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Abstract
The development of an efficient, eco-friendly, and low-cost photocatalyst is essential for addressing environmental and 
energy crises. In this regard, we report novel plasmonic photocatalysts through adorning tubular g-C3N4 with Ag2WO4, Ag, 
and AgI nanoparticles (TGCN/Ag/Ag2WO4/AgI) fabricated via a facile ultrasonic-irradiation procedure. The TGCN/Ag/
Ag2WO4/AgI (20%) nanocomposite presented the excellent photocatalytic ability for removal of tetracycline hydrochloride 
under visible light, which was almost 45.6, 4.03, and 1.32 times more than GCN, TGCN, and TGCN/Ag/Ag2WO4 (20%) 
photocatalysts, respectively. Interestingly, the photocatalyst displayed impressive ability for the degradations of amoxicil-
line, rhodamine B, methyl orange, fuchsine, and methylene blue, which was 14.7, 52.2, 9.8, 13.2, and 7.46 times as much as 
pure GCN. The outcomes of DRS, PL, EIS, and photocurrent density analyses proved that the impressive activity could be 
related to the highly promoted harvesting of visible light, segregation of charge carriers, and improved charge migrations. 
In addition, trapping tests exhibited that •O2

− and h+ were active species in the photocatalysis process.
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1  Introduction

In recent years, environmental pollution has become one 
of the most important challenges of sustainable develop-
ment. So far, various methods such as chemical, physi-
cal, and biological strategies have been used to elimi-
nate pollutants. However, bottlenecks such as inefficient 
performance, high energy consumption, long processing 
time, and incomplete destruction exist in these processes, 
which hinder their widespread utilization [1, 2]. As a 
result, human societies have an immediate need for the 
development of an efficacious and economic technology 
to address the crises generated in the field of environment 
and energy. Degradation of various organic contaminants 
through advanced oxidation processes has been considered 
as a promising technology thanks to the advantages such 
as having simple processes, environmental friendliness, 
and working at ambient conditions [3, 4]. Among them, 
heterogeneous photocatalysts have attracted interest from 
worldwide research communities [5, 6]. The photocata-
lytic processes rely on extremely active species such as 
hydroxyl radicals (•OH), superoxide radicals (•O2

−), and 
holes (h+) produced after the absorption of light energy 
by the designed photocatalysts, which play a vital role in 
the degradation reactions.

Hitherto, very diverse semiconductors such as ZnO, 
TiO2, SnO2, CeO2, Ag2O, CuO, Cu2O, BiOX (X is a hal-
ide), AgX, ZnS, CdS, SnS2, Bi2S3, Ag2S, Ag3PO4, and 
MFe2O4 (M = Ca, Mg, Zn, Co, Ni) have been utilized in the 
heterogeneous photocatalysis with the purpose of contami-
nant eliminations [7–10]. With the intention of extensive 
usage of solar energy in photocatalytic reactions, designing 
and manufacturing of efficacious photocatalysts activated 
under visible-light illumination are hot-spot research fields 
worldwide [11–14]. Recently, g-C3N4 (abbreviated as GCN) 
has received much attention for its excellent properties such 
as high photochemical stability, suitable bandgap, efficient 
visible-light response, and cheap price in the removal of 
wastewater contaminants [15, 16]. Because of some bottle-
necks such as long electron transmission distance, limited 
surface area, and rapid combination of charge carriers, the 
photocatalytic performance of pristine GCN is poor [17, 
18]. Thus, several methods have been suggested to tackle 
these drawbacks such as doping elements, production of 
GCN nanosheets, integration with other semiconductors, 
and combination with carbon-containing materials [19, 20]. 
The conversion of bulk GCN into tubular GCN (TGCN) is a 
promising method to improve the specific surface area and 
shorten the charge transfer path, which increases the active 
reaction sites and charge separation efficiency [21–23].

