for the early detection of apple 
scab for managing the application of pesticides and crop 
management strategies in the orchard. Logistic regression 
was efficiently used in this study for separating the infected 
and non-infected plants by selecting hyperspectral bands 
based on classification algorithms (Delalieux et al. 2007).

Random Forest 

The working principle of random forests (RF) relies on the 
ensemble learning algorithm. This uses the tree-building 
process for classifying individuals into separate nodes of the 
tree. Random forests have several advantages over other tree-
based classifications because of its ability to handle noise, 
control model overfitting, and a capacity to handle many 
variables. Random forest was used for feature selection from 

Fig. 1  Classification of machine and deep learning models is provided which are mostly used in high throughput phenotyping (a, b)
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spectroradiometer data for detecting phaeosphaeria leaf spot 
in maize (Adam et al. 2017).

Linear Regression 

Linear regression is used in most phenomics studies because 
of its simplicity and interpretation of data. The focus is how 
much variation in the target is explained by a particular 
feature in the dataset. A regression model was developed 
between crop water stress index (CWSI) and vegetation 
indices (VI) in maize to measure water stress by using mul-
tispectral images and regression models between VI and 
CWSI, which successfully mapped water stress (Zhang et al. 
2019c). In another study, Pearson correlations and linear 
regression were calculated between thermal indices and leaf 
stomatal conductance (gs) and stem water potential (ѱSTEM) 
to measure water status variability in a vineyard using mul-
tispectral and thermal imagery (Baluja et al. 2012). Also, 
linear regression models were developed based on corre-
lation coefficients between nitrogen absorption and differ-
ent radiometric variables to determine nitrogen uptake in 
rice paddy by using two-band imaging systems, namely the 
visible red band (650–670 nm) and the near-infrared band 
(820–900 nm). The equation developed for nitrogen absorp-
tion per unit area based on the two band reflectance values 
indicated a high r-value (0.96) (Shibayama et al. 2009). In 
addition, the correlation and linear relationship between pro-
jected shoot area and shoot fresh weight were calculated to 
study salinity tolerance in rice by high throughput pheno-
typing technologies (Hairmansis et al. 2014), and a mixed 
linear model with the use of REML procedure was used for 
the detection of salinity tolerance in barley using infrared 
thermography (Sirault et al. 2009).

Multiple Linear Regression

Multiple linear regression (MLR), also known as multiple 
regression, predicts the outcome using several explanatory 
variables. MLR models the linear relationship between the 
predictors for predicting the outcome. Hyperspectral images 
were used to measure powdery mildew using multivariate 
linear regression (MLR), PLSR and Fisher linear discrimi-
nant analysis (FLDA) as data analysis techniques. The PLSR 
model's performance performed better than the MLR model, 
whereas FLDA had the highest accuracy (Zhang et  al. 
2012a). Bacterial spot in tomato (Lycopersicon esculentum) 
was measured using the spectral images and data analyzed 
using partial least squares (PLS) regression, analysis of cor-
relation coefficient spectrum, and stepwise multiple linear 
regression (SMLR). Various predictive models were devel-
oped for the prediction of bacterial spot (Jones et al. 2010).

Partial Least Square Regression 

Partial least square regression (PLSR) is a very beneficial 
tool for modelling and multivariate analysis since it can 
handle a large number of variables and collinearity among 
the variables (Yu et al. 2014). High value of correlation 
coefficient (r), and low values of RMSE are selected for 
developing the best model (Zhang et al. 2015). The PLSR 
model was used to estimate nitrogen content in rice (Oryza 
sativa) using ground-based hyperspectral imaging, and the 
relationship between the reflectance of the rice plant and 
nitrogen content was used to develop the PLSR model. The 
best model for the estimation of rice nitrogen content was 
constructed by combining the reflectance and the tempera-
ture data, which had low RMSE (0.95 g/m2) and RE (13%) 
(Onoyama et al. 2013). In another study, nitrogen content 
in citrus leaves was measured by hyperspectral imaging at 
719 nm, and analysis was done using PLS. Stepwise multiple 
linear regression (SMLR) calibration models and the MLR 
calibration model performed better at 70% accuracy (Min 
et al. 2008). Also, the PLSR model successfully predicted 
drought stress in soybean plants, and its accuracy for two 
cultivars in an 8-day treatment group and a 6-day treatment 
group was 0.973 and 0.969, respectively (Mo et al. 2015).

