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Abstract
Photoperiod regulation of gonadal cycles is well studied and documented in both birds and mammals. Change in photo-
period is considered as the most effective and important cue to time the initiation of the annual physiological cycles in birds. 
Approaching of long days (as observed in summer months), signal long-day breeding birds to initiation reproduction and 
other related functions. Birds and other non-mammalian vertebrates use the extraocular photoreceptors which may be present 
in the mediobasal hypothalamus (MBH) or associated regions to measure the photoperiodic time and so are different from 
mammals where only the eyes are lone photoreceptive organs. The downstream signaling involves thyroid responsive genes 
playing a crucial role in mediating photoperiodic signals in both birds and mammals. Role of eyes in the avian seasonal cycle 
has been a questionable issue with evidences both favoring and negating any role. We propose that morphological as well 
as physiological data argue that retinal photoreceptors can participate in gonadal cycle, at least in the quail and duck. The 
present review details the studies of photoneuroendocrine control of gonadal axis in birds and review evidences to decipher 
the role eyes in photoperiodic mediated physiologies in birds.
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1  Introduction

In birds, the annual cycle comprises all the physiological, 
behavioral, and morphological adjustments that characterize 
its life cycle in a year [23]. Various life-history stages (LHS) 
that occur each year include breeding, nestling/ fledgling, 
molt, migration (in a migratory species), and non-breeding 
(refractoriness). Investigations have essentially demonstrated 
that change in photoperiod (seasonally in nature) and other 
supplementary factors induce the circulating levels of gon-
adotropins and sex hormones [72], ultimately resulting 
in the realization of the seasonal gonadal cycle. Thus, for 
many species of birds that inhabit regions with significant 
changes in daylength across the year, the photoperiod acts 
as a Zeitgeber (time giver; referring to the environmen-
tal variables capable of acting as cues to time biological 
clocks), persuading the development of the reproductive 
system to a near-functional state somewhat in advance of 
the mean optimal time for production of young [35, 36]. 
Different life-history stages have evolved in response to 
environmental changes. These LHSs although are the direct 
result of the extrinsic environmental condition, but their 
regulation involves intrinsic physiological mechanisms. In 
context, changing daylength modulates a range of intrinsic 
factors ranging from genes to hormones producing a vis-
ible phenotypic result. Extensive research now has clari-
fied how the long days influence the hypothalamo-gonadal 
axis, leading to gonadal development [37, 38]. Importantly, 
non-visual photopigments with extraocular anatomy have 
been shown to mediate the induction and regulation of the 
seasonal gonadal cycle of lower vertebrates like cyclos-
tomes, fishes, and birds along with reptiles [126]. Search 
for the extraretinal photoreceptors became evident when 
even enucleated, and pinealactomized European minnows 
showed normal color changes [43]. Evidence accumulated 
from many other species like eels [125] and many species 
of birds established beyond doubt the role of extraretinal 
photoreception in the activation of the reproductive axis. 
Extraretinal sites of photoreception include iris, skin, tissues 
like heart and kidney, and of course the brain [86]. It has also 
been well established that in birds (and some lower verte-
brates), eyes are not involved in photoperiodic responses in 
terms of gonadal recrudescence [122]. As it was recently 
demonstrated that bird’s retina also responds to changes in 
photoperiod [66], we conducted an in-depth search of pub-
lished research revealing some interesting findings as to how 
eyes have some role to play in the photoperiodic regulation 
of seasonal cycles in birds. In this review, the intent is to 

assess the literature on photoperiodic mechanisms with a 
bias toward studies that show the involvement of eyes.

2 � The avian photoneuroendocrine system

An endogenous photoperiodic clock allows a bird to rec-
ognize the time when to start (photoinduction) and stop 
(photorefractoriness) its internal mechanisms, to synchro-
nize physiological and/or behavioral events with the most 
suitable time of the year. Although differs between animal 
groups, the basic plan of photoperiodic neuroendocrine con-
trol of gonadal cycle involves (i) photoreception, (ii) integra-
tion or processing of light information, and (iii) reproductive 
output in the form of gonadal development.

2.1 � The opsins

Structurally, almost all the opsins consist of a single poly-
peptide chain of 340–500 amino acids forming seven alpha-
helical transmembrane regions. The transmembrane regions 
are connected by cytoplasmic and extracellular loops and 
domains. Moreover, the seven helices form bundle inside the 
membrane, thus creating a cavity on the extracellular side 
where ultimately, the retinal chromophore binds [85]. The 
vitamin A chromophore is usually 11 cis retinaldehyde (A1) 
which, when absorbs a photon of light, converts to all trans-
stage by photoisomerization. This conformational change 
of the chromophore induces interaction with transducin (G 
protein), triggering the photoinduction cascade and change 
in receptor membrane potential [87]. All the photopigments 
have a characteristic absorption spectrum with a specific 
maximal sensitivity (lambda max). Vertebrate classes have 
been shown to have about 15 gene families of opsins to date 
[86].

In context to the involvement of opsins in neuroendocrine 
control of gonadal cycle in birds, three opsin classes have 
been the topic of extensive discussion owing to their ana-
tomical localization, function, and action spectrum in avian 
brain, viz., rhodopsin, neuropsin, and VA opsin. Along with 
this, melanopsin has also been extensively studied, but its 
role in the circadian organization has been realized more 
than in photoendocrine pathway of reproduction. A few 
recent papers on drake also suggest a similar role of mel-
anopsin on the regulation of reproductive behavior [48, 91]. 
Figure 1 shows localizations of few important opsins found 
to be expressed (either protein or mRNA) in avian brain (for 
details, see [88]).
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2.2 � Rhodopsin