In this research paper, we designed plasmonic photo-
catalysts with high performance through adorning TGCN 

with Ag2WO4 and AgI nanoparticles with energy gaps 
of 3.10 and 2.60 eV, respectively. Decorations of these 
semiconductors were carried out using a facile ultrasonic-
irradiation method. Interestingly, during the decoration of 
Ag2WO4 nanoparticles, some of the silver cations were 
reduced to metallic silver under ultrasonic irradiation. The 
reduction of silver cations takes place through reaction 
with hydrogen radicals, which are produced under ultra-
sonic irradiation [24]. Similar reductions reactions have 
been reported during the fabrication of various photocata-
lysts [25, 26]. Hence, plasmonic TGCN/Ag/Ag2WO4/AgI 
photocatalysts were fabricated and utilized for impressive 
photocatalyitc removal of tetracycline hydrochloride (TC), 
amoxicillin (AMX) (as usual antibiotics), methyl orange 
(MO) (as an anionic dye), methylene blue (MB), and fuch-
sine (as cationic dyes) under visible-light illumination.

2 � Experimental section

2.1 � Synthesis part

2.1.1 � Synthesis of GCN and TGCN

The fabrication procedures of GCN and TGCN powders 
using melamine (Loba Chemise, 99.2%) were described in 
our previous work [27].

2.1.2 � Synthesis of TGCN/Ag/Ag2WO4 (20%) nanocomposite

For the synthesis of TGCN/Ag/Ag2WO4 (20%) photocata-
lyst including 80 wt% TGCN and 20% Ag/Ag2WO4, 0.4 g 
of the TGCN was sonicated for 10 min into 150 mL water. 
Afterward, 0.073 g AgNO3 was added in the suspension and 
stirred for 60 min. Then, sodium tungstate (Na2WO4·2H2O, 
0.071 g in 20 mL water) was added drop by drop into the 
suspension and it was sonicated for 120 min. Ultimately, 
the centrifuged photocatalyst was dried after washing with 
water and ethanol.

2.1.3 � Preparation of TGCN/Ag/Ag2WO4/AgI (20%) 
nanocomposite

For the synthesis of TGCN/Ag/Ag2WO4/AgI (20%) photo-
catalyst, in which 20% is wt% of AgI, 0.4 g of the TGCN/
Ag/Ag2WO4 (20%) was dispersed in 150 mL water via soni-
cation for 10 min followed by adding 0.072 g of AgNO3 
in the suspension. After stirring for 60 min, sodium iodide 
(0.063 g in 20 mL of water) was added drop by drop into 
the suspension and it was sonicated for 120 min. The pre-
pared photocatalyst was washed and dried like in the previ-
ous section. The method utilized to fabricate the TGCN/
Ag/Ag2WO4/AgI nanocomposites is illustrated in Scheme 1.
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2.2 � Characterization

The crystal planes of the materials were presented by 
X-ray (Philips Xpert) diffraction tests. The morphol-
ogy and elemental composition were determined by an 
FESEM of model ZEISS G300. Ultraviolet–visible spec-
tra of the materials were obtained using a Scinco 4100 
spectrophotometer. The FT-IR spectroscopy was utilized 
to explore the functional groups by a Perkin Elmer Spec-
trum between 4000 and 400 cm−1. The XPS of the opti-
mum material was measured with an AXIS-Ultra X-ray 
photoelectron spectrometer (Kratos, DLD-600 W). The 
PL data were examined in a Perkin Elmer LS 55 spectro-
photometer. The TGA was performed by Linseis STA PT 
1000. The surface area of materials was obtained by BEL-
SORP-mini II. The EIS and photocurrent measurements 
were performed with a three-electrode system using a 
mAutolabIII Potentiostat/Galvanostat by 0.5 M Na2SO4 
as electrolyte, a saturated Ag/AgCl reference electrode 
and the desired photocatalyst as the working electrode. 
The working electrode was made of the photocatalyst 
using a fluorine-doped tin oxide conducting glass. In the 
photocurrent experiments, a 500 W Xe lamp by power 
density of 100 mW/cm2 was utilized. Furthermore, in EIS 
experiments, the potential was 0.2 V.

2.3 � Photoactivity analysis

The photoactivities were explored for TC (6.2 × 10–8 M), 
AMX (1 × 10–4 M), RhB, MB, MO (1 × 10–5 M), and fuch-
sine (8 × 10–6 M), through recording the absorption peaks 
at 357, 226, 553, 664, 477, and 540 nm, respectively, under 
LED lamp (50 W) supplying visible-light illumination. The 
detailed descriptions of photocatalysis experiments were 
reported elsewhere [27].

