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Abstract
Serum liver enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST], λ-glutamyl transferase [GGT] and 
alkaline phosphatase [ALP]) are the leading biomarkers to measure liver injury, and they have been reported to be associated 
with several intrahepatic and extrahepatic diseases in observational studies. We conducted a phenome-wide association study 
(PheWAS) to identify disease phenotypes associated with genetically predicted liver enzymes based on the UK Biobank 
cohort. Univariable and multivariable Mendelian randomization (MR) analyses were performed to obtain the causal esti-
mates of associations that detected in PheWAS. Our PheWAS identified 40 out of 1,376 pairs (16, 17, three and four pairs 
for ALT, AST, GGT and ALP, respectively) of genotype–phenotype associations reaching statistical significance at the 5% 
false discovery rate threshold. A total of 34 links were further validated in Mendelian randomization analyses. Most of the 
disease phenotypes that associated with genetically determined ALT level were liver-related, including primary liver cancer 
and alcoholic liver damage. The disease outcomes associated with genetically determined AST involved a wide range of 
phenotypic categories including endocrine/metabolic diseases, digestive diseases, and neurological disorder. Genetically 
predicted GGT level was associated with the risk of other chronic non-alcoholic liver disease, abnormal results of function 
study of liver, and cholelithiasis. Genetically determined ALP level was associated with pulmonary heart disease, phlebitis 
and thrombophlebitis of lower extremities, and hypercholesterolemia. Our findings reveal novel links between liver enzymes 
and disease phenotypes providing insights into the full understanding of the biological roles of liver enzymes.
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Introduction

Alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), λ-glutamyl transferase (GGT) and alkaline phos-
phatase (ALP) are the leading biomarkers to measure the 
liver function in clinical practice, in which many physiologi-
cal and pathological processes are involved. Growing epi-
demiological evidences showed that the variations in serum 
levels of liver enzymes affected both intrahepatic and extra-
hepatic morbidities and mortalities (Choi et al. 2018; Ghouri 
et al. 2010; Kaneko et al. 2019; Katzke et al. 2020; Koehler 
et al. 2014; Kunutsor et al. 2014, 2015; Monami et al. 2008; 
Siddiqui et al. 2013). However, since the levels of circulat-
ing biomarkers are easily influenced by many factors and are 
subject to diurnal variation (Danielsson et al. 2014; Liu et al. 
2014b; Nunez et al. 2019), it was considered that the serum 
level of liver enzymes measuring once might bias the asso-
ciation estimates between liver enzymes and clinical events 
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(Clarke et al. 1999). Moreover, previous studies were obser-
vational population-based design, and it is generally hard 
to disentangle the causal relationship between serum level 
of liver enzyme and disease phenotype, thus, the observed 
association might be subject to underlying confounders.

As shown in genome-wide association studies (GWAS), 
genetic factors are implicated in the regulation of serum lev-
els of liver enzymes (Chambers et al. 2011; Chen et al. 2021; 
Stender et al. 2017; Yuan et al. 2008). Given the genotypes 
are generally independent of environment and the transmis-
sion of genetic information is usually unidirectional (Li et al. 
2019), the genetic data from GWAS enable us to determine 
causal relationship between exposure and outcome via sev-
eral methods including Mendelian randomization (MR) 
(Pingault et al. 2018). So far, MR based on single nucleotide 
polymorphism (SNP) or polygenetic risk scores (PRS) has 
been extensively used to infer the causalities (Ding et al. 
2017; Ference et al. 2019; Richmond et al. 2019; Voight 
et al. 2012). Several MR studies have also been conducted to 
investigate the causal relationships between serum levels of 
liver enzymes and disease phenotypes (De Silva et al. 2019; 
Liu et al. 2016; Noordam et al. 2016; Xu et al. 2017). How-
ever, previous studies only used a few SNPs as the genetic 
instruments and were most limited to a single disease pheno-
type. To comprehensively reveal the biological roles of liver 
enzymes, herein, we performed a phenome-wide MR study 
using data from the UK Biobank cohort study.