Unsupervised Learning

Unsupervised learning finds the structure present in the unla-
beled data set where output variables are not provided. The 
main focus in unsupervised learning is to identify the under-
lying structure present in the data to get more insight into the 
data. Unsupervised learning can be grouped into clustering 
of the dataset or extraction of latent factors using dimen-
sionality reduction approaches (Fig. 1a). Clustering involves 
finding similarities in the dataset and later grouping those 
individuals. The dissimilar individuals are grouped into 
separate clusters. There are various clustering approaches 
including K-mean clustering and hierarchical clustering.

K‑means Clustering 

K-nearest neighbor (K-NN) is a nonparametric supervised 
and unsupervised classification method that assigns the 
object to its nearest neighbor using the most popular vote 
for classification. The number of classes depends upon the 
value of K specified before classification. These methods 
were used for classification and K-NN gave better results 
than Bayes rule for weed detection in cereal crops. The K-
NN decision rule has high storage demand and is used for 
pattern recognition (Pérez et al. 2000). In another study, 
K-means clustering was used to extract values for the plant 
surface in the RGB channels for salinity tolerance in Arabi-
dopsis thaliana (Awlia et al. 2016).
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Dimensionality Reduction

Dimensionality reduction approaches try to explain the 
whole dataset with a few numbers of variables with the 
extraction of useful or latent variables. The most common 
dimensionality reduction techniques is principal component 
analysis (PCA) and it involves reducing the data’s dimen-
sionality with the extraction of completely independent 
variables while minimizing information loss. PCA aims to 
explain the majority of variance present in the dataset using 
a few principal components. Stepwise discriminant analy-
sis was performed to identify insect infestation in jujubes 
(Hovenia acerba Lindl.) by using visible and NIR spectros-
copy. PCA was used for analyzing the spectra (Wang et al. 
2011). In another study, aflatoxin  B1 in maize (Zea mays) 
was detected by hyperspectral imaging and the data was 
analyzed using PCA. PCA was used for the reduction of 
dimensionality of the data. Stepwise factorial discriminant 
analysis was carried out on the latent variables provided by 
the PCAs (Wang et al. 2011). PCA analysis was also done to 
predict toxigenic fungi on maize with hyperspectral imaging 
(400–1000 nm), and discriminant analysis was done to cre-
ate a model for fungal growth identification (Del Fiore et al. 
2010). Furthermore, Fusarium infestation in wheat (Triti-
cum aestivum) was identified with hyperspectral imaging 
and diseased and healthy plants were identified using PCA 
(Bauriegel et al. 2011).

Deep Learning

In the ML section, we provided information about various tools 
which could potentially be used for extracting valuable infor-
mation from plants. However, there is rapid adoption of DL 
tools for easier data analysis of large numbers of images with 
high accuracy. DL is a branch of ML which uses a deep net-
work of neurons and layers for processing information (LeCun 
et al. 2015). DL has provided remarkable achievements in 
other disciplines such as fraud detection, automated financial 
management, autonomous vehicles, consumer analytics, and 

automated medical diagnostics (Min et al. 2017). DL is a type 
of ML that does not require the prior feature selection, which 
is the characteristic of traditional ML models and the most 
time-consuming and error-prone step (Sandhu et al. 2021b). 
DL models involve automatically learning the pattern from a 
large data set using non-linear activation functions for mak-
ing conclusions such as classification or predictions (Sandhu 
et al. 2021d).

The important DL models used for phenomics include, but 
are not limited to, a multilayer perceptron (MLP), generative 
adversarial networks (GAN), convolutional neural network 
(CNN), and recurrent neural network (RNN). It has been 
observed that CNN is superior for image analysis, and differ-
ent CNN image recognition architecture is utilized for plants, 
namely ResNet, ZFNet, VGGNet, GoogleNet, and AlexNet 
(Fuentes et al. 2017). The general outline of deep learning 
consists of multiple connected neurons across the layers. The 
concept of DL was proposed in the 1950s (Samuel 1959) 
and is designed to work using a logic structure as a human 
would in completing a particular task. There has been rapid 
advancement in the adoption of DL models because of the 
development of efficient algorithms for estimation of complex 
hyperparameters for training the models (Sandhu et al. 2020). 
Deep learning consists of multiple terms, some of which can 
be found in Table 5.