Rhodopsins are photochemically reactive molecules with 
membrane embedded proteins, usually with seven alpha 
transmembrane helices as described above. Generally, these 
are classified into Type 1 (found in microbes like bacteria, 
archaea, fungi, and algae) and Type 2, which are the visual 
pigments in vertebrates and invertebrates. The photorecep-
tors in the quail brain were also found to be fitted to an 
action spectrum of rhodopsin with the maximum absorption 
at 492 nm [41]. To show the anatomical location of brain 
opsins, rhodopsin monoclonal antibody RET-P1 identified 
two cell populations of rhodopsin positive neurons: In lat-
eral septum (SL) and in the infundibular nucleus (IN) and 
in median eminence in ring doves [104, 127]. It was also 
established in quail, mallard duck, and dark-eyed Juncos [96] 
and in house sparrows [129]. Seasonal and daily changes 
in rhodopsin expression have also been demonstrated using 
the RET-P1 antibody [48, 140]. The expression of rhodop-
sin mRNA has also been found to increase with increased 
duration of light and vary in different physiological states 
of migratory buntings with peak expression in the photo-
stimulated state [67]. Rhodopsin has also been implicated 
as a brain photoreceptor in birds, fishes, and other lower 
vertebrates [68]. Along with the photoperiod-dependent 
expression, it has also been shown that rhodopsin expres-
sion has a circadian pattern, and light pulse in the night can 
elevate rhodopsin expression [61]. Thus, keeping in mind 
that light at the photoinducible phase, which usually falls 
in the early evening of many bird species induces gonadal 
development, rhodopsin may be proposed as the brain photo-
receptor implicated in photoendocrine regulation of gonadal 

development. Further, it has convincingly shown that rho-
dopsin (Rh1) in Drosophila along with light sensing also 
helps in temperature gradient discrimination [98]. Thus, it 
can also be postulated that rhodopsin may act to mediate 
temperature regulated control of neuroendocrine system in 
many vertebrates [30].

2.3 � Neuropsin (OPN5)

Bioinformatic and molecular search for new opsins resulted 
in the isolation of a new opsin from mice and human tissues 
[116]. The gene shares only 20%-30% similarity with other 
opsin families and so has been assigned to a new family. It 
shows all the functionally important characteristics of other 
opsins but along with a lysine retinaldehyde chromophore-
binding site in the seventh transmembrane domain [116]. 
Later, it was shown by analyzing purified OPN5 protein that 
it does not act as retinal photoisomerase but functions as 
UV-sensitive GPCR, which couples with Gi-type G protein 
[135]. Anatomically, it has been demonstrated that OPN5 is 
present in the human eye, brain, spinal cord, and testis [116]. 
OPN5 positive cells have been found in the chicken retina, 
pineal gland, and paraventricular organ (PVO). Further, it is 
described that three types of OPN5-like genes occur, out of 
which two are exclusively non-mammalian [117].

Detailed localization of OPN5 in quail brain revealed its 
presence in CSF contacting neurons in PVO region and in 
the external zone of ME, which contacts the pars tuberalis 
[77]. Functionally, it was also demonstrated alongside that 
OPN5 with the lambda max of 415 nm can induce voltage 
change in Xenopus oocyte when illuminated with light and 
thus inferred that OPN5 which is present in CSF contacting 
neurons can work as light sensors and produce membrane 
currents in the presence of light [77]. Another OPN5-like 
gene, OPN5L2 (OPN5-like 2) has been shown to be present 
laterally in the third ventricle and also in the adrenal gland, 
thus exhibiting the dual role of photosensing and chemo-
sensing [80]. Localization of this OPN5L2 in vasotocin or 
GnRH-IR cells in the anterior hypothalamus reinforces its 
probable role as a deep brain photoreceptor. However, a 
direct test for the functional significance of OPN5 in sea-
sonal neuroendocrine events revealed an inhibitory role of 
this opsin on Tshβ, which has a direct role in the photoperi-
odic gonadal induction. Injections of OPN RNAi into the 
ventricular system of border canaries caused an upregulation 
of Tshβ mRNA levels. The mRNA levels of neuropsin also 
did not change in response to light in the photoinducible 
phase [110]. Similar observations were made in photoperi-
odic red headed buntings where neuropsin levels did not 
vary in different lengths of photoperiod, and a significantly 
negative correlation was found between Tshβ and Neurop-
sin expression. Further, neuropsin was found to be highest 
in the photosensitive phase rather than the photo-induced 

Fig. 1   Schematic diagram to demonstrate the distribution of differ-
ent Opsins (either protein or mRNA) in an avian brain displayed on 
generalized sagittal section based on published Literature. O1: OPN1 
(rhodopsin), O3: OPN3 (encephalopsin), O4: OPN4 (melanopsin), 
O5: OPN5 (neuropsin); CB, cerebellum; LSO, lateral septal organ; 
ME, median eminence; MGNT, medial geniculate nuclei thalamus; 
PMM, premammillary nucleus; POA, preoptic area; PVN, periven-
tricular nucleus
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phase of the buntings [66]. Thus, the anatomical localization 
and functional considerations demonstrate a definite role of 
OPN5 in the photoperiodic regulated neuroendocrine sys-
tem in birds, but the course of action on the mechanism is 
debatable.

2.4 � VAopsin

Vertebrate Ancient opsin (VAopsin) was first isolated from 
cDNA pool of salmon ocular tissue with the derived amino 
acid sequencing showing about 37%—42% similarity with 
other opsin families and thus placed as a different opsin 
family [108] with amino acid identity revealing its presence 
before tetraploidy, thus its name. Structurally, the protein has 
many similar features as of other opsins with seven trans-
membrane domains and two conserved residues that are 
responsible for chromophore stabilization along with other 
features. However, on the third cytoplasmic domain, four 
nonconserved substitutions with two amino acid deletions 
make it unique as photoreception. Additionally, it does not 
have N-linked glycosylation sites, which are implicated in 
signal transduction. Thus, VAopsin is a small-sized opsin 
with light-dependent phosphorylation properties [108].

