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Abstract
Gene polymorphism of acetaldehyde dehydrogenase 2 (ALDH2), a key enzyme for alcohol metabolism in humans, can 
affect catalytic activity. The ALDH2 Glu504Lys mutant allele has a high-frequency distribution in East Asian populations 
and has been demonstrated to be associated with an increased risk of cardiovascular disease, stroke, and tumors. Available 
evidence suggests that the evolution of the ALDH2 gene has been influenced by multiple factors. Random mutations pro-
duce Glu504Lys, and genetic drift alters the frequency of this allele; additionally, environmental factors such as hepatitis 
B virus infection and high-elevation hypoxia affect its frequency through selective effects, ultimately resulting in a high 
frequency of this allele in East Asian populations. Here, the origin, selection, and spread of the ALDH2 Glu504Lys allele 
are discussed, and an outlook for further research is proposed to realize a precision medical strategy based on the genetic 
and environmental variations in ALDH2.
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Introduction

The acetaldehyde dehydrogenase (ALDH) superfamily con-
sists of enzymes that catalyze the oxidation of acetaldehyde 
to acidic metabolites, participating in a variety of physi-
ological and pathological processes (Jackson et al. 2011). 
Nineteen isoenzymes have been identified; the most active 
one is acetaldehyde dehydrogenase 2 (ALDH2), a 56-kDa 
tetramer that plays an important role in alcohol metabolism, 
converting acetaldehyde, an intermediate of alcohol metabo-
lism, to acetic acid (Vasiliou et al. 1999). However, a G to A 
mutation at rs671 in the ALDH2 gene causes replacement of 
glutamate with lysine at residue 504, resulting in a reduction 
in ALDH2 activity, allowing acetaldehyde to accumulate in 
the body after alcohol consumption, with adverse effects 
such as flushing and tachycardia (Matsumura et al. 2019).

The frequency of this variant of ALDH2 (ALDH2 
Glu504Lys) is low in caucasian, whereas the frequency is 

30–50% in East Asian populations, especially in Chinese, 
Korean and Japanese (Goedde et al. 1992). ALDH2 has been 
shown to play an important role in a variety of diseases. 
According to our previous studies, mitochondrial ALDH2 
acts as endogenous protection in the heart, and it is closely 
associated with the development of several cardiovascular 
diseases (Li et al. 2019). Our studies have demonstrated that 
patients with ALDH2 Glu504Lys variant are more inclined 
to suffer from coronary artery lesions (Xu et al. 2018) and 
displayed a higher risk of developing poor coronary collat-
eral circulation (Liu et al. 2015). Downregulation of ALDH2 
in the mitochondria can also lead to cardiomyocyte apopto-
sis after myocardial infarction in mouse models (Sun et al. 
2014). In addition, we have found that ALDH2 deficiency 
can aggravate energy metabolism disturbance and diastolic 
dysfunction in diabetic mice (Wang et al. 2016). Moreover, it 
has been shown that the ALDH2 Glu504Lys variant attenu-
ates bioconversion of nitroglycerin, thus reducing its thera-
peutic effect on coronary artery disease (Li et al. 2006). In 
addition, the role of the ALDH2 Glu504Lys variant in stroke 
(Sun and Ren 2013) and tumors (Suo et al. 2019; Hidaka 
et al. 2015; Sakamoto et al. 2006) is attracting increasing 
attention. Therefore, this genetic ALDH2 variant is a seri-
ous threat to the health of East Asian and Asian populations, 
and it may be strongly associated with higher stroke and 
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cardiovascular disease mortality in Asians (Benjamin et al. 
2018; Shaw et al. 2008; Zhou et al. 2019).