MLP is the most commonly used neural network in genom-
ics which consists of multiple fully connected layers, namely 
input, hidden, and an output layer which is connected by a 
dense network of neurons. The input layer consists of all of the 
input features. The first hidden layer uses a different number 
of neurons to learn a weight parameter with a constant bias 
while training the model. The output of the first hidden layer 
acts as input for the second hidden layer and continues in this 
sequence. The final layer is known as an output layer where 
input from the last hidden layer converges to a single value. 
The output from the first hidden layer can be represented as:

Z
1
= b

0
+W

00
(x)

Table 5  Terms used in deep learning models for the model’s optimization and prediction

Term Definition

Activation function The function that produces the neuron’s output
Batch Partition of the data into different sets within a given epoch
Dropout Removal of a fixed number of neurons during each training set for controlling overfitting
Early stopping A strategy to control overfitting by the early stopping of the model
Epoch Shifting the training set into different batches
Neuron A primary entity of the DL model which learns the information and provides the output 

to the next layer using different activation functions
Regularization Works as a penalty for neurons’ weight during model training
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Where Z1 is the output of the first hidden layer, b0 is the 
bias estimated with the rest of the weights W0, and 0(x) is 
the particular activation function used in the model (Gulli 
and Pal 2017). The detailed working and model of the 
MLP is presented in Fig. 2.

Convolutional neural network (CNN) is used when 
variables are distributed in one or two dimensions and 
is mostly used for plant image analysis. CNN is a special 
case of DL which uses fully connected layers known as 
convolutional layers. In each of the convolutional layers, 
the convolution operation is performed along with the 
inputs of predefined strides and width (Pérez-Enciso and 
Zingaretti 2019). Finally, smoothing the results is per-
formed along the pooling layer. The detailed layout and 
working of CNN are provided in Fig. 3. CNN is the most 
commonly used classification model used in plant stud-
ies, especially for classifying different disease types. The 
biggest advantage of CNN involves utilization of the raw 
image as input without any prior pre-processing of the 
image. CNN has demonstrated superiority in plant detec-
tion and diagnosis, classification of fruits and flowers, and 
detection of disease severity in infected plants (Sandhu 
et al. 2020, 2021b).

Ramcharan et al. (2019) showed that CNN could be used 
in mobile-based apps for detecting foliar disease symptoms 
in cassava (Manihot esculenta Crantz). They also suggested 
that model performances differed when trained on real-
world conditions and existing images, demonstrating the 
importance of lighting and orientation for efficient model 
performance. Powdery mildew is a devastating disease in 
cucumber during the middle and final stages of growth. 
Quantitative assessment of disease over the cucumber 
(Cucumis sativus) leaves is especially important for plant 
breeders for making selections. Lin et al. (2019) segmented 
the diseased leaf images at pixel level using a segmenta-
tion model on a CNN and achieved a pixel accuracy up to 
96%. The CNN model employed in their study outperformed 
the existing segmentation models, namely, random forest, 
K-means, and support vector machines. Similarly, deep con-
volutional neural networks were used to detect 10 differ-
ent diseases in rice and differentiate them from the healthy 
plants on a dataset of 500 images. That study showed that 
using ten-fold cross-validation, deep CNN models gave an 
accuracy of 95.48%, which was significantly higher than 
the conventional machine learning models (Lu et al. 2017) 
(Table 6).

Fig. 2  Multi-layer perceptron showing the working of the neural net-
work using input, hidden, and output layer. The bottom half of the 
figure shows the weight associated with each neuron and transforma-

tion using an activation function. Y represents the final output from 
the model and is achieved by optimizing other hyperparameters
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The main bottleneck in DL involves optimization of 
hyperparameters that involve the number of neurons, acti-
vation functions, number of epochs, total number of convo-
lutional layers, number of filters and hidden layers, solver, 
dropout, and regularization. There are many different com-
binations which could be used for these hyperparameters 
resulting in a huge computational burden and requires 
strong programming skills. There are four most common 
approaches used for selecting these hyperparameters, 
namely, Latin hypercube sampling, grid search, random 
search, and optimization (Cho and Hegde 2019). Further-
more, there is a problem of overfitting in DL models, if it is 
not accounted for (Sandhu et al. 2021b). Tools such as early 
stopping, L1 and L2 regularization, and dropout are avail-
able for reducing the chances of overfitting in the trained 
model. The detailed information about the optimization 
of hyperparameters and tools for controlling overfitting is 
referred to in other texts (Cho and Hegde 2019).