Materials and Methods

Study Participants

This research has been conducted using the UK Biobank 
Resource under application numbers 58484 and 63726. The 
details of UK Biobank study have been previously described 
(Sudlow et al. 2015). Briefly, UK Biobank is a large-scale, 
population-based prospective cohort study, which recruited 
over 0.5 million participants aged 40–70 years in 2006–2010 
and provided extensive measurement of baseline data and 
genotype data with linked national medical records for lon-
gitudinal follow-up. In this study, we excluded participants 
who were non-Caucasian ethnic background and with miss-
ing data on serum liver enzyme levels.

GWAS for Liver Enzymes

The genotype data in the UK Biobank were derived from 
GWAS chip (Affymetrix UK BiLEVE and UK Biobank 
Axiom arrays). To ensure the independence between discov-
ery dataset and validation dataset (Chatterjee et al. 2016), we 
first divided the whole population into two non-overlapping 
groups in a ratio of 3:7 (Fig. 1A). The discovery dataset 

(n = 112,232) was used to perform GWAS of liver enzymes. 
In this dataset, participants who met any of the following 
conditions were excluded: (i) genetically related with at least 
one UK Biobank participant (kinship > 0.08); (ii) geneti-
cally inferred gender that did not match the self-reported 
gender; and (iii) identified as outliers in heterozygosity and 
missing rates. We selected the SNPs with minor allele fre-
quency > 1%, imputation accuracy (Info) score > 0.3, and 
Hardy–Weinberg equilibrium p value >  10–6 to perform 
GWAS. The serum levels of liver enzymes were log-trans-
formed to overcome the skewness and outliers. A total of 
9,886,861 SNPs were eligible for the GWAS, where sex, age 
and genotyping chip were adjusted. We assigned a SNP as 
associated with a liver enzyme of interest using a conven-
tional GWAS threshold (p < 5 ×  10−8). SNPs were binned 
into loci based on pairwise linkage disequilibrium (LD; at 
between-SNP R2 < 0.1), with the SNP with the strongest 
association with the trait of interest (as defined by p value) 
being retained in each locus.

Weighted Polygenetic Risk Score

To generate a genetic proxy for serum liver enzyme, genetic 
variants associated with liver enzyme were retrieved from 
the GWAS. PRS was constructed by incorporating effect 
estimates of the assigned SNPs for the rest of UK Biobank 
participants (validation dataset; n = 262,174) (Fig. 1A). Spe-
cifically, taking ALT as an example, the PRS was created by 
adding up the number of ALT-related alleles for each SNP 
weighted for the SNP effect size on ALT level (regression 
beta-coefficients) and then adding up this weighted score 
for all assigned SNPs. As to ALT, the same processing was 
applied to AST, GGT and ALP.

Disease Phenotypes and PheWAS

We identified disease phenotypes using International Clas-
sification of Diseases (ICD) code versions 10 and 9 in the 
electronic medical records of UK Biobank. All prevalent 
and incident diseases in ICD code were mapped to the corre-
sponding phenotype via Phecode Map 1.2 (Wu et al. 2019). 
Self-reported diagnoses were not considered. Repeated diag-
nosis of an individual disease in a participant was recorded 
as a single event. Cases were defined as individuals having 
at least one documented event and controls as individuals 
with no record of that outcome or its related phecodes (Li 
et al. 2018). To ensure the statistical power, we excluded 
disease phenotypes that have < 20 cases. We finally included 
1,376 disease phenotypes. We performed logistic regression 
models with adjusting for age, sex, and genotyping array to 
examine the associations between each disease phenotype 
and the PRS of ALT, AST, GGT, and ALP, respectively. To 
avoid the type I error, we used false discovery rate (FDR) 
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to adjust p values from the logistic regressions. An FDR-Q 
value < 0.05 was deemed to be statistically significant.