In birds, VAopsin is being reported in chickens with two 
isoforms: 972 bp VA and 1080 VAL, which encodes for a 
323 and 359 amino acid long proteins, respectively. Both 
proteins have been shown to be capable of eliciting a retinal-
dependent light response with current productions in patch 
clamp recordings [49]. VAopsin mRNA have been amplified 
from chicken hypothalamic cDNA and antibodies against it 
have shown positive signal in anterior hypothalamus adja-
cent to the third ventricle, supraoptic nucleus, PVN, and 
BnSTm. VAopsin lir-fibers were importantly noticed in ME 
adjacent to the PT [49]. In a different experiment, it was 
shown that both isoforms of VAopsin have an approximate 
lambda max of 490 nm, which corresponds to the previ-
ously accepted avian photoperiodic response peak at 492 nm 
[28]. In a recent study which attempted to functionally 
link both OPN5 and VAopsin with the seasonal control of 
reproductive axis in birds, Perez et al. [89] utilized intrac-
erebroventricular infusion of adeno-associated viral vectors 
with shRNAi of OPN5 and VAopsin in seasonally breeding 
Japanese quails. Interestingly, it was found that long days 
induced significantly high levels of TSHβ, hypothalamic 
gonadotrophin-releasing hormone-I (GnRH-I) mRNA, and 
paired testicular mass in VAopsin shRNAi-treated birds. In 
OPN5 shRNAi-treated quails, TSHβ mRNA also increased 
but were not statistically different from the controls. Thus, 
contrary to the general understanding, the suppression of 
deep brain photoreceptors enhanced the reproductive axis' 
response to photostimulation rather than inhibiting it.

Finally, to the best of our knowledge, no further reports 
of VAopsin have been provided for any other song bird 

species. Repeated attempts of cloning VAopsin from reti-
nal and hypothalamic cDNA from photoperiodic redheaded 
buntings have also failed [67]. Thus, although convincing 
evidence shows the presence of VAopsin protein in chicken 
hypothalamus, its presence in other birds and its functional 
significance is still not explained.

2.5 � The iodothyronine deiodinases

Decades of research have shown the involvement of thyroid 
hormone in governing seasonal reproduction but with differ-
ent and often contradictory results. Thyroidectomy has been 
shown to either effect or not effect on gonadal development. 
In general, it has been convincingly shown that in birds, 
thyroxin treatment mimics the physiological effects of long 
days [132], and chronic thyroidectomy makes starlings [6] 
and sparrows [29] irresponsive to increase or decrease of 
photoperiod. Again, in both the species, the prevention of 
the onset of photorefractoriness by thyroidectomy resulted in 
high hypothalamic GnRH-I content as that of photosensitive 
birds, thus implying that the thyroid hormones can directly 
act on the central nervous system [29, 94]. It has also been 
demonstrated that thyroid hormone ICV (intracerebroven-
tricular) injections can restore the effects of thyroidectomy 
in tree sparrows [133]. Search for molecular components in 
the MBH yielded two deiodinase enzymes, type 2 (Dio2) 
and type3 (Dio3), which formed the basis of thyroid hor-
mones mediated effects in avian neuroendocrinology. Dio2 
was found to be upregulated by a long photoperiod in the 
basal tuberal hypothalamus (BTH) [139]. Further analysis 
found a high concentration of active 3,5,3’-triiodothyro-
nine (T3) and prohormone thyroxine (T4) in MBH tissue in 
response to long days from short days, although no change 
was detected in plasma concentration of these hormones 
[139]. Expression of thyroid hormone receptor genes of 
Thra, Thrb, Rxra, and Rxrg was also found to be localized in 
BTH, thus supporting the action site and role of thyroid hor-
mones in avian hypothalamus. In another study, it was dem-
onstrated that while Dio3 expression increases in response 
to long days, the reciprocal expression of Dio3 occurs in the 
mediobasal hypothalamus. This switching of expression pre-
ceded the rise of LH (luteinizing hormone) in plasma [137]. 
Structurally Dio2 is an outer ring selenodeiodinase that pri-
marily catalyze the changes of T4 to T3 and rT3 to 3, 3’T2 
[12]. Human Dio2 protein has a hydrophobic NH2 terminal, 
and this catalytic center is believed to be 100% conserved 
between rat, frog, and chicken [12]. It is responsible for pro-
ducing more than 75% of active nuclear T3 in rat cerebral 
cortex [25]. Along with gonads, pituitary, brown adipose 
tissue muscles, coronary arteries, Dio2 expression has been 
found to be robust in tanycytes lining the third ventricle [46]. 
On the other hand, Dio3, which was discovered earlier to 
Dio2, has the major share of inner ring deiodination activity 
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which causes inactivation of T3 and T4. It catalyzes the con-
version of T4 to rT3 and T3 to 3, 3’ T2, both of which are 
inactive forms. Thus Dio3 is responsible for preventing the 
thyroid hormone from gaining access to specific tissues at 
appropriate times [12].

The relative activity of these two enzymes, Dio2 and 
Dio3 (which have interestingly the same Km value for their 
substrate), finally regulates the intracellular concentrations 
of T3. It has been shown that the expression of both these 
enzymes is regulated in tissue specific temporal-spatial man-
ner, thus producing varying levels of T3 at individual tissues 
[4]. The role of these enzymes has also been shown in both 
complete and partial photorefractoriness [130].

2.6 � The upstream activators: Tshβ and Eya3

Increase in T3 level in hypothalamus just before rise in LH 
level in the first day of photostimulation in Japanese quail 
and the expression of thyroid deiodinase enzymes hinted 
a causal link between thyroid hormone, photoperiod, and 
gonadal regulation. Thus, search for the mechanism link 
between photoperiod and the deiodinase enzymes using 
the first day release model and genome wide microarray 
analysis yielded more upstream molecules and operation 
mechanisms in the quail hypothalamus. Expression analy-
sis of mRNA collected at every 2 h of a single exposure of 
light at the photoinducible phase showed two major waves of 
gene expression trends one with Dio2, Dio3, ICER (induc-
ible cAMP early repressor), etc. at 18 h and importantly 
two genes preceding this wave consisting of the β subunit 
of thyrotropin-stimulating hormone (Tshβ) and Drosophila 
homolog of Eyes absent type 3 (Eya3) at 14 h [78].