3 � Results and discussion

The crystal phases of samples were collected by XRD and 
they are shown in Fig. 1. The XRD pattern of TGCN/Ag/
Ag2WO4 (20%) nanocomposite shows the peaks of graphitic 
carbon nitride (JCPDS No. 871526), metallic silver (JCPDS 
No. 65-2871), and Ag2WO4 (JCPDS No. 33–1195) [28–30]. 
Also, about the TGCN/Ag/Ag2WO4/AgI (20%) nanocom-
posite, the peaks of cubic phase AgI are clearly visible 
(JCPDS No. 01-0503) [31]. Accordingly, the XRD analyses 
confirmed the production of TGCN/Ag/Ag2WO4/AgI (20%) 
nanocomposite without impurity peaks.

The elemental composition of the TGCN/Ag/Ag2WO4/
AgI (20%) nanocomposite was analyzed by EDX spectrum, 

1. USI, 30 min 

2. Autoclave, 
200 °C for 12 h 

Calcination 

500 °C, 4 h 

Melamine Tubular g-C3N4

2. Na2WO4

Tubular g-C3N4/Ag/Ag2WO4Tubular g-C3N4/Ag/Ag2WO4/AgI 

 USI 

10 min 

1. AgNO3

1. AgNO3  USI, 10 min 

2. NaI 

USI, 2h 

USI, 2h 

Scheme 1.   Schematic presentation for the synthesis of g-C3N4 tubular/Ag/Ag2WO4/AgI systems
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indicating C, N, O, Ag, W, and I elements (Fig. 2a). For 
perception the morphology, SEM image was provided. As 
seen in Fig. 2b, particles of Ag, Ag2WO4, and AgI anchored 
on the tubular graphitic carbon nitride, confirming integra-
tion of these components to collaborate in improving the 
photocatalytic activity.

To investigate the chemical status of the surface elements 
in the TGCN/Ag/Ag2WO4/AgI (20%) nanocomposite, XPS 
analyses were considered. As seen in Fig. 3a, the photocata-
lyst composed of C, N, O, Ag, W, and I elements, which are 
a match with the XRD and EDX tests. Figure 3b presents 
the spectrum for C1s with two distinct peaks at 288.1 and 
284.6 eV ascribed to the sp2–hybridized carbon bonded to 
the N of the trizine rings (N=C–N) and to the carbon atoms 
with C–C bond, respectively originated from TGCN [32]. In 
Fig. 3c, the peaks of 398.75 and 400.10 eV were observed, 
which were assigned to the N atoms presented in the C=N–C 
ring and sp3 hybridized nitrogen N–(C) 3, respectively [33]. 
Furthermore, in Fig. 3d, the two peaks at 373.7 and 367.7 eV 
are typically relevant to Ag 3d3/2 and Ag 3d5/2 from Ag+, and 
the peaks at 369.0 and 375.0 eV are assigned to Ag 3d5/2 and 
Ag 3d3/2 from metallic silver [34, 35]. The spectrum of W4f 
presents the peaks at 35.27 and 37.43 eV, matched to W 4f7/2 
and W 4f5/2, respectively presented in WO4

2− ions (Fig. 3e) 
[36]. In the case of iodide ions, two characteristic peaks at 
619.78 and 631.28 eV were ascribed to I 3d5/2 and I 3d3/2, 

respectively (Fig. 3f) [37]. Finally, the XPS spectrum of O 
1 s (Fig. 3g) shows that the peak at 530.50 eV is dependent 
on the lattice oxygen, while the peak at 532.50 eV derived 
from the oxygen of adsorbed water over the photocatalyst 
[38].