Mendelian Randomization and Sensitivity Analyses

For disease phenotypes showing significant association with 
liver enzyme, we further performed two-sample MR study 
(Yavorska and Burgess 2017) to determine the potential causal 
relationships (Fig. 1). The statistics of genetic variant–expo-
sure (G–E, i.e., beta-coefficients and standard errors) were 
derived from the GWAS of liver enzymes (Supplementary 
Tables S1–4). Herein, the genetic variant and exposure denote 

the selected SNPs and log-transformed serum level of liver 
enzyme, respectively. The statistics of genetic variant–outcome 
(G–O) were calculated from the logistic regression models 
that examine the associations of selected SNPs with disease 
phenotypes (Fig. 1B). To ensure the robustness of estimates, 
we established a MR framework according to previous studies 
(Fig. 1B) (Burgess et al. 2019; Burgess and Thompson 2017; 
Ference et al. 2019; Wu et al. 2020). Briefly, we first exam-
ined the horizontal pleiotropy that measured by MR-PRESSO 
global test and removed the outliers if the corresponding p 
value < 0.05. Next, we conducted the MR analysis using 
four methods (inverse-variance weighted [IVW], MR-Egger, 

Fig. 1  Study design. A UK Biobank participants were divided in a ratio of 3:7 to conduct GWAS and construct polygenic risk score (PRS) for 
liver enzymes. B Study flow chart of Mendelian randomization (MR) analysis
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median-based method and mode-based method) that are under 
different assumptions (Burgess et al. 2019). For the MR esti-
mates, we could draw a robust conclusion if they fulfil all of 
the following conditions: (i) no significant between-SNP het-
erogeneity measured by Cochran Q value was detected; (ii) no 
significant directional pleiotropy was detected; (iii) estimates 
from different methods are same in terms of the direction; and 
(iv) no influential SNPs were detected from the “leave-one-
out” analysis. Otherwise, the causal relationship is suspicious. 
Of note is that leaving one variant out at a time is unlikely to 
change the estimate substantially when there are many vari-
ants. We, therefore, left out subsets of variants by randomly 
chosen 20% of SNPs at a time and repeated this process for n 
times, where the n denotes the number of the assigned SNPs 
of each liver enzyme (Burgess et al. 2019; Smith et al. 2014).

Owing to the low-to-moderate correlations among serum 
levels of the four liver enzymes (Supplementary Fig. S1), it 
is reasonable to assume that the biological effects of the liver 
enzymes may be mutually influenced. We, therefore, con-
ducted multivariable MR (MVMR) analyses (Burgess and 
Thompson 2015). Considering the underlying co-linearity 
and horizontal pleiotropy, we applied two robust methods 
(MVMR-robust and MVMR-Lasso) in the MVMR analysis 
(Grant and Burgess 2020).

Since the G–E statistics were derived from the GWAS for 
log-transformed liver enzymes, the MR results correspond to 
an odds ratio (OR) per 1-unit increment in log-transformed 
liver enzymes. This is equivalent to a 2.718 (e)-fold increase 
in liver enzyme on the untransformed scale, which is a sub-
stantially large change in liver enzyme levels. To better 
illustrate the effects of liver enzyme on disease phenotypes, 
we calculated G–E statistics based on associations between 
untransformed liver enzymes and the selected SNPs from 
GWAS. In this scenario, the MR results denote an OR per 
1-unit increment in liver enzymes. Pearson correlation test 
was performed to examine the consistency between MR esti-
mates of the two scenarios. We also performed a sensitivity 
analysis to examine the association between phenotypic lev-
els of liver enzymes and risks of disease phenotypes based 
on the whole population. All analyses were performed using 
R program (version 3.6.3). The GWAS was conducted using 
bigsnpr and bigstatsr packages (Privé et al. 2018). The MR 
analysis was implemented using MendelianRandomization 
and MRPRESSO packages (Verbanck et al. 2018; Yavorska 
and Burgess 2017).