Conclusion

Plant stress phenotyping is an important parameter for pre-
dicting crop losses caused by various biotic and abiotic 
stresses. It can be used to identify superior disease resistant 
and stress-tolerant genotypes as well as to assess disease 
management decisions (Fig. 4). The phenotypic parameters 
include not only morphological data, but also a large number 
of physiological and biochemical data, as well as deeper 
mechanistic data, allowing scientists to identify and predict 
heritable traits through controlled phenotypic and genotypic 

studies. Current methods for stress severity phenotyping are 
used at various scales, such as the number of plants affected 
or exact counts of lesion numbers, or estimates of the sever-
ity or surface area affected by a particular biotic/abiotic 
stress at the canopy of single plant and field levels (Table 4). 
Stationary HTP platforms can carry a variety of sensors to 
monitor both pot crops and crops in specific field areas at 
the same time. Their operation, however, is limited to a 
small area, and their construction is costly. More research is 
needed in the future to improve UAV-based sensing for plant 
phenotyping. High-performance and low cost UAVs should 
be introduced in future studies. For long-term and large-field 
plant phenotyping, high-performance UAVs with high flight 
stability, precision, long flight duration, and heavy payload 
are required. Unlike ground-based phenotyping, UAV-based 
phenotyping is afflicted by a serious issue: the safety of the 
UAV and its sensors.

Presently, RGB and multispectral sensors are primarily 
used to estimate crop height, biomass and other agronomic 
traits under normal and stressed conditions. However, the 
utilization of hyperspectral sensors is still in its infancy. 
Hyperspectral imaging has emerged as a cutting-edge/
emerging method to assess crop attributes such as water con-
tent, leaf nitrogen concentration, chlorophyll content, leaf 
area index, and other physiology and biochemistry param-
eters. The interference of soil signals, ambient air, and can-
opy temperature on thermal infrared cameras' imaging is the 
main limitation. The collected data information is heavily 
reliant on these sensors and has an impact on the final phe-
notyping results. Simultaneous acquisition and analysis of 
the same crop phenotypes by multiple sensors can provide a 

Fig. 3  The most straightforward design of convolutional neural networks with convolutional, max pool, flatten, dense and output layer. Each 
region of interest is processed separately in the CNN for predicting the output
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more comprehensive and accurate assessment of crop traits. 
For instance, in the process of screening crop biotic and 
abiotic stress tolerance, a variety of phenotypic data is typi-
cally combined for effective and accurate analysis. Further, 
the data types and formats collected by different phenotypic 
sensors varies, combining and managing the data collected 
by multiple sensors, as well as the development of novel 
sensors such as laser-induced breakdown spectroscopy and 
electrochemical micro-sensing (Li et al. 2019) for detection 
of plant signal molecules is another challenge for future phe-
notypic data analysis, necessitating collaboration between 
multidisciplinary laboratories.

In addition, environmental factors are also critical and 
should be given at least as much attention as the traits that 
are measured, which leads to the next question: how can all 
of the environmental impacts be measured? Envirotyping, 
defined as a comprehensive set of next-generation high-
throughput accurate envirotyping technologies, could aid in 
addressing this issue (Xu 2016). Furthermore, by integrating 
multi-typing data, the genotyping environment management 
interaction could be investigated, and predictive phenom-
ics would be possible (Xu 2016; Araus et al. 2018). High-
throughput and accurate phenotyping, when combined with 
optimized experimental design, high quality field trials, a 
robust crop model, envirotyping, and other strategies, will 
improve heritability and genetic gain potential (Araus et al. 
2018).

Phenotypic researchers prefer mobile high-throughput 
plant phenotypings that can be transported to the experi-
mental sites (Roitsch et al. 2019). This indicates that the 
development of mobile high-throughput plant phenotyping 
must focus on flexibility and portability, and that modular 
and customizable designs will be appreciated by the pheno-
typing community. With recent advances in artificial intel-
ligence analysis techniques, 5th generation mobile networks, 
and cloud-based innovations, more smart "pocket" pheno-
typing tools are likely to be introduced, potentially replac-
ing manual field phenotyping, which has been practiced for 
hundreds of years.