The FT-IR spectra are illustrated in Fig. 4a. As seen, the 
peak at 810 cm−1 is related to the vibration of the hepta-
zine structure, which is assigned to the main unit of GCN 
[39]. In addition, many peaks appearing in the range of 
1200–1650 cm−1 correspond to the C–N and C=N bonds 
in the GCN [40]. In these spectra, broad absorption bands 
positioned at 3000–3300 cm−1 are relevant to the N–H and 
O–H bonds [41, 42]. A new peak at 868 cm−1 is observed 
for the TGCN/Ag/Ag2WO4 (20%) and TGCN/Ag/Ag2WO4/
AgI (20%) nanocomposites, which is assigned to the asym-
metric tensile vibration of the O–W–O group [43]. Thus, the 
characteristic peaks of GCN and Ag2WO4 semiconductors 
are visible in the spectra. Finally, similar to AgI-based pho-
tocatalysts, the vibration peak for AgI was not detected [44]. 
The optical characteristics of materials were investigated 
by UV–vis DRS measurements. Compared to the GCN, 
TGCN shows a blue-shifted absorption, which is related to 
the confinement effect [27, 45]. As observed, the TGCN/Ag/
Ag2WO4 nanocomposites show much higher absorption in 
the visible region because of the presence of metallic sil-
ver [46]. Most importantly, in the TGCN/Ag/Ag2WO4/AI 

Fig. 1   XRD of as-designed 
photocatalysts
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nanocomposites, the absorption intensity was stronger in the 
visible region than the other materials thanks to the pres-
ence of small bandgap AgI and plasmonic characteristics 
of Ag, indicating the production of more charge carriers in 
the visible area.

As known, TGA is a thermal analysis method utilized for 
the evaluation of the thermal stability of materials. As seen 
in Fig. 5a, significant weight loss in the materials started 
from almost 500 °C. It is evident that by converting GCN 
to TGCN and decorating Ag2WO4 and AgI, the thermal sta-
bility of the materials decreased [47]. Using the remained 

weights after heating the TGCN/Ag/Ag2WO4 (20%) and 
TGCN/Ag/Ag2WO4/AgI (20%) nanocomposites up to 
700 °C, the contents of TGCN in these photocatalysts were 
obtained as 80.4 and 58.8%, respectively. The BET-specific 
areas of the materials were measured by N2 sorption curves, 
as shown in Fig. 5b. Based on the IUPAC classification, the 
isotherms are type II with H3 hysteresis hoops. The sur-
face areas of GCN, TGCN, TGCN/Ag/Ag2WO4 (20%), and 
TGCN/Ag/Ag2WO4/AgI (20%) materials were reported as 
12.4, 53.2, 6.98, and 9.69 m2/g, respectively. Therefore, the 
specific surface area of the nanocomposites decreased by 

Fig. 2   a EDX and b SEM of 
TGCN/Ag/Ag2WO4/AgI (20%) 
nanocomposite
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Fig. 3   The XPS spectra of 
TGCN/Ag/Ag2WO4/AgI (20%): 
a Survey scan, b–g C 1 s, N 1 s, 
Ag 3d, W 4f, I 3d, and O 1 s
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anchoring Ag2WO4, Ag, and AgI particles over the TGCN, 
because of occupying some active points by deposited mate-
rials. Consequently, the surface area of the nanocomposites 
could not have a role in the acceleration of the degradation 
reaction relative to the GCN and TGCN photocatalysts.

Tetracycline hydrochloride is one of the widely used 
antibiotics, which contaminante our environment. As 
shown in Fig. 6a, destruction of this antibiotic is very 
difficult without using any photocatalyst under visible-
light illumination, because of its high chemical stability. 
But, over the GCN, almost 24% of TC was degraded after 
the light irradiation for 90 min. After converting GCN 
to TGCN, the photocatalytic performance improved sig-
nificantly by degrading about 55% of the antibiotic at the 
same time. It is noteworthy that when TGCN was adorned 
by Ag2WO4, Ag, and AgI, the photocatalytic activity was 

impressively promoted and about 87.4% and 99% of TC 
were degraded over the TGCN/Ag/Ag2WO4 (20%) and 
TGCN/Ag/Ag2WO4/AgI (20%) nanocomposites, respec-
tively. The kinetic constants for the photocatalytic removal 
of TC were estimated by pseudo-first-order kinetic equa-
tion. As illustrated in Fig. 6b, the TGCN/Ag/Ag2WO4/
AgI (20%) photocatalyst has the highest kinetic constant 
of 457 × 10–4 min−1, which is 45.6, 4.03, and 1.32-folds 
higher than the GCN, TGCN, and TGCN/Ag/Ag2WO4 
(20%) photocatalysts, respectively. As seen, the TGCN/
Ag/Ag2WO4/AgI (30%) photocatalyst showed poor activ-
ity than the TGCN/Ag/Ag2WO4/AgI (20%) nanocom-
posite, because excessive addition of AgI nanoparticles 
could destruct the heterojunctions among the components 
through accumulation and poor dispersion of the nano-
particles over the TGCN, resulting in decreased activity.