Results

GWAS and PRS

The distributions of log-transformed liver enzyme levels are 
shown in Supplementary Fig. S2. We identified 58,85,121 

and 202 independent SNPs that were associated with levels 
of ALT, AST, GGT, and ALP at the GWAS-significance 
level, respectively (Supplementary Tables S1–4; Fig. 2). 
These SNPs collectively explain approximately 3.2%, 3.9%, 
6.4%, and 9.2% of the variations in serum levels of ALT (F 
statistics = 59.5), AST (F statistics = 62.2), GGT (F statis-
tics = 65.6), and ALP (F statistics = 75.5), respectively. The 
Q–Q plots of GWAS for the four liver enzymes are shown 
in Supplementary Fig. S3–6. The assigned SNPs identi-
fied from the GWAS are less shared among the four liver 
enzymes (Supplementary Fig. S7). ALT shared thirteen loci 
with AST. PRS was constructed and served as the genetic 
surrogate for liver enzyme. At the PheWAS population level, 
PRSs of the four liver enzymes were strictly followed normal 
distribution, with the mean values approximately equal zero 
(Supplementary Fig. S8).

PheWAS

In this analysis, we constructed a total of 1,376 geno-
type–phenotype pairs and identified sixteen, seventeen, 
three, and four pairs reaching statistical significance at the 
5% FDR threshold for ALT, AST, GGT, and ALP, respec-
tively (Fig. 3; Supplementary Tables S5–8). In the PheWAS 
of ALT, we found that most of the disease phenotypes 
reaching statistical significance are liver related, including 
hepatitis (not otherwise specified, NOS), alcoholic liver 
damage, primary liver cancer, etc. (Fig. 3A). Genetically 
determined ALT level was positively associated with these 
liver-related disease phenotypes (beta-coefficients > 0). We 
also observed a significantly positive association of ALT 
with type 2 diabetes (T2D) and disorders of iron metabo-
lism and a significantly negative association with dementias, 
corneal degenerations and fracture of hand and wrist (Sup-
plementary Table S5). The identified genotype–phenotype 
associations involved 25 genetic variants, of which seven 
loci were associated with more than one disease outcome 
and six loci were missense variants (Fig. 4A; Supplementary 
Table S9). Rs738409 (22:44,324,727:C > G), a missense var-
iant in PNPLA3, was associated with seven disease pheno-
types. Nine of the sixteen disease phenotypes shared genetic 
associations with ALT level at more than one locus. We did 
not detect significant associations of the rest of four disease 
phenotypes (disorders of iron metabolism, corneal degen-
eration, fracture of hand and wrist, and hepatomegaly) with 
any ALT-related genetic variant at the 5% FDR threshold. 

In the PheWAS of AST, we detected significant correla-
tions for 17 genotype–phenotype pairs (Fig. 3B). Geneti-
cally determined AST level was positively associated with 
hematuria, other chronic non-alcoholic liver disease, hal-
lux valgus, epistaxis or throat hemorrhage, varicose veins 
of lower extremity, ankylosing spondylitis, disorders of 
iron metabolism, and other ill-defined and unknown causes 
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of morbidity and mortality, whereas negatively associated 
with celiac disease, thyrotoxicosis with or without goiter, 
hypothyroidism (NOS), dermatitis herpetiformis, cancer of 
gums, multiple sclerosis, Graves’ disease, type 1 diabetes 
with renal manifestations, and hereditary disturbances in 
tooth structure (Supplementary Table S6). These geno-
type–phenotype correlations were distributed across 35 
AST genetic loci, of which 22 loci were associated with 
multiple disease phenotypes. Most of the loci were either 
gene intron variants or variants without determined infor-
mation (Fig. 4B). Sixteen of the seventeen disease pheno-
types shared genetic associations with AST level at more 
than one locus. Gum cancer shared genetic association 
with AST at locus of rs56278466 (10:17,875,857:T > G), 
an intron variant in MRC1.

Three genotype–phenotype pairs reached the statisti-
cal significance after FDR adjustment in the PheWAS of 
GGT (Fig. 3C). Genetically determined GGT level was 
positively associated with the three disease phenotypes, 

which were pertained to digestive system (Supplementary 
Table S7). Seven GGT-related genetic variants have sig-
nificant contributions to the associations of genotype–phe-
notype pairs at the 5% FDR threshold (Fig. 4C).

