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Abstract

Antimicrobial resistance in agriculture is a global concern and carries huge financial consequences. Despite that, practical
solutions for growers that are sustainable, low cost and environmentally friendly have been sparse. This has created oppor-
tunities for the agrochemical industry to develop pesticides with novel modes of action. Recently the use of photodynamic
inactivation (PDI), classically used in cancer treatments, has been explored in agriculture as an alternative to traditional
chemistries, mainly as a promising new approach for the eradication of pesticide resistant strains. However, applications in
the field pose unique challenges and call for new methods of evaluation to adequately address issues specific to PDI appli-
cations in plants and challenges faced in the field. The aim of this review is to summarize in vitro, ex vivo, and in vivo/in
planta experimental strategies and methods used to test and evaluate photodynamic agents as photo-responsive pesticides
for applications in agriculture. The review highlights some of the strategies that have been explored to overcome challenges
in the field.
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1 PDI principle

Photodynamic inactivation, also referred to as antimicro-
bial photodynamic inactivation (aPDI), uses light-respon-
sive molecules (photosensitizers, PS) that when excited
by light react with molecular oxygen to generate reactive
oxygen species (ROS) [1]. ROS can be highly cytotoxic if
produced in sufficient amounts and in close proximity to the
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pathogens as they can cause irreversible damages to both the
outer membranes as well as internal structural and cellular
components (proteins, lipids, DNA, membranes, cytoskel-
eton), culminating in microbial death [2, 3]. Depending on
the type of PS, generation of ROS can follow two different
photochemical mechanisms. Upon absorption of a photon
by the ground-state (inactive) PS, the singlet excited state
IPS" is formed. Intersystem crossing converts a portion of
this state into the triplet state (*PS") which can then interact
with molecular oxygen by either electron transfer (Type I
photosensitisation), or energy transfer (Type II photosen-
sitization) (Fig. 1). In the former, the interaction between
the activated electron and a molecular oxygen leads to
the formation of ROS, such as hydrogen peroxide (H,0,),
superoxide (O, — @) or hydroxyl radical (éHO); in the lat-
ter, singlet oxygen ('0,) is produced [4-6] (Fig. 1). While
both Type I and II photosensitization can occur simultane-
ously upon excitation of a PS, in general the Type II reac-
tion is preferred in aPDI [7, 8]. The high reactivity of 'O,
is partly due to its lifetime (3—50 ms in aqueous media and
several tens of ms (2-1000 ms) in lipid environments such
as membranes), which allows this species to diffuse over
relatively long distances before being deactivated [9, 10]. If

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s43630-023-00466-6&domain=pdf

2676

Photochemical & Photobiological Sciences (2023) 22:2675-2686

Inactive
'PS

Active
PS”

. — . Oxygen
.3 m
Type I Type Il

H,0,,*OH,0—~ @ 'O

Fig.1 Schematic representation of aPDI on a plant leaf; viewed in cross-section. PS molecules entering through stomatal openings. GC guard

cells, PM palisade mesophyll, SM spongy mesophyll

generated in the apoplast, singlet oxygen can diffuse across
the cell membrane [11], where it can last long enough to
interact with its targets. While ROS can be non-specific
in their interactions with pathogens and host membranes,
toxicity towards plant cells has been observed only at high
concentrations whereas microbial inactivation is effective
at micromolar concentrations [12—14]. Several studies have
shown the non-toxic properties of PSs against various plant
species at photochemically active doses [15-17] as well as
no toxicity upon repeated applications in developmentally-
relevant plant stages [18]. Having said that, sensitivities to
a PS can be species-specific and similar concentrations may
have contrasting-impacts. This might be linked to structural
differences in the cuticle/wax layer, or antioxidative capacity
in cells. For instance, cationic porphyrins, were non-damag-
ing to tomato plants whereas they completely eradicated the
model plant Arabidopsis [19, 20].

The wavelength of light required for activation depends
on the absorption characteristics of the PS used, but for agri-
cultural uses PSs that can absorb a substantial portion of

@ Springer

photons in the photosynthetically active radiation of the solar
irradiance. Generally, antimicrobial activity of PSs seems to
be more efficient if natural sunlight is used, likely because of
its higher intensity as well as its use of the full absorbance
spectra of the molecules [21-23]; however, antimicrobial
activity is also effective in greenhouse settings with com-
mercially available LEDs [15, 21-23]. Several types of PSs
have been shown to be effective against plant pathogenic
bacteria and fungi, as summarized in Table 1. Nonetheless,
the efficacy of such PSs is typically assessed in traditional
liquid culture, which differs significantly from killing patho-
gens on the surface or within the body of a plant leaf. In the
following section, three key challenges associated with such
predictions are outlined as well as descriptions of protocols
that aim to address these challenges.
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5 2 Photostability
2
5} —_— —_ —_ — . . . . . . . .
za - ° NN While activation of PSs with high intensity sunlight leads to

Table 1 (continued)