Fig. 4   a FT-IR and b UV–vis 
DR spectra of the photocatalysts
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To study the mechanism insight the highly promoted pho-
tocatalytic activity, PL, EIS, and photocurrent analyses were 
provided, as seen in Fig. 7a. The order of PL intensities is 
as GCN > TGCN > TGCN/Ag/Ag2WO4 (20%) > TGCN/Ag/
Ag2WO4/AgI (20%). Due to the much pronounced diminish 
of the PL intensity, it was concluded that the segregation 
of electron/hole pairs in the TGCN/Ag/Ag2WO4/AgI (20%) 
nanocomposite is much higher than the specified materials. 
In addition to the charges production, their migration and 
transfer to the catalyst surface for participation in the redox 
reactions play a vital role in the improvement of the activity 
[48, 49]. As seen in the EIS of the GCN, TGCN, TGCN/
Ag/Ag2WO4 (20%), and TGCN/Ag/Ag2WO4/AgI (20%) 
materials, the TGCN/Ag/Ag2WO4/AgI (20%) nanocom-
posite has the smallest arc radius among the photocatalysts, 
implying that the generated charges could easily reach to the 
catalyst surface thanks to its low resistance for migration of 
charges (Fig. 7b). To further confirm the above results, the 
transient photocurrent responses were evidenced for several 
on–off cycles under visible light (Fig. 7c). As expected, the 
TGCN/Ag/Ag2WO4/AgI (20%) nanocomposite exhibited an 
extremely high photocurrent response than other materials. 
Therefore, it was clearly confirmed that a lot of charge carri-
ers in the TGCN/Ag/Ag2WO4/AgI (20%) nanocomposite are 
produced, and they migrated rapidly to the catalyst surface to 
participate in the photocatalytic degradation of the specified 
antibiotic, as observed by greatly improved photocatalytic 
performance.

Inhibition experiments were performed to identify differ-
ent types of species in TC degradation. Hence, ammonium 

oxalate (AO), benzoquinone (BQ), and 2-PrOH were 
selected as the scavengers of h+, •O2

−, and •OH, respec-
tively. As seen in Fig.  8a, in the presence of AO, BQ, 
and 2-PrOH, the degradation constant were reduced to 
29.8 × 10–4, 25.2 × 10–4, and 300 × 10–4, respectively. There-
fore, •O2

− and h+ play a chief role in the degradation process 
under visible light.

The flat-band potential (Efb) of a semiconductor can be 
appraised by Mott-Schottky plot. Figure 8b shows the plots 
for TGCN, Ag2WO4 and AgI semiconductors. As presented, 
these semiconductors show a positive slope, which confirm 
that these materials have n-type semiconducting charac-
teristics. Based on these plots, Efb for TGCN (–0.78 V vs. 
Ag/AgCl; -0.58 V vs. NHE), Ag2WO4 (– 0.17 V vs. Ag/
AgCl) and AgI (– 0.52 V vs. Ag/AgCl) were obtained. As 
known, for n-type semiconductors, Efb is about 0.1 V lowers 
than the conduction band potentials (ECB) [50]. Therefore, 
the ECB of TGCN, Ag2WO4, and AgI were computed to be 
– 0.88, – 0.27 and – 0.62 V (vs. Ag/AgCl). After converting 
the potentials to the NHE scale using ENHE = EAg/AgCl + 0.2 
[51], the ECB of TGCN, Ag2WO4, and AgI can be estimated 
to – 0.68, – 0.07 and – 0.42 eV and the EVB of them were 
obtained to be 2.06, 3.03, and 2.37 eV, respectively using 
the equation EVB = ECB + Eg.

As shown in Fig. 9, a possible mechanism for impres-
sive improvement of the photocatalytic capability of 
TGCN/Ag/Ag2WO4/AgI nanocomposites was