We found significantly negative association between 
genetically determined ALP level and four disease phe-
notypes, including pulmonary heart disease, phlebitis and 
thrombophlebitis of lower extremities, hypercholester-
olemia, and circulatory disease (not elsewhere classifiable, 
NEC) (Fig. 3D; Supplementary Table S8). A total of 26 
ALP-related genetic variants have significant contribu-
tions to the associations of genotype–phenotype pairs at 
the 5% FDR threshold (Fig. 4D). Eleven of the 26 loci 
were associated with multiple disease phenotypes. All the 
four disease phenotypes shared genetic associations with 
ALP level at more than one locus. Hypercholesterolemia 
was significantly associated with 18 genetic loci, including 
five missense variants, six gene intron variants, and one 
stop-gained variant in FUT2 (rs601338).

Fig. 2  Manhattan plots of GWAS for liver enzymes. A–D denotes the 
Manhattan plot of alanine transaminase (ALT), aspartate transami-
nase (AST), λ-glutamyl transferase (GGT), and alkaline phosphatase 

(ALP), respectively. Red dotted lines denote the cut-off of statistical 
GWAS-significance (p < 5 ×  10−8)
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Univariable Mendelian Randomization Analysis

We performed two-sample MR analyses to identify the 
potential causalities based on G–E statistics (Supplemen-
tary Tables S1–4) and G–O statistics (Supplementary Tables 
S9–12), which were derived from two independent popu-
lations. Results from the four main methods are shown in 
Fig. 5 and Table 1 (Supplementary Tables S13–16). The 
MR estimates from liver enzymes with and without log-
transformation were highly correlated (Supplementary 

Fig. S12). Except for dementias, type 1 diabetes with renal 
manifestation, and circulatory disease NEC, the MR esti-
mates were similar across different methods and were con-
sistent with that of PheWAS in terms of direction of the 
estimates (Fig. 5; Supplementary Figs. S8–11). Significant 
between-SNP heterogeneity was detected for epistaxis or 
throat hemorrhage, hypercholesterolemia, pulmonary heart 
disease, phlebitis and thrombophlebitis of lower extremities, 
and circulatory disease NEC in both IVW and MR-Egger 
methods (FDR-Q value of Cochran’s Q statistics < 0.05) 
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Fig. 3  Manhattan plots of PheWAS for liver enzymes. A–D denotes 
the Manhattan plot of alanine transaminase (ALT), aspartate transam-
inase (AST), λ-glutamyl transferase (GGT), and alkaline phosphatase 

(ALP), respectively. Blue dotted lines denote the cut-off of statistical 
PheWAS-significance (FDR-Q value < 0.05)
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(Table 1). Directional pleiotropy was only detected between 
genetically determined GGT and abnormal results of func-
tion study of liver (FDR-Q value of MR-Egger regression 
intercept < 0.05) (Table 1). No influential SNP was found in 
the “leave-one-out” analyses for the four liver enzymes (Sup-
plementary Tables S17–20). According to the framework 

described in Fig. 1B, we deemed that the MR estimates were 
robust for most genotype–phenotype pairs.

Results from IVW method suggest that a geneti-
cally determined high serum ALT level was associated 
with increased risk of hepatitis NOS (OR = 1.25, 95%CI 
1.16–1.34), primary liver cancer (1.32, 1.19–1.46), T2D 

Fig. 4  Associations of liver enzyme related genetic loci with disease 
phenotypes. The association between the genetic loci and disease 
phenotypes are depicted by the arcs. The area of each colored ribbon 
depicts the proportion of the genetic locus contributes to a particular 

disease phenotype. A–D denotes the circos plot of alanine transami-
nase (ALT), aspartate transaminase (AST), λ-glutamyl transferase 
(GGT), and alkaline phosphatase (ALP), respectively
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(1.02, 1.01–1.03), disorders of iron metabolism (1.12, 
1.07–1.17), alcoholic liver damage (1.17, 1.11–1.23), 
esophageal bleeding (1.08, 1.05–1.12), liver abscess 
and sequelae of chronic liver disease (1.12, 1.05–1.19), 
non-alcoholic cirrhosis (1.24, 1.16–1.32), choleithi-
asis (1.04, 1.02–1.06), hepatomegaly (1.16, 1.07–1.24), 

portal hypertension (1.16, 1.07–1.24), other chronic non-
alcoholic liver disease (1.20, 1.16–1.25), and abnormal 
results of function study of liver (1.07, 1.05–1.10) (Fig. 5; 
Table 1). These correlations have also been demonstrated 
in most of other methods, although the nuances of the 
MR estimates. By contrast, genetically determined serum 