(5

395 nm, 14.8 mW/cm?, 26.6 J/cm?, 30 min

Light condition, exposure time

Anionic sodium magnesium chlorophyllin

Photosensitizer used

Method of application
In vitro and ex vivo

Rhodococcusfascians, Gram Xanthomonas

Species

Springer

with cell wall permeabilizing agents (Na,

EDTA or polyaspartic acid sodium salt

axonopodis and Erwinia amylovora

(PA)) and B17-0024, a mixture of chlorin

e6 derivatives with cationic moieties
2,6-diiodo-1,3,5,7-tetramethyl-8-(P-benzoic

520 nm, LM-LED, 43 mW/cm? or 80 mW/

In vivo disease incidence, puncture leaf and

Xanthomonas citri, subsp. citri(Xcc)

cm?2 (solar simulator), up to 10 min

acid)-4,4'-difluoroboradiazaindacene

(DIBDP)
Toluidine blue O (TBO)

infect citrus Honey murcott plants, photo-

stability in wet and dry, ROS, ascorbic acid

Artificial light, 150 mW/cmz, 60 min

Ex vivo (citrus leaves) and in vitro

Xanthomonas citri, subsp. citri(Xcc)

Natural sunlight, 23-60 mW/cm?, 240 min

Methylene blue, toluidine blue, and a combi- 652 nm, 12.21 mW/cm?, 20 min

In vivo (tomato seeds)

Xanthomonas gardneri

nation of both dyes

effective antibacterial activity, it can cause rapid photodeg-
radation/bleaching of PS molecules resulting in loss of their
absorption and emission. Destruction of the molecules on
one hand reduces their effective lifetime [3, 24—26]; on the
other hand, for example for chlorophyll derived photosensi-
tizers with degradation products that can be metabolized by
the plant [27], it has a chance to prevent the accumulation of
compounds in the environment. This reduces or eliminates
pesticide residue issues that plague conventional pesticides
and limit when such pesticides can be used in the growing
cycle. Classically, photodegradation studies are done in lig-
uid through monitoring changes in the absorption spectrum
of the photosensitizer (i.e., the appearance of new absorption
bands or decrease of the maximum absorption peak) [28].
In agricultural applications however, foliar sprays typically
dry on the leaf surface in minutes and remain dry until dew
or rain rewets them. This may lead to changes in the aggre-
gation state of photosensitizing molecules. Recently, Islam
et al. studied the stability and efficacy of the water-soluble
semisynthetic derivative of chlorophyllin (sodium magne-
sium chlorophyllin (Mg-chl) following dry-rewet cycles
mimicking conditions similar to the field [15] (Fig. 2). They
observed that, there was a gradual decrease of fluorescence
and single oxygen production with time, indicating gradual
degradation of the compound under light exposure. How-
ever, despite some degradation, the compound was still able
to eradicate bacteria significantly (3log10 reduction) up to
5 days after of light exposure, suggesting that the activity
of the PS was maintained for at least up to 5 days in the dry
state.

3 Contact/bacterial proximity

Given that photo-pesticides are contact pesticides, the prox-
imity of PS to the pathogen is one of the crucial factors
determining antimicrobial efficacy since the probability of
ROS reacting with target structures and molecules drasti-
cally decreases with distance [29]. For example Gram (—)
bacteria are wrapped in a densely packed protective layer
(outer membrane) comprising mainly glycolipid lipopoly-
saccharides and phosphoglycerides that serve as a perme-
ability barrier which can effectively inhibit penetration of
pesticides into the cell [30]. While both anionic and cationic
photosensitizers alone can kill efficiently Gram (+) bacteria
in vitro [31], for complete eradication of Gram (—) bacte-
ria a synergistic combination of PS combined with a mem-
brane disrupting molecule is necessary [15, 31-33]. Uptake
of anionic PS by bacterial cells may be mediated through
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Fig.2 Schematic diagram of
the dry drop method. A droplet
of PS is dried in the dark before
exposing it to light. After
irradiation, the dry PS droplet is
resuspended in water and used
to measure absorbance, fluores-
cence, ROS, and antibacterial
activity

Dry

Mg-chl

Resuspend ‘
—_—

®
Y

R

Relative units
)
Y

-
>

6min  10min 12min 14min
Hlumination under LED

)
=

Fluorescence

Absorbance

1
=

£
Y

Relative units

e
=

400 500 600 700 800 900
Wave length

ROS measurement

O Cationic PS
. Anionic PS
O Membrane disruptor

7

—_—

Dark 30 mins followed by
light exposure

>4

CFUs/mL ¥

Fig.3 A schematic diagram of an in vitro aPDI assay. A bacterial
culture of a known concentration (ODg,) and PS are added in the
wells and kept in dark for 30 min to allow the PS to bind/penetrate
bacteria, followed by light exposure for 1 h. A membrane disruptor is
added with anionic PS in case of treating Gram (—) bacteria. Finally,
appropriate dilutions of the suspension are spread on LB agar media
to count colony forming units (CFUs)

both protein transporters and electrostatic charge interaction,
while the uptake of cationic PS is presumed to be facilitated
through self-promoted uptake in addition to interactions with
membranes [28, 34]. Efficacy in vitro is typically tested in
liquid culture (Fig. 3), with plates kept in the dark after PS
addition to allow the PS to adhere to bacterial cell walls
prior to light exposure [8, 15, 31]. Although the assay is ade-
quate for determining effective concentration ranges of PSs
against pathogenic bacteria in vitro, it does not represent the
environment on plant surfaces. The epidermal cells of most
plant surfaces are covered with cuticle, a lipid-rich layer
that prevents water loss and protects plants against multiple