Overall, whether phenotyping in the greenhouse or in the 
field, ground-based proximal phenotyping or aerial large-
scale remote sensing, the future of high-throughput plant 
phenotyping lies in enhancing spatial–temporal resolu-
tion, turnaround time in data analysis, sensor integration, 
human–machine interaction, throughput, operational sta-
bility, operability, automation, and accessibility. It is worth 
mentioning that the selection, development, and application 
of high-throughput plant phenotypings should be directed 
by concrete project requirements, and practical application 
scenarios, specific phenotypic tasks, such as field coverage 
(Kim, 2020), instead of supposing that the more devices, 
innovations, and funds with which the high-throughput 
plant phenotyping is furnished, the better; partly because Ta
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collecting a large amount of data does not imply that all of 
it is useful (Haagsma et al. 2020). Even in some cases, the 
experimental implications of using a single sensor and mul-
tiple sensors are similar (Meacham-Hensold et al. 2020), and 
data acquired from different devices is redundant.

Challenges and Future Prospects Nevertheless, com-
bining various high-throughput plant phenotypings for com-
parative verification and detailed evaluation could open up 
new avenues for inspection, extraction, and quantification of 
complex physiological functional phenotypes. However, the 
technical issues of developing standards and coordinating 
calibrations for these numerous combinations are challeng-
ing tasks. Furthermore, to achieve a true sense of “cost-
effective phenotyping”, the trade-off between phenotyping 
technique investment and manpower cost should be noted, 
which is primarily dependent on the different objectives 
(Reynolds et al. 2019).

After collecting massive amounts of data, the next 
concern is how to handle “Big Data”? Wilkinson et al. 
proposed the FAIR (findable, available, identifiable, and 
reusable) principle to enable the finding and reuse of 
data all over different individuals or groups (Wilkinson 
et al. 2016), which means all essential metadata, such as 
resource and data acquisition information, measurement 
protocols, and environmental conditions, data description 
should be clearly addressable. Several efforts for data man-
agement and analysis have also been made in accordance 
with the FAIR principle, such as PHENOPSIS DB (Fabre 
et al. 2011) and CropSight (Reynolds et al. 2019). Data 
sharing and standardization across communities continues 

to be a major challenge. Another issue is a lack of funding 
and data infrastructure to manage these data sets (Bolger 
et al. 2019). We support the creation of OPEN data infra-
structures and the publication of primary data with DOIs. 
This would make data reuse easier, as well as the develop-
ment, testing, and comparison of technologies.

Online databases, such as http:// www. plant- image- analy 
sis. org, can effectively connect developers and users. The 
creation of the PlantVillage database, which comprised 
54,306 images of 14 crop species and 26 diseases, opened 
up new avenues for meeting some research needs (crops, 
number of diseases, severity of expression, stages of dis-
ease infection, and so on), along with the need for a pub-
licly accessible, open-source, shared database of annotated 
plant stresses at the individual leaf scale. PlantVillage data 
has also been overexplored, and new data sources will be 
required for the development of robust models. Some 
other open-source databases are also available, including 
the maize northern leaf blight disease database (Wiesner-
Hanks et al. 2018), which contains 18,222 digital images 
of maize leaves in the field, either captured manually, 
mounted on a boom, or taken by UAVs. Human experts 
annotated approximately 105,705 NLB lesions, making 
this the largest publicly accessible annotated image set 
for a plant disease. However, comprehensive management 
platforms covering software, web-based tools, toolkits, 
pipelines, ML and DL tools, and other phenotypic solu-
tions are still lacking, which will be a significant milestone 
as well as a significant challenge.

Fig. 4  The outline of different phenotyping tools and platforms for plant stress detection in the field

http://www.plant-image-analysis.org
http://www.plant-image-analysis.org
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Data that is poorly annotated and in a disorganized for-
mat, on the other hand, could generate noise or disordered 
waves. Certainly, standard constraints are being proposed 
that are relevant. Krajewski et al. (2015), for instance, pub-
lished a technical paper with effective recommendations 
(at http:// cropn et. pl/ pheno types) and initiatives (such as 
http:// wheat is. org), taking another step toward establishing 
globally practical solutions. Furthermore, initiating rele-
vant phenotyping standardization can improve comprehen-
sion and explanation of biological phenomena, contribut-
ing to the transformation of biological knowledge and the 
creation of a true coherent semantic network.