Given the high frequency of the ALDH2 Glu504Lys 
allele in East Asian populations, we sought to investigate 
how this mutation arose, why this deleterious mutation was 
not eliminated by natural selection, and why it shows high 
frequency only in East Asia. Here, we discuss the origin, 
selection and spread of the ALDH2 Glu504Lys allele from 
an evolutionary perspective and propose some hypotheses 
in conjunction with previous literature reports, hoping to 
gain insights into ALDH2 genetic polymorphism to better 
improve the prevention and treatment strategies in the era 
of precision medicine.

Origin of the ALDH2 Glu504Lys Allele

It is now generally accepted that humans originated in Africa 
(Ingman et al. 2000). Approximately 100,000 years ago, the 
ancestors of modern humans began to migrate out of Africa 
and around the world, reaching southern East Asia approxi-
mately 50,000–60,000 years ago and then spreading from 
south to north throughout the region (Palanichamy et al. 
2004). Studies examining genetic polymorphisms on the Y 
chromosome and mitochondrial DNA suggested that various 
populations underwent multiple divisions and fusions dur-
ing this migration from Africa to East Asia (Underhill et al. 
2001). Since there are rare reports of ALDH2 Glu504Lys in 
populations of African and European ancestry, we hypoth-
esize that this gene arose after humans migrated from Africa 
to the rest of the world and originated in the part of African 
archaic humans that settled in East Asia. Mutations arise 
through a random process, not an adaptation to the environ-
ment, and even the majority of mutations found in experi-
ments are deleterious (Nei 2005). Several point mutations 
in the ALDH2 gene are produced, but the mutation at the 
rs671 locus affects enzyme activity, and it became a deleteri-
ous mutation. Genetic drift played an important role in the 
small breeding populations in ancient East Asia; indeed, the 
populations were sparsely distributed, with considerable dis-
tances among populations (Lynch et al. 2016). When a popu-
lation is small, random mating between individuals causes 
random fluctuations in allele or haplotype frequencies, such 
that a certain allele or haplotype will eventually be fixed. 
The evolution due to genetic drift is random. The genetic 
variation fixed in a population is independent of the effect of 
natural selection, and the effect is stronger in smaller popula-
tions (Masel 2011).

It has been suggested that the ALDH2 Glu504Lys allele 
originated from the Pai-Yuei tribe, who was distributed 
along the southeastern coast of China thousands of years ago 
(Luo et al. 2009). It has also been suggested that rather than 
originating in indigenous populations in the region where 

it now has the highest frequencies, the ALDH2 ∗ 504Lys 
allele was most likely carried south by Han Chinese immi-
grants from central China (Li et al. 2009). Although these 
hypotheses are lack of strong evidence, they suggest that 
the mutation probably originated in a specific population, 
namely, an ancient tribe with a small population and the 
lack of genetic exchange, after which a stable frequency of 
the mutated gene gradually developed after several genera-
tions of genetic drift. In a more extreme case, the founder 
effect, in which some of the genes of a few ancestors of the 
population gradually reach high levels due to genetic drift, 
may occur if the population is completely isolated, without 
any gene exchange with other populations (Zlotogora 1994).

Selection of the ALDH2 Glu504Lys Allele

Although the generation of the ALDH2 Glu504Lys allele 
can be explained by random mutations and genetic drift, 
these effects on gene polymorphism are very limited and 
confined to small populations. Hence, there may be some 
selective forces to maintain its high frequency in East Asia. 
Indeed, some studies on ALDH2 genetic polymorphism have 
indicated that the ALDH2 ∗ 504Lys allele had some compen-
sating advantage because they tended to drink less alcohol 
or had some other advantages (Li et al. 2009; Goldman and 
Enoch 1990; Lin and Cheng 2002), as in the case of the 
gene that causes sickle cell anemia conferring a compensat-
ing advantage of a certain level of resistance to malaria. 
Although this issue is currently unresolved, the available 
evidence suggests that multiple factors may be involved in 
this process.