Fluorescence &

Absorbance aPDI

biotic and abiotic stresses [35, 36]. To reflect interactions
of bacteria with the cuticle and test aPDI on plant surfaces,
both ex vivo experiments using detached plant leaves [17,
37] and in vivo/in planta experiments using intact plants
have been developed [15]. In ex vivo experiments, detached
leaves are sprayed with bacteria and PS (Fig. 4a); the in vivo
method follows the same procedure except that bacteria and
PS are applied through a foliar spray directly on the plant
(Fig. 4b) [15], representing conditions in the field.

In the case of fungi, both anionic and cationic PS can
efficiently eradicate the pathogens (refer to Table 1 and
references therein). Fungal mycelia typically grow in 3-D
structures that often limit access of the PS to all mycelia.
To simulate the 3-D structure of mycelia, Hamminger et al.,
carried out in vitro aPDI of fungi using mycelial spheres
in 24-well plates (Fig. 5) [18] and showed that the PSs can
efficiently kill fungal species.

4 Lightintensity

Exposure to a sufficient amount of light for PS activation is
an indispensable requirement for PDI. Particularly in foliar
pathogens, the first step in pathogenesis is the colonization
of aerial tissue surfaces. Flat surfaces such as cucumber,
tomato, and lettuce leaves provide excellent light exposure,
and good microbial reduction was observed when the cati-
onic curcumin derivative SACUR-3 was used against E.
coli O157:H7 [38]. Bacterial pathogens can gain access to
internal plant tissues either through wounds or through natu-
ral openings such as stomatal pores used for gas exchange;
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» .
I—=

CFUs/mL

Dark followed by
light exposure

7

Shake in buffer

()

Bacteria

(b)

Fig.4 Schematic diagram of the ex vivo and in vivo aPDI assays. a
Ex vivo: Bacterial cultures of known concentration (ODg,) and PS
are sprayed on detached leaves and kept in dark for an hour before
exposing them to light for several hours. The leaves are then placed
in buffer and shaken to dissociate the bacteria, and an appropriate
dilution of bacteria is spread on solid LB media for colony forming

Fig.5 Schematic diagram of
an in vitro PDI assay on fungi.
Mycelial spheres and PS are

5-7 days in
growth chamber
——

A

CFUs/cm?

units (CFU) count. b In vivo: PS is sprayed on the leaves of intact
plants followed by a bacterial suspension spray and kept in the dark
for an hour before plants are transferred to a growth chamber. After
5-7 days, disease severity is assessed, and leaf discs are collected for
CFUs count

added to 24-well plates and kept
in the dark before exposure to
light for several hours. Fungal
balls are then transferred to

media and checked for growth —
after a few days depending on
the growth rate of the specific
fungi D
\L
Myecelial spheres

alternately, pathogens can be delivered into plants by insect
vectors [39, 40]. Until recently it was unclear whether a suf-
ficient amount of light is available to activate PS molecules
inside the leaf. Islam et al. investigated this question by infil-
trating a mix of bacterial suspension and photosensitizer in
the intercellular leaf spaces of tomato and N. benthamiana

@ Springer
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plants, exposing the plants to light, and determining the
number of viable bacteria in the leaves after treatment
(Fig. 6) [15]. They found a significant inhibition of bacterial
growth in planta when plants were exposed to light which
suggests that PS can be activated inside the leaves and is able
to kill intracellular bacteria.
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PS and bacteria ‘
infiltration

_\é'_ 16hr

Leaf disc

CFUs/cm?

Fig.6 PS and bacterial suspension are infiltrated in leaves. Plants are kept in dark for an hour before they are exposed to light for 16 h. Leaf
discs are collected, ground and bacteria are plated onto media for CFUs count

5 Conclusion and outlook

The photochemical efficiency of aPDI in lab test condi-
tions depends critically on the properties of the PS mole-
cule (e.g. the presence or absence of charge and the charge
distribution), the efficiency of light absorption, and the
longevity of the triplet excited state or singlet oxygen and
free radical production [4]. However, when targeting plant
pathogens in vivo, consideration of an additional layer of
requirements depending on the lifecycle of the pathogen
and tissues it inhabits is important. The design of the
photosensitizer must consider the presence of peripheral
functionalizations that may confer specific localization in
the plant (i.e. hydrophilicity vs. lipophilicity, ability to
translocate and/or bind to various cellular structures [41],
as aPDI activity may change depending on cell location
and/or the oxidative state of the cell. Nanoencapsulation
of PSs that can facilitate improved photostability, targeted
tissue penetration, and tunable PS release kinetics offer a
promising route to address these challenges [42]. In addi-
tion, while progress has been made to better represent
processes occurring in the field via ex vivo, or in planta
assays, further development is necessary to address the
various challenges often occurring at once in the field-
from water fluctuations to intense sun and wind.
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