Localization of the TSH receptor in MBH further rein-
forced the potential role of thyroid hormones. In quail, it was 
found that the Tshα subunit (CGA) mRNA, which together 
with Tshβ forms the functional TSH, was expressed rhyth-
mically in the pars tuberalis. The causal relationship was 
established by the ICV injections of bovine TSH, which 
induced expression of Dio2 in a dose-dependent manner in 
the ventrolateral ependymal layer [78]. In birds, induction 
of Tshβ mRNA was subsequently shown in turkey [56], bor-
der canaries [110], and in migratory red headed buntings 
[65]. However, TSHβ peptide was found to be localized in 
multiple brain regions [65] including septal region (SL) in 
response to long days, supseptal region (SSO), ependymal 
layer, infundibular nucleus (IN), inferior hypothalamus 
(IH), PT, and in pars distalis (PD) which supports previous 
findings [52]. Since TSHβ expression was found in PD in 
both short-day and long-day exposed birds but only in PT in 
response to long days, it was suggested that the retrograde 
transport of TSHβ occurs specifically from PT to MBH 
and not PD [65]. The TSHβ-based induction of neuroen-
docrine system as further verified in melatonin proficient 

mice demonstrating that TSHβ gets induced in mouse PT 
with high expression attained in 5 long days owing to the 
circadian entrainment of PT circadian clock which brings 
the photoinducible phase in sync with the external photo-
conditions [69].

Search for the upstream activators of TSHβ by late-night 
light exposure of mice revealed Eya3 as an upstream gene 
candidate who can induce Tshβ expression with its partner 
Six1 through binding to Tshβ promoter [69]. Eya3 (Eyes 
absent 3) is a member of EYA gene family first identified 
in Drosophila as a transcription factor in eye development 
and have two distinct domains: C terminal domain which 
interacts with other proteins and a tyrosine rich N terminal 
domain which contributes to its transactivational activity 
uniquely, Eya3 has a duel function of transcription factor 
and has an intrinsic phosphatase activity [93]. Although the 
role of Eya3 has been extensively studied in tissue devel-
opment, recent advances also showed its involvement in 
photoperiodic effects. Eya3 was identified as an upstream 
expressing gene in response to long photoperiod along with 
Tshβ in quail hypothalamus, but the mRNA expression site 
was found to be not correlated to the expression site of 
downstream genes like Dio2 and thus was discussed as not 
important in the transduction of photoperiodic information 
in birds [78]. Eya3 mRNA expression sites include muscles, 
retina, and in pars tuberalis in MBH of both birds and mam-
mals [26, 78]. Recently it was also shown that Eya3 peptide 
expresses and is long day induced in ME, PT, SL, SM, PVN, 
IN, and IH but not in PD of pituitary [65]. With three E 
box elements in promotor (making it sensitive to Clock and 
Bmal1) and a single D box element (which makes it sensi-
tive to Tef/Six elements), it provides support to the external 
coincidence model [26]. Accordingly, it may be assumed 
that Eya3 helps in the transduction of photoperiodic infor-
mation. In birds, as it is believed that melatonin does not 
play any role in photoperiodic-related events, Eya3 has been 
suggested to be a part of the transduction of photoperiodic 
information pathway rather than directly involved in induc-
tion [65]. Expression of Eya3 peptide in corresponding areas 
where rhodopsin is expressed in the hypothalamus [65, 104, 
129] along with the evidence that Eya3 mRNA expression 
correlates with the rhodopsin mRNA expression in response 
to increasing photoperiods [67] suggests that Eya3 is 
involved in phototransduction in avian neuroendocrinology.

2.7 � GnRH and GnIH: the downstream regulators 
of gonadal cycle

GnRH or Gonadotropin stimulating hormone was first iso-
lated from the pig [70] and sheep [16]. Since then, it has 
been identified in most of the vertebrates from agnatha to 
humans [99]. GnRH is a decapeptide which has been shown 
to stimulate gonadotropin secretion. Three types of GnRH, 
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along with two types of GnRH receptors, have been reported 
to date in the avian brain [112]. GnRH-I [57] and GnRH-II 
[76] were first isolated from domestic chicken, while GnRH-
III was isolated from lamprey and later found in song birds 
[7]. Anatomical localization of GnRH-I includes preoptic 
area with the fibers extending up to median eminence along 
the third ventricle and in the lateral septal area [75]. GnRH-
II is distributed in the midbrain [75] and GnRH-III in the 
central nervous system, including the hippocampus and song 
control regions in song birds [7]. It has been suggested that 
all three types of peptide have the ability to induce secre-
tion of LH but in different capacities [92]. However, GnRH-
I plays a major role in the release of LH [97]. Of more 
importance is the seasonal plasticity inactivity of GnRH-
I-associated neurons in septo-preoptic infundibular regions 
in the avian brain, which has overwhelmingly accepted as 
the central control of seasonal breeding physiologies [2]. 
High content of GnRH-I has been detected in stimulated 
and breeding conditions with the inhibition of its secretion 
being associated with the termination of breeding activity 
and the onset of photorefractoriness. Birds regain their pho-
tosensitive physiologies with the increase in GnRH-I con-
tent in POA (preoptic area) [31]. Further, in starlings, it has 
been demonstrated that GnRH immunoreactivity and peri-
karya seem the same in photosensitive and photostimulated 
birds, but in ME, the staining was much higher in stimulated 
birds suggesting the difference between GnRH production 
or storage and its transport or release [42]. Activation of 
GnRH neurons occurs as soon, as the first long day as dem-
onstrated in white-crowned sparrows [95], and red headed 
buntings [65]. In addition, in chicken, GnRH-II receptor, 
cGnRH-IIR increases in photostimulated birds, indicating 
an important role of GnRH-II in the neuroendocrine control 
of avian reproduction [101]. Photoperiod acts as the main 
regulator of the GnRH activity, although food, social con-
ditions, temperature, and the presence of conspecific has 
also been shown to affect GnRH production and release. 
Overall, the environmental factors activate the GnRH, 
which in turn helps in the release of gonadotropin in the 
portal system. Further, gonadotropin increases the produc-
tion of sex steroids which again produces negative feedback 
on GnRH system [58]. Testosterone, estrogens, along with 
hypothalamic vasointestinal peptide (VIP) has been shown 
to inhibit GnRH expression [34]. Another dodecapeptide, 
the Gonadotropin-inhibitory peptide (GnIH) has been shown 
to influence the GnRH expression in a negative way, with 
its expression being inversely related to GnRH expression in 
quail [118]. The presence of GnIH has been demonstrated in 
many avian species in the last decade, regulating the release 
and synthesis of GnRH through GnIH receptors [119]. 
Structurally, GnIH is a hypothalamic neuropeptide with a 
C terminal RFamide motif with a dodecapeptide structure. 
In birds, GnIH has been localized in the paraventricular 