Fig. 5  Associations of genetically determined liver enzyme levels 
with disease phenotypes according to Mendelian analysis. The asso-
ciations are quantified by odds ratio (OR). Rectangle in red and blue 
denotes a positive and negative correlation, respectively. Rectangle 

with black outline border denotes statistically significant, otherwise 
means statistically non-significant. IVW inverse-variance weighted, 
MBE mode-based method
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ALT level was negatively associated with risk of corneal 
degeneration (OR = 0.79, 95%CI 0.70–0.88) and fracture 
of hand or wrist (0.95, 0.93–0.97).

According to the estimates of IVW methods, genetically 
predicted AST level was positively correlated with other 
chronic non-alcoholic liver disease (OR = 1.13, 95%CI 
1.08–1.19), disorder of iron metabolism (1.11, 1.02–1.20), 
other ill-defined and unknown causes of morbidity and mor-
tality (1.04, 1.02–1.05), varicose veins of lower extremity 
(1.04, 1.02–1.06), hallux valgus (1.06, 1.03–1.08), and 
ankylosing spondylitis (1.11, 1.01–1.22). On the contrary, 
genetically determined AST level was negatively associ-
ated with multiple sclerosis (OR = 0.92, 95%CI 0.88–0.97), 
thyrotoxicosis with or without goiter (0.92, 0.87–0.97), 
celiac disease (0.67, 0.55–0.82), hereditary disturbances in 
tooth structure (0.58, 0.45–0.76), dermatitis herpetiformis 
(0.56, 0.41–0.77), and cancer of the gums (0.45, 0.34–0.59) 
(Fig. 5).

Genetically predicted GGT level was positively asso-
ciated with the risk of other chronic non-alcoholic liver 
disease (OR = 1.03, 95%CI 1.02–1.03), abnormal results 
of function study of liver (1.03, 1.02–1.03), and cholelithi-
asis (1.01, 1.01–1.02). Genetically determined ALP level 
was negatively associated with pulmonary heart disease 
(OR = 0.987, 95%CI 0.983–0.991), phlebitis and throm-
bophlebitis of lower extremities (0.991, 0.987–0.996) and 
hypercholesterolemia (0.997, 0.995–0.998). These associa-
tions have also been demonstrated in MR methods other than 
IVW.

Multivariable Mendelian Randomization Analysis

In the analysis of MVMR, we further validated the causal 
relationships of liver enzymes with disease phenotypes 
based on 432 genetic variants (Supplementary Table S21). 
The results of MVMR-Lasso and MVMR-robust methods 
were not only concordant with each other but were also 
largely consistent with the results from univariable MR 
analysis (Supplementary Table S22). The significant asso-
ciations of genetically determined ALT level with corneal 
degenerations, hepatomegaly, and fracture of hand or wrist 
that detected in univariable MR analysis were disappeared 
according to both MVMR-Lasso and MVMR-robust analy-
ses. The associations of genetically determined AST with 
hypothyroidism, disorders of iron metabolism and other 
chronic non-alcoholic liver disease were become statistically 
non-significant. Additionally, we did not detect the associa-
tion between genetically determined GGT level and other 
chronic non-alcoholic liver disease in the MVMR analy-
ses. The results of sensitivity analysis were shown in Sup-
plementary Table S23. In contrast to associations detected 
from PheWAS and MR analysis, we identified much more 

associations that reach a statistical significance (353 for 
ALT, 485 for AST, 729 for GGT, and 819 for ALP).