Selection theory suggests that natural selection plays a 
major role in the generation and maintenance of genetic 
polymorphisms in populations (Nei 2005). It is worth not-
ing that natural selection does not select for health but only 
for successful reproduction; thus, a gene will be retained 
even if it is detrimental to the health of the individual, as 
long as it does not reduce the number of surviving offspring. 
Therefore, whether the ALDH2 Glu504Lys allele is retained 
depends on whether the mutation affects the number of 
surviving offspring under certain external environmental 
conditions.

Relationship with Alcohol Consumption

Alcohol consumption behavior is one of the environmental 
factors most closely associated with ALDH2. The ALDH2 
Glu504Lys allele not only causes individuals to experience 
adverse reactions such as blushing after alcohol consump-
tion, but it also increases the risk of heart disease (Shen 
et al. 1863), esophageal cancer (Suo et al. 2019), gastric can-
cer (Hidaka et al. 2015), liver cancer (Sakamoto et al. 2006), 
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and other diseases in alcohol drinkers. Nevertheless, during 
the evolution of the ALDH2 gene, alcohol consumption did 
not eliminate the deleterious mutation, i.e., Glu504Lys, by 
negative selection or even reduce its frequency. Although 
the exact reason for this remains unknown, it may be 
because wine originated after this mutation and the ALDH2 
Glu504Lys allele was stable in the population before humans 
learned to produce wine. In addition, as large-scale brew-
ing was available in ancient times, alcohol consumption 
was low, and the amount produced was small. Therefore, 
the disadvantages of the mutated gene were not obvious in 
such an environment of a relatively low frequency of alcohol 
consumption and low amounts. Furthermore, the ALDH2 
Glu504Lys allele can even prevent individuals from drinking 
due to the “blushing syndrome” and other adverse reactions. 
As we know, some genes that were beneficial or at least 
harmless in the ancient environment can cause problems 
in the modern world. Just as the “thrifty genes” would be 
advantageous under the conditions of unpredictably alternat-
ing feast and famine that characterized the traditional human 
lifestyle, but they would lead to obesity and diabetes in the 
modern world (Diamond 2003). In conclusion, the effect of 
alcohol consumption on individuals carrying the ALDH2 
Glu504Lys allele would not likely affect the number of sur-
viving offspring or eliminate them through selection, at least 
in the ancient environment.

Relationship with Hepatitis B Virus Infection

It has been suggested that hepatitis B virus infection plays a 
selective role in this process, with the ALDH2 Glu504Lys 
allele being evolutionarily advantageous for hepatitis B virus 
carriers (Lin and Cheng 2002). In terms of geographical 
distribution, the infection rate of hepatitis B virus in East 
Asia is significantly higher than that in Europe and America 
(Schweitzer et al. 2015); in China, the rate is higher in the 
southeast coastal region and lower in the western region 
(Beasley et al. 1982). Hence, there may be a geographical 
correlation between HBV prevalence and ALDH2 deficiency 
within China and some other places to some degree. Stud-
ies have shown that the ALDH2 Glu504Lys allele increases 
the risk of liver cancer in alcohol drinkers (Sakamoto et al. 
2006; Abe et al. 2015), but no increased risk is observed in 
non-drinkers (Liu et al. 2016). As both alcohol consump-
tion and hepatitis B virus infection are the risk factors for 
liver cancer, those carrying the ALDH2 Glu504Lys allele 
may reduce alcohol consumption among hepatitis B virus-
infected individuals, indirectly reducing their risk of devel-
oping liver cancer (Liu et al. 2016). In addition, the ALDH2 
Glu504Lys allele may attenuate liver damage in alcohol 
drinkers, with reduced AST, ALT, and GGT levels observed 
in these individuals (Takeshita et al. 2000). The mechanism 
may be explained by weakened acetaldehyde metabolism, 