region (PVN) in the hypothalamus with projection up to 
the ME (median eminence) [118]. Functionally, it has been 
shown that intravenous injections of GnIH can reduce the 
levels of blood LH in stimulated white crown sparrows and 
also stop the GnRH induced LH in non-stimulated birds 
[84]. Further, synthesis of LHβ and FSHβ is inhibited by 
GnIH both in vitro and in vivo [22]. GnIH receptor (GnIH-
R) has been found to be co-localized with LHβ and FSHβ 
mRNA containing cells, thus showing a direct link between 
these gonadotrops and GnIH [64]. But of interest, more 
is the conserved mechanism of GnIH:GnRH interactions 
in birds. GnRH neurons have been found to be in contact 
with GnIH neurons in most of the bird species studied [8]. 
Along with effect on GnRH and gonadotrops, GnIH influ-
ences many other behaviors like feeding and singing in song 
birds [121]. Photoperiod and melatonin have been shown to 
directly control the release and synthesis of GnIH, which 
being negatively correlated with LH levels [21]. Interest-
ingly, GnIH also exhibits interaction with melatonin, the 
master hormone. Low expression of GnIH is associated with 
pinealectomy along with enucleation (thus removing major 
sources of melatonin). Further, high GnIH under short days 
(SD) also is associated with high melatonin in SD [120]. 
The presence of Melatonin receptor Mel1c on GnIH neurons 
further demonstrated a direct effect of melatonin on GnIH. 
Overall, GnRH and GnIH system underlies the photoperiod 
responsive neuroendocrine mechanism, which ultimately 
controls the avian reproduction (Fig. 2).

3 � The mechanism of photoneuroendocrine 
control of the gonadal cycle

Recent research both in mammals and birds hints that the 
photoneuroendocrine control of gonadal induction is much 
conserved in both birds and mammals except for the percep-
tion/input mechanisms of light information. Photoperiod in 
mammals is perceived by the retina, which then regulates the 
duration and peak of melatonin, finally laying the foundation 
of photoendocrine control of reproduction. Birds perceive 
the photoperiodic information directly in the brain in all 
probability in MBH, where the presence of various pho-
toreceptor molecules has been shown. Evidence suggests 
that rhodopsin may affect the deep brain photoreceptor, 
which plays a dominant role in birds for perceiving light 
information [66] with neuropsin (OPN5) exerting an inhibi-
tory effect on the induction process [67, 110]. In mammals, 
melatonin acts to control the expression of Eya3 by acting 
on its promoter, which has a Tef-binding element. Eya3 
acts as a coactivator for Six1, which together binds to the 
SO site on Tshβ promoter. Tef elements also bind to the D 
box of Tshβ promoter, and together, these activate the Tshβ 
expression [26]. In birds, however, a similar mechanistic 
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approach of proving Eya3 as a Tshβ activator has still not 
been undertaken even though Eya3 expression is closely 
linked with Tshβ expression [78]. However, expression of 
Eya3 and Tshβ in response to different increasing durations 
of a single photoperiod shows a significant correlation with 
each other [66]. Also, it has been suggested that Eya3 can 
induce Tshβ in PT, since Eya3 protein expression increases 
significantly in ME and Tshβ peptide expression in PT in 
response to long days but still colocalization of both pep-
tides was not recorded [65]. The induction of Tshβ (either by 
Eya3 or other mechanisms) results in the induction of Dio2 
mRNA in the hypothalamus (Birds: [78],mammals: [137]. 
Dio2, in turn, increases the local concentration of active T3. 
Since, the induction of Dio2 occurs in the ependymal cells 
of basal tuberal hypothalamus (ME and IN), it has been sug-
gested that the local increase in active T3 in the ME (Fig. 2) 
may be responsible for the morphological changes in GnRH 
nerve terminals ultimately resulting in the release of GnRH 
from ME to pituitary [134]. This GnRH binds to specific and 
high affinity GnRH receptors in the pituitary gonadotrophs 
triggering a series of calcium-dependent signaling pathways 
from phospholipase C to protein kinase C ultimately result-
ing in exocytosis of LH and follicle-stimulating hormone 
(FSH). The secretion pattern of LH and FSH differs in cer-
tain conditions, which may suggest a differential control by 
GnRH on these glycoprotein gonadotropins [1].

In contrast to the indispensable role of thyroid hormones 
in the neuroendocrine regulation of gonadal cycle, some spe-
cies of birds like quails show the gonadal development even 
after the removal of the thyroid gland. Subtractive hybridiza-
tion techniques revealed another thyroid independent path-
way of GnRH induction mediated by TGFα. TGFα was also 
found to have a photoperiod-dependent expression with high 

expression in long days [115]. Comparison on German and 
Swedish populations of great tits revealed that although LH 
and FSH secretion occurs in response to long days, recipro-
cal switching of Dio2-Dio3 occurs only in one population 
showing the difference in temporal pattern with other repro-
ductively associated gene expressions. This supported that 
GnRH control may occur independently of thyroid respon-
sive genes in different species of birds [90]. Another study 
in European starlings demonstrated no correlation of Dio2 
expression with seasonal gonadal volume, which was oth-
erwise highly correlated to GnRH expression [9]. Thus, the 
neuroendocrine control of seasonal gonadal cycle may be 
more complex than previously anticipated and may involve 
other important pathways which contributes to the complex-
ity and redundancy of the system in birds. Understanding of 
this photoperiodic mechanism to date in mammals and in 
birds has been summarized in Fig. 3.

4 � Non‑reproductive outputs 
of photoperiodism in birds

Effects of long and short photoperiodic cycles have been 
investigated in a lot of other phenomena like molt, migra-
tion, fat deposition, etc. Long days have a relatively direct 
effect on prenuptial molt, vernal migration, vernal fat depo-
sition, vernal hyperphagia, and gonadal growth and indi-
rectly on development of photorefractoriness, postnuptial 
molt, autumnal fat deposition, and migration [39]. Whereas, 
the short day terminates refractoriness and helps in the resto-
ration of the photoperiodic response mechanism. Behavioral 
studies also demonstrated that long day induces nest build-
ing activities in doves, and pinealectomy abolishes it [71]. 