Discussion

In this MR-PheWAS analysis, we reported associations of 
liver enzymes with a set of intrahepatic and extrahepatic 
disease phenotypes. Genetically determined ALT level was 
not only associated with several intrahepatic disease pheno-
types but also associated with extrahepatic outcomes such 
as T2D and corneal degeneration. The AST-related disease 
phenotypes were not limited to liver or digestive system and 
were more diverse than that of ALT in terms of disease cat-
egories. In contrast, genetically predicted GGT level was 
only found to be positively associated with three hepatic 
outcomes. Genetically determined ALP level was found to 
be negatively associated with hypercholesterolemia and two 
circulatory system diseases, that are pulmonary heart disease 
and phlebitis and thrombophlebitis of lower extremities.

ALT and AST are found abundantly within hepatocytes, 
and they catalyse the transfer of amino groups to generate 
products of gluconeogenesis and amino acid metabolism 
(Kunutsor et al. 2014). Aminotransferase in blood is deemed 
to be a consequence of the liver cell membrane damage, 
which leads the subsequent leakage of intracellular enzymes 
into the circulation (Sookoian and Pirola 2015). Serum level 
of ALT has been regarded as the leading biomarker and even 
the gold standard of liver injury in clinical practice for dec-
ades (Pratt and Kaplan 2000). AST is also found in many 
extrahepatic tissues, and thus it is not a specific marker for 
liver injury. ALP and GGT are other two membrane-bound 
enzymes that mainly found in biliary epithelial cells and 
hepatocytes. ALP is considered to be a sensitive marker for 
cholestasis with a reported sensitivity of 85% (Lawrence 
and Steiner 2017). Elevations of serum levels of GGT are 
attributed to cholestasis or biliary hyperplasia resulting in 
enzyme induction (Lawrence and Steiner 2017). Previous 
observational studies indicated a wide spectrum of effects of 
liver enzymes on diseases phenotypes, although the under-
lying mechanisms are not completely clear (Kunutsor et al. 
2015; Rahmani et al. 2019).

In this study, we first conducted a large-scale GWAS 
for the liver enzymes, identifying a set of genetic variants 
associated with serum levels of liver enzyme, of which 
most are novel associations and some are concordant with 
previous GWAS (Chambers et al. 2011). Leveraging the 
genetic variants, we constructed PRS of liver enzymes and 
detected numerous links between genetically determined 
liver enzyme and disease phenotypes. Most of the links were 
validated in the subsequent MR analysis, which might indi-
cate a causal relationship between liver enzyme and disease 
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phenotype. However, the detected causal relationships still 
need further validation. For ALT, twelve out of the sixteen 
identified disease phenotypes were closely link to the liver, 
including hepatitis, primary liver cancer, and non-alcoholic 
cirrhosis. Genetically predicted level of ALT was positively 
associated with the risk of these hepatic outcomes. In other 
words, ALT might have its own role in the onset of these 
diseases rather than only serving as an indicator. This result 
might be contradictory with the conventional perception 
that elevated ALT level is a consequence instead of a cause 
of liver diseases. However, we found that the hepatic dis-
ease phenotypes shared many genetic variants with ALT, of 
which the most noticeable variant is rs738409 of PNPLA3. 
Growing evidences have shown that rs738409 of PNPLA3 
was significantly associated with a wide range of liver dis-
eases from non-alcoholic fatty liver disease to hepatocellular 
carcinoma (Liu et al. 2014a; Romeo et al. 2008). The similar 
phenomenon was also observed for rs58542926 of TM6SF2 
and rs28929474 of SERPINA1 (Mandorfer et al. 2018; Tang 
et al. 2019). These genetic variants including those have not 
been extensively investigated (e.g., rs41318029 of ABCC2) 
might mediate the biological effect of ALT on liver diseases. 
Since the elevation of ALT level usually precedes the gen-
esis of liver diseases, ALT can be termed as a cause as well 
as a strong indicator for these diseases. Consistent to a previ-
ous MR study and an observational study (Goessling et al. 
2008; Liu et al. 2016), we found that genetically determined 
ALT level was positively associated with T2D. T2D shared 
genetic associations with ALT level at 10 loci, including 
rs1801282 of PPARγ that has been demonstrated to be asso-
ciated with risk of T2D (Rehman et al. 2020). Moreover, 
ALT is thought to cause diabetes via insulin resistance with 
hepatic steatosis aggravating insulin resistance and creating 
a vicious cycle (Jacobs et al. 2011). We also observed a posi-
tive correlation between genetically determined ALT level 
and iron metabolism disorder, which has been reported in 
an observational study (Ruhl and Everhart 2003). Hepatic 
iron could play a role in liver injury by promoting oxidative 
stress either as a catalyst in the formation of free radicals or 
as a direct cause of lipid peroxidation (Bloomer and Brown 
2019). However, the mechanism under the correlation of 
ALT with iron homeostasis remains elusive. Interestingly, 
we found negative associations of genetically determined 
ALT level with corneal degeneration and fracture of hand 
or wrist, although the association became non-significant in 
the MVMR analysis. No shared genetic variant was detected 
between ALT and these two disease phenotypes. These asso-
ciations should be further validated in future researches.