reduced NADH production and oxidative stress (Matsumoto 
et al. 2007), as well as inhibition of NF-kB and MAPK path-
ways, decreased TNF-a production, and attenuated hepatic 
inflammatory response by increased ethanol load (Matsu-
moto et al. 2008; Lindros et al. 1999). Thus, on the one 
hand, the ALDH2 Glu504Lys allele alleviates liver dam-
age in hepatitis B virus-infected individuals; on the other 
hand, it reduces the risk of liver cancer by reducing alcohol 
consumption, thus conferring these individuals with a bet-
ter chance of survival. Hepatitis B virus infection may also 
exert a positive selection effect on the ALDH2 Glu504Lys 
allele, favoring its retention. In particular, individuals hete-
rozygous for ALDH2 Glu504Lys may exhibit a heterozygote 
advantage, experiencing both a hepatoprotective effect not 
found in those homozygous for the wildtype gene and higher 
enzyme activity than in those homozygous for the mutant, 
which may allow the allele to reach a high frequency in some 
populations. A classic case is that the high frequency of 
the sickle cell haemoglobin (HbS) gene in malaria-endemic 
regions is thought to be related to a heterozygote (HbAS) 
advantage against fatal malaria. It has been shown that hete-
rozygotes (HbAS) can provide significant protection against 
all-cause mortality and severe malarial anaemia compared 
with HbAA genotypes (Aidoo et al. 2002).

Relationship with High‑Elevation Hypoxic 
Environments

Another possible selection factor is related to oxygen con-
centrations. ALDH2 has been shown to be essential for toler-
ance to hypoxic conditions, and it plays a protective role in 
hypoxia-related diseases such as ischemic heart disease (Liu 
et al. 2015; Sun et al. 2014) and hypoxic pulmonary hyper-
tension (Zhao et al. 2019). Although the ALDH2 Glu504Lys 
allele has a high frequency in East Asia in general, it is less 
frequently distributed in the Tibetan population (4.4%) than 
in the Han populations of Guangdong (24.8%), Qingdao 
(17.6%), and Liaoning (12.2%) (Luo et al. 2009), and this 
difference may be related to the low oxygen environment 
of the plateau in Tibet. After the divergence of the com-
mon ancestors of the Han and Tibet populations in the early 
Neolithic period, the Han people migrated eastward into 
the plains, whereas Tibetans settled westward in the plateau 
region (Shi et al. 2005). Negative selection of the ALDH2 
Glu504Lys allele under the low oxygen environment may 
have occurred in this population entering Tibet, resulting in 
its reduced frequency. In contrast, the ALDH2 Glu504Lys 
allele maintained a higher frequency in the Han population 
living in the plains, especially in the densely vegetated and 
humid southeastern coastal zone, because its disadvantage 
was not revealed due to sufficient oxygen in the environment.
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In addition, a higher rate of EGLN1 gene mutation has 
been demonstrated in Tibetans, reducing EGLN1 activity 
and facilitating adaptation to hypoxic conditions (Simon-
son et al. 2010). It was shown that ALDH2 activity in iso-
lated hepatocytes of EGLN1-deficient mice was increased 
by 25% compared to wildtype and that levels of ethanol 
metabolism and ROS (reactive oxygen species) clearance 
were increased (Laitakari et al. 2019). It has been suggested 
that the hypoxic environment may also indirectly affect the 
activity of ALDH2 through a selective effect on the EGLN1 
gene. The population in the plains is lack of EGLN1 gene 
mutation, and if they carry the ALDH2 Glu504Lys allele, 
it will be more difficult for them to adapt to the hypoxic 
environment in the Tibetan plateau. However, studies to date 
have not resolved this issue, and the relationship remains to 
be proven by further evidence.

In conclusion, it is difficult to obtain a clear explana-
tion for the evolutionary mechanism of the ALDH2 gene 
based on the findings thus far, and multiple factors may have 
played a role in the selection of the ALDH2 Glu504Lys 
allele. Ohta proposed the near-neutrality theory of evolution, 
in which mutation, genetic drift, and selection act simultane-
ously in evolution (Ohta 2002), which may be able to explain 
the evolution of ALDH2. A random mutation produced the 
ALDH2 Glu504Lys allele, genetic drift altered the gene 
frequency of this gene in the initial small population, and 
natural selection caused its differental distribution in differ-
ent environments.