Fig. 2   Schematic diagram 
showing the effect of photo-
periods (short day; SD and long 
day; LD) on induction of Dio2/
Dio3 which in turn regulates 
the levels of active thyroid (T3) 
or inactive thyroid (rT3). This 
in turn regulates the release of 
GnRH by glial endfeets to the 
hypophysial portal system. The 
GnRH then induces the release 
of LH, FSH by the pituitary 
ultimately resulting in gonadal 
regulation
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Parental feeding behavior has also been shown to be prol-
actin induced and gets abolished by preoptic area lesioning 
in ring dove [106]. This may lead to a conclusion that long 
days have stimulatory effects on many such reproduction-
associated activities.

Several studies have reported a significant effect of pho-
toperiod, independent of hormones, on avian seasonal brain 
plasticity and thus hinting at a more direct pathway between 
light/photoperiodic stimulation and NP. A hormone (mainly 
testosterone) independent effect on the growth of song nuclei 
has been reported in many avian species, e.g., dark-eyed jun-
cos [33], European starlings [10], gambel’s white-crowned 
sparrow [107], tree sparrow [11], and blue tits [18]. In addi-
tion to these seasonal changes in hippocampal size (relating 
to spatial behavior and memory) and seed storing behavior 
has also been shown to be influenced by photoperiodism 
[136]. Recent advancements in MRI technology, such as 
diffusion tensor imaging, have expanded our comprehen-
sion of the massive neuroplasticity underlying seasonal song 
learning in avian brains [83]. In addition to confirming many 
of the known seasonal and testosterone-induced changes in 
neuroplasticity within the SCS of the same bird, the discov-
ery and application of in vivo MRI techniques in songbirds 
have yielded a number of novel and intriguing results. Dur-
ing the photosensitive phase, it has been demonstrated that 
starlings endure multimodal neuroplasticity, which includes 

structural and functional changes in sensory systems, such 
as the visual, auditory, and even olfactory systems. This 
evidence of plasticity in photosensitive phase where almost 
all ‘reproductive/seasonal’ hormone levels are very low or 
absent suggests that light/photoperiod may be involved in 
direct induction of neuroplasticity [83]. Of direct interest in 
context to the current review, in seasonally reproducing birds 
like starlings, along with the song, olfactory and auditory 
system plasticity, a significantly high plasticity was seen in 
preoptic area and ventromedial hypothalamic nuclei, which 
lies dorsally very close to optic chiasm [32]. Both of these 
areas also receive retinal inputs. Further, naturally occur-
ring seasonal plasticity has been observed at the level of 
the visual Wulst (homologue of the visual cortex) showing 
significant increase in dendritic thickness and spine density 
in the breeding season, related to active state and increased 
sensitiveness of these neurons in songbirds [109]. Therefore, 
speculations may be made that avian eye/retina may have 
some role to play in mediating seasonal neuroplasticity in 
avian brains.

5 � Avian eyes and its pathways

The visual capabilities of birds are comparable to, and in 
some instances superior to, those of another visually depend-
ent group of vertebrates, the primates. Unique specializa-
tions of avian visual systems (as compared to primates) 
include the existence of double cones, distinct photopigment 
absorption spectra, the presence of oil droplets, centrifugal 
efferents to the retina, and an emphasis on the collothalamic 
(tectofugal) visual pathway. Multiple sources of evidence 
indicate that the avian visual system was primarily driven by 
modifications to the reptilian basic plan in support of flight 
behaviors. The development of the collothalamic pathways 
encouraged the development of the avian telencephalon as 
the site for more complex social and feeding behaviors [103, 
128].

Two major visual pathways connect the retina to the tel-
encephalon in all amniotes: the collothalamic (or tectofu-
gal) and the lemnothalamic (or thalamofu- gal) pathways. 
In birds, the connection patterns of the two pathways are 
comparable to those of mammals, despite the vastly differ-
ent functional functions. The collothalamic pathway in birds 
connects the retina to the optic tectum, the thalamic nucleus 
rotundus (nRt), and the ectostriatum in the dorsal ventral 
ridge [17]. This pathway resembles the primate collotha-
lamic pathway in that both pathways process visual infor-
mation from the optic tectum/superior colliculus, which is 
one of the brain's most phylogenetically ancient structures 
[17, 102]. The avian nRt is compared to the primate pulvi-
nar as the primary thalamic target of the tectal efferents, 
whereas the avian ectostriatum is compared to a portion of 

Fig. 3   Diagrammatic representation of the current status of knowl-
edge on molecular regulation of photoperiod-induced seasonal repro-
ductive physiology of both mammals and birds. The broken lines 
and question marks represent the gap of knowledge. The arrows with 
blunt ends represent negative impact on the phenomenon
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the extrastriate cortices as the telencephalic target of the 
collothalamic pathway.

The avian lemnothalamic pathway extends from the ret-
ina to the dorsal thalamic nuclei (called the principal optic 
nuclei of the thalamus, OPT) to the visual wulst region of the 
telencephalon [17, 102]. The OPT and the visual wulst are, 
respectively, compared to the mammalian LGd and striate 
cortex in that they are the thalamic targets of the direct reti-
nal input and the telencephalic targets of the thalamic nuclei. 
The degree of development of the two pathways is another 
distinction between mammalian and non-mammalian retinal 
projections. The mammalian-particularly primate-lemnotha-
lamic pathway is significantly more developed and differ-
entiated than the collothalamic pathway. The primate LGd, 
for example, is highly segregated based on cytoarchitecture, 
function (magnocellular and parvocellular layers), and con-
nections (ipsi- and contra-lateral retinal input). In contrast, 
in many sauropsids (birds and reptiles), the lemnothalamic 
pathway is relatively underdeveloped and undifferentiated 
compared to the collothalamic pathway, which comprises the 
optic tectum, the most important visual center in nonmam-
mals [17, 102].

On a different note, there are two systems for detecting 
light in animals (mostly known from mammalian studies): 
(i) The classical visual system for image formation (IF) 
(ii) The non-image-forming (NIF) visual circuit. The NIF 
has been recently described in mammals (For details, see 
[44] and it modulates many physiological, behavioral, and 
cognitive responses which are not associated with image 
perception. These responses include timing of circadian 
rhythms, heart rate, body temperature, the sleep–wake cycle, 
performance, cognitive brain responses, etc. [44]. This NIF 
circuit starts from intrinsically photoreceptive retinal gan-
glionic cells (ipRGCs) which contains opsin protein called 
Melanopsin (OPN4, also mentioned above). Melanopsin is 
a non-visual photopigment maximally sensitive to blue light 
(460–480 nm of the spectrum) [62]. The primary targets 
of ipRGCs include VLPO and the ventral subparaventricu-
lar zone (controlling sleep induction and general activity 
levels). In addition, ipRGCs innervate limbic regions like 
lateral habenula and the medial amygdala thus showing the 
direct role of light in the regulation of mood and cognitive 
functions [62]. In birds, although melanopsin expression has 
been shown in many brain regions and in retina, no NIF 
pathway has been elucidated still and hence presents for an 
exciting new field for research.

6 � Role of eyes in photoperiodism

In birds, the anatomical neuronal substrate for gonadotropin 
synthesis and release is directly influenced by the neural 
system, which perceives the changes in the length of the day 

with hypothalamus being the most highlighted one. Follow-
ing the Nomina Anatomica Avium [15], the hypothalamus of 
birds can be divided into three main portions—the preoptic 
region, the medial (tuberal) region, and the caudal (mammil-
lary) region. Owing to extensive species diversity for brain 
morphology and functionally distinct cell types, a compre-
hensive understanding of the avian hypothalamus becomes 
difficult with functional studies and anatomical descriptions, 
often having a variance with each other. In terms of circa-
dian clock regulation of physiology, birds have the capac-
ity to perceive information about the photic environment 
by the retina, pineal gland, as well as by deep encephalic 
photoreceptors [104]. Depending on the species, circadian 
pacemaking at the whole-organism level is organized by 
autonomous and anatomically distinct oscillators localized 
in the retina, the pineal gland, and the hypothalamus. Several 
lines of evidence suggest that these components interact with 
each other to produce stable circadian rhythmicity of the 
animal (for details, see [113]). In Japanese quail, complete 
deafferentation (i.e., isolation from afferent neuronal input) 
of the tuberal hypothalamus (or infundibular nucleus, IN) 
results in blocking testicular growth with a rapidly lower-
ing of LH levels [27]. More specific differentiation in the 
anterior hypothalamus in quail suggests that the preoptic 
region and an area immediately posterior to this region are 
necessary for the testicular photoperiodic response, which 
is consistent with the similar lesion studies in female quail 
(photoperiodic response of egg laying), the male duck [5], 
and pigeons [14]. Taken together, these results suggest the 
following: (1) MBH is not exclusively the site for photo-
periodic response, although it does have the primary role in 
the control of photoperiodic GnRH release. (2) Fibers from 
the anterior hypothalamus, especially the preoptic region 
to the tuberal hypothalamus of the MBH, are important for 
PTM. (3) The "carry-over" effect of one long-day-induced 
LH surge is not totally controlled by the MBH.

6.1 � Retinal projection and the retinohypothalamic 
transmission

Attempts have been made to locate the hypothalamic oscil-
lator in various avian species using tract-tracing techniques, 
taking into account the importance of retinohypothalamic 
transmission of photic information to the suprachiasmatic 
nuclei (SCN) in mammalian hypothalamic pacemaker 
entrainment. However, the retinal input to the SCN in the 
pigeon has not been found [24], but later dense arboriza-
tions of retinal fibers were observed in the SCN of the same 
species [100]. Similar inconsistent finding was found in the 
birds of house sparrow, quail, and starling, where either reti-
nal input was observed [51], or no retinal fibers were identi-
fied in the SCN [20]. A large number of retinal projections 
were consistently found in the ventral portion of the lateral 
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hypothalamic nucleus (LHN) in all species investigated, but 
for this retinal projection, no systematic nomenclature has 
been used [20, 51].

The first study to visualize ganglionic cell projection to 
hypothalamus showed that HRP injection in the preoptic-
anterior hypothalamic formations leads to retrograde trans-
port of the enzyme to some ganglion cells in the retina, 
whereas only rare labeled neurons could be detected in the 
anterior-basal hypothalamus [82]. Autoradiographic studies 
demonstrated that tritiated leucine or proline was incorpo-
rated into retinal cells and trans-feted along their axons to 
the anterior hypothalamus of pigeons and jackdaws. Fur-
ther, as electrolytic lesions in preoptic-anterior hypothalamic 
region blocked the photo-induced testes growth, plasma LH 
increase, and testosterone-level augmentation, it was derived 
that function of such retinal–hypothalamic connections 
might be to participate in the photosexual reflex [73].

Electron and light microscopic studies on the retinohypo-
thalamic pathway in duck after unilateral optic nerve tran-
section showed some very fine degenerating fibers in the 
anterior hypothalamus, proving that a circumscribed region 
of the anterior hypothalamus of the duck (SCN) receives 
direct retinal inputs. These degenerating fibers within the 
anterior hypothalamus displayed degenerating fibers and 
axonal arborizations, along with degenerating presynaptic 
profiles and postsynaptic membranes [13]. The precise pro-
jection of retinal fibers showed that the nucleus with degen-
erating fibers was bordered on its lateral side by the lateral 
part of the supraoptic nucleus, on its medial rostral side by 
the medial part of the supraoptic nucleus, and medial caudal 
side by the preoptic recess and the paraventricular nucleus 
[13]. Similar findings were reported in pigeons [51]. Besides 
the direct connections, visual connectivity can also be traced 
to septal areas and many other areas of the brain indirectly. 
Studies have shown the connection from optic tectum to the 
septal region in pigeon and owl [19, 45] or through anterior 
hypothalamus. It is interesting to note that the connection of 
eye or retina with the preoptic area may be direct [82] or may 
be derived indirectly through the geniculate leaflet (Glv), as 
shown by Dil (dialkylcarbocyanine) tracing studies showing 
links between Glv and preoptic area in quail [3].