As technologies for generating and storing high-
throughput measurement data become more accessible to 
researchers, the role of ML is expected to grow in impor-
tance in the coming years. Nonetheless, several challenges 
still remain. The success of ML is critically dependent 
on the availability of large collections of samples with 
sufficient common features. The accumulation of such 
collections has been useful in other areas for complex 
analyses (ENCODE Project Consortium, 2012), but for 
plant research, the required investment is very massive and 
appears to be feasible only for commercially relevant crops 
such as rice, wheat, and maize. A variety of efforts, from 
local to international, are underway to build phenotyping 
centers that automate and standardize high-throughput 
measurements of plant phenotypes at all stages—a pro-
cess known as phenomics (Yang et al. 2020). These will 
provide more data in a more objective and accurate man-
ner, but it will take some time before sufficiently large and 
rich data sets are available.

The most interesting scientific challenge is to create 
(novel) ML approaches for problems with data that are too 
complex, heterogeneous, and variable for current techniques 
to handle. Current ML-based techniques focus on a single 
stress or disease on a leaf or canopy, but in real-world situa-
tions, numerous diseases and stresses may appear on a single 
leaf or canopy. ML platforms must be flexible and robust, 
with the ability to distinguish multiple disease symptoms 
on a single leaf or within the same plant canopy. The train-
ing dataset should include multi-location, multi-year, and 
diverse plant stress symptom images. The quantity of data 
needed to train ML models is determined by the complexity 
of the problem and the complexity of the learning algorithm; 
thus, for wider applicability, the training data should really 
be continuously updated using techniques such as artificial 
learning to reflect the complexity of stress symptoms for 
the targeted crop. The plant community requires universal 
datasets for various stresses in order to train robust ML mod-
els for practical application in decision support. To ensure 
robust in-field performance of ML, the datasets should 
include realistic and potentially degraded sensing environ-
ments (e.g., cloudy, fog, low light, and saturated lighting).

A future opportunity for ML is to support decision-mak-
ing in plant research, from predicting which region of the 
genome should be modified to achieve a desired phenotype 
(in genetic modification strategies) to make sure optimal 
local growth conditions by assessing crop performance 
in vivo in the greenhouse or on the field. While these are 
mainly engineering challenges, effective ML methods will 
provide powerful tools to researchers, especially as they 
improve their ability to allow interpretation of their deci-
sions. In this way, ML can aid in addressing the challenges 
of ensuring food security for growing populations in rapidly 
changing environments.

DL is a flexible tool for making sense of the vast datasets 
in plant stress ICQP (identification, classification, quantifi-
cation, and prediction) (Singh et al. 2018). Most DL mod-
els, however, have been applied in biotic stress and disease 
detection due to their excellent disease identification. In the 
coming years, DL could be used to quantify abiotic stress 
and predict the loci that control stress tolerance by integrat-
ing genetic and other omics data with different sensor tech-
nologies (thermal, hyperspectral, CT, terahertz, radar, MRI 
etc.) and large multiscale (lab-to-field) phenotypic datasets 
that include weather and other environmental parameters. 
This approach is most likely to work best with very large 
and well-annotated datasets, emphasizing the importance of 
open data. The most difficult issue with deep learning tasks 
is a lack of adequate training samples with labels (Li et al. 
2019). Every day, petabytes of data are added, excluding 
the zettabytes that already exist. This tremendous progress 
is amassing data that cannot be labelled without the assis-
tance of humans. The current success of supervised learning 
techniques is typically due to the availability of large data-
sets and readily available labels (Gregor and LeCun 2010). 
Unsupervised learning techniques, on the other hand, will 
become the primary considered solution as data complexity 
and size increase rapidly (Ranzato et al. 2013).

Finally, advances in artificial learning and transfer learn-
ing can be used to improve ML models for new goals and 
plant stresses (e.g., disease, pest, flooding, drought, salin-
ity, nutrient, temperature, weed stresses). We encourage the 
creation and widespread distribution of community-wide 
curated, labelled datasets, which would significantly accel-
erate deployment while also improving interactions with ML 
experts who would use these curated datasets as benchmark 
data, similar to MNIST, ImageNet, or CIFAR. The devel-
opment of such open, labelled, broad-spectrum plant stress 
datasets across various plant species will eliminate data 
duplication, allowing plant scientists with smaller datasets 
to use DL through transfer learning. We also strongly rec-
ommend using imaging data from field conditions to create 
training datasets, as this will result in robust models that 
can be embedded on high-throughput systems such as UAVs 
and other autonomous systems. The convergence of imaging 

http://cropnet.pl/phenotypes
http://wheatis.org
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platforms advances in DL approaches, as well as the avail-
ability of storage and computing resources, makes this an 
interesting time to be pursuing plant phenotyping, including 
stress-related traits.
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