Dispersal of the ALDH2 Glu504Lys Allele

Since the Neolithic period, populations around the world 
have been undergoing continuous migration and gene 
exchange (Yang and Fu 2018), and the spread of the 
ALDH2 Glu504Lys allele may also be associated with the 
migration of East Asian populations. Studies have shown 
that evolution in East Asia has been continuous since 
Homo erectus, and no large-scale replacement of native 
populations by foreign populations has occurred during 
this time. Although a small amount of integration of for-
eign populations with native subject populations occurred, 
this exchange of genes is minor compared to the intergen-
erational transmission of native populations (Yang and Fu 
2018). This would explain why the spread of the ALDH2 
Glu504Lys allele was confined to East Asia, without con-
tributing to the human gene pool outside Asia. Two-way 
interaction and integration of northern and southern pop-
ulations in East Asia began in the early Neolithic, and 
three southward migrations occurred, allowing the spread 
of East Asian populations to Southeast Asia and the South-
west Pacific islands (Zhang and Fu 2020). The ALDH2 
Glu504Lys allele present in Thai and Cambodian popula-
tions (Goedde et al. 1992; Oota et al. 2004) may be derived 

from these migrations; the ALDH2 Glu504Lys allele also 
has a high frequency in South Korea and Japan (Goedde 
et al. 1992; Luo et al. 2009). Y-chromosome polymor-
phism suggests that the Japanese population originated 
from at least two migrations from mainland Asia (Hammer 
et al. 2006), and the Korean population may have origi-
nated from Northern Asian settlement and range expansion 
mostly from southern-to-northern China (Jin et al. 2003). 
In conclusion, Neolithic and subsequent East Asian popu-
lation migrations played an important role in the spread of 
ALDH2 Glu504Lys alleles. Although the exact correlation 
between the migrations of East Asian populations and the 
dispersal of ALDH2 Glu504Lys alleles have not been con-
firmed, the distribution of the ALDH2 Glu504Lys allele 
after this event is quite similar to that of the present day.

Perspective

Most diseases are caused by a complex combination of 
genetic and environmental factors, and the causative genetic 
factors are largely associated with the significant influence of 
environmental adaptations in human evolution. The ALDH2 
gene, an important genetic factor, is not only associated with 
the risk of digestive tumors associated with alcohol con-
sumption (Suo et al. 2019; Hidaka et al. 2015; Sakamoto 
et al. 2006) but also contributes to the prevention of alcohol 
abuse (Shen et al. 1863), ischemia (Liu et al. 2015; Sun 
et al. 2014), metabolic disorders (Wang et al. 2016), and 
other adverse factors causing cardiac dysfunction. Although 
the evolution of the ALDH2 gene has not been elucidated, 
environmental factors, one of the most important drivers of 
evolution, undoubtedly played an important role in this pro-
cess. Therefore, studying the interaction of the ALDH2 gene 
with specific environments and contexts can help to achieve 
precision medicine based on genetic and environmental fac-
tors for specific populations. For patients with cardiovascu-
lar diseases, we should examine their ALDH2 genotype and 
living environment, whether they have consumed alcohol 
for a long time or live in high-elevation hypoxic conditions 
to achieve a more personalized and precise treatment plan. 
For individuals with ALDH2 mutations, several therapies 
have been shown to increase the activity of the enzyme (Li 
et al. 2020; Sun et al. 2017). Therefore, in the future treat-
ment of cardiovascular and other diseases, we may expect 
to implement ALDH2-based precision medical strategies to 
improve the health status of people in East Asia and even 
the global populations.
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