7 � Evidence: for and against

As discussed above, based on a large number of studies 
in diverse groups of birds and other lower vertebrates, it 
is now generally accepted that eyes/retina have no role to 
play in the regulation of seasonal reproductive physiol-
ogy of at least birds owing to the presence of deep brain 
photoreceptors [40]. To summarize, gonadal growth could 
still be stimulated by light even after the optic nerves were 
cut in domestic ducks and by shining light directly onto 

various brain regions in enucleated ducks [13]. No differ-
ence could be found in the testicular response of blind and 
normal sparrows (Passer domesticus) subjected to a variety 
of experimental light regimes, but the response was abol-
ished by injecting India ink beneath the skin of the head 
[74]. In quails, radioluminous paint in various areas of the 
brain facilitated gonadal growth but had no effect if painted 
in the eyes [53]. The existence of extraretinal photoreceptor 
was later confirmed in other avian species including house 
sparrow, Passer domestics [74],chicken, Gallus domesticus 
[55]; white-crowned sparrow, Zonotrichia leucophrys and 
golden-crowned sparrow, Zonotrichia atricapilla [47]; Japa-
nese quail, Coturnix coturnix japonica [53] and American 
tree sparrow, Spizella arborea [131], as well as in fish [114], 
amphibians [123], and reptiles [124]. In recent years, these 
photoreceptors have been classified as rhodopsin [104], neu-
ropsin [77], VAopsin [49], or melanopsin [91] as detailed 
above in this review.

In contrast, a few studies examined if the eyes have any 
role to play in the regulation of photoperiodic seasonal phys-
iology. Based on two studies done simultaneously at the Uni-
versity of Tokyo and the University of California (Davis) on 
quails, they reported that mature enucleated quail is resistant 
to lighting conditions that are inhibitory to the gonads and 
enucleated birds did not stop laying eggs even after being 
exposed to short days [54]. It was also found that after attain-
ing sexual maturity, even in alternating short and long days, 
enucleated male quails maintained an active cloacal gland 
regardless of the photoperiod exposure, which indicates a 
functional endocrine testes status [54] (Fig. 4A). A similar 
absence of gonadal regression on exposure to short days 
was confirmed in enucleated quails [79]. Further, complete 
differentiation of the infundibular complex in quails resulted 
in similar resistance to gonadal regression upon short-day 
exposure just like the enucleated birds, supporting the idea 
that retina may indeed be transmitting inhibitory signals to 
hypothalamic areas [79]. Similar inhibition of cloacal gland 
regression (Fig. 4A) was also reported for enucleated quails 
exposed to short photoperiods of incandescent light [105].

While testing the impact of retinal inputs on steroid sen-
sitivity, it was observed that bilateral enucleation renders 
quails less sensitive to the gonadoinhibitory effects of tes-
tosterone propionate in birds under long photoperiod [60], 
suggesting that retinal inputs may alter the steroidal sen-
sitivity of hypothalamus. Comparing the effects of unilat-
eral and bilaterally enucleation on plasma LH levels, it was 
found that although blinding does not stop the rise of plasma 
LH levels or body weight upon photoperiodic stimulation, 
bilaterally enucleated birds had higher LH levels (Fig. 4B) 
indicating the removal of certain inhibitory signals originat-
ing from retina [138] as proposed by other reports described 
above. These effects on LH are confirmed by another study 
on enucleated quails where levels of LH are found to be 
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higher that are exposed to long photoperiods than those of 
the short days (Fig. 4B). Thus, it was proposed that retina 
transmits short day signal, which has an inhibitory effect on 
LH production [59]. Testing the retina’s influence on neu-
ronal responses using spontaneous and flash evoked multiple 
units discharges neuronal recordings in tuberal and dorsal 
infundibular region of quails, which showed that complete 
blinding suppresses the flash evoked multiple unit activity 
(MUA) in the tuberal region though the MUA persisted in 
spontaneous light induction [81]. This implies that hypotha-
lamic firing rates were dependent upon nervous messages 
originating from the retina.

More than a decade later, the role of eyes on photoperi-
odic regulation of gonadal cycle was again tested, showing 
that pinealectomy in combination with enucleation signifi-
cantly decreases the expression of GnIH mRNA and pep-
tide levels in paraventricular nuclei and median eminence 
of quails [120]. This is in accordance with the findings that 
eyes exert an inhibitory role on photostimulation as GnIH 
is also an inhibitory gonadotropin. All these findings hint 

toward the proposition that eyes/retina can differentiate 
between photoperiodic changes and relay some kind of 
yet uncharacterized signal to the brain to modulate the 
photoperiod-induced responses, though these responses 
are independent of the retina and in most probability are 
a functional consequence of deep brain photoreception. 
Indeed, we recently showed that birds’ eyes/retina could 
indeed differentiate between long and short photoperiod 
with significantly high expression of both mRNA and pro-
tein of EYA3 and TSH-beta upon exposure to long pho-
toperiods [66].

8 � Conclusions and perspective

Seasonal variation in the photoperiod is the most appropri-
ate cue for a seasonal bird to plan its reproductive physiol-
ogy of gonadal recrudescence and regression. It has been 
well established that birds and other non-mammalian ver-
tebrates use the extraocular photoreceptors which may be 
present in MBH or associated regions to measure the pho-
toperiodic time. The eyes are not essential for photoper-
iod-induced testicular growth. Long-day lengths continue 
to induce testes development even after total severance 
of the optic nerves or removal of both eyes in a variety 
of bird’s species, but critical analysis of the available lit-
erature to date suggests an interesting role which the eyes 
play in the regulation of the seasonal reproductive cycle 
of avian taxa. It may be highly interesting to clarify the 
molecular mechanism on how the retina sends inhibitory 
signals or regulate the expression of GnIH to ultimately 
influence the gonadal physiology. Multiple peptides are 
known to originate in retina and travel to brain like OTX2 
[111] and PACAP [50]. Indeed, PACAP has also been 
shown to interact with melanopsin and regulate neuronal 
responses related to the circadian clock [63]. Finally, as 
retina expresses primary molecules of photoperiodic cas-
cade like EYA3, TSH-beta along with Dio2 and Dio3, it 
can serve as an important tissue to study the interaction of 
opsins and photoperiodic molecules which still is elusive.
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