For AST, we identified 17 pairs of genotype–phenotype 
associations, which covered a wide range of phenotypic cat-
egories including endocrine/metabolic diseases, digestive 
diseases, and neurological disorder. The results of MR-IVW 
analysis suggested a potential causal effect of AST level on 

14 of the seventeen phenotypes. Moreover, these associations 
were rarely reported in observational studies, except for multi-
ple sclerosis, iron metabolism disorder, chronic non-alcoholic 
liver disease, and thyrotoxicosis (Jensen et al. 2003; Tremlett 
et al. 2006; Wu et al. 2010). Most of the shared genetic variants 
between AST and disease phenotypes have not been previously 
investigated but showed significant association with several 
diseases in the current study. For instance, rs1033499 A allele 
of TSBP1 was associated with celiac disease and thyrotoxi-
cosis with a FDR-Q value of 5.00 ×  10–255 and 5.41 ×  10–11, 
respectively. By contrast, a few of the shared genetic variants 
were also related to diseases that not reported in our study. For 
example, the MHC rs9257809 G allele was associated with 
Barrett’s oesophagus according to a previous study (Su et al. 
2012). In our study, we found that this variant was significantly 
associated with celiac disease with a FDR-Q value as low as 
8.92 ×  10–127. Our findings not only suggested multiple func-
tion of AST but also indicated a potential biological effect 
of the selected genetic variants. Genetically determined GGT 
and ALP levels were associated with limited disease pheno-
types. For GGT, the genotype–phenotype correlation remained 
significant according to all MR methods, suggesting a robust 
causal relationship between GGT level and the three hepatic 
diseases. Genetically determined ALP level was negatively 
associated with hypercholesterolemia, although the effect was 
weak. This result was contradictory with previously observa-
tional study that reported a positive association between ALP 
level and hypercholesterolemia (Webber et al. 2010). Hyper-
cholesterolemia shared genetic associations with ALP level 
at 18 loci, of which 12 loci showed negative association with 
hypercholesterolemia. In this regard, the association between 
ALP level and hypercholesterolemia might be confounded in 
observational studies and warrants further research. We also 
observed a significant negative association between genetically 
ALP level and pulmonary heart disease in terms of most MR 
analyses. This link has not been reported elsewhere. Of note 
is that between-SNP heterogeneity was significant for the four 
genotype–phenotype pairs of ALP, although we have afore-
hand removed outliers that identified in MR-PRESSO analysis. 
The MR estimates of ALP should be interpreted with cautions.

Our study has limitations. First, although the discovery 
and validation cohort of liver enzyme PRS were independ-
ent, they were both derived from UK Biobank cohort. Our 
results need further external validation. Second, the disease 
phenotypes were retrieved from electronic health records, 
which might be subject to misclassification and underre-
porting. Third, it is hard to interpret most links identified in 
our study based on the current evidences, which is a com-
mon defect for PheWAS. However, our findings can serve as 
hypothesis-generators for future studies into the biological 
mechanisms underpinning these links. Finally, MR analysis 
lacks the ability to assess the effect of an acute increase of 
exposure.
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In summary, leveraging a large-scale population data, this 
MR-PheWAS study revealed several novel links between 
liver enzyme and disease phenotypes and provided insights 
into the full understanding of the roles of liver enzymes in 
biological processes.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s43657- 021- 00033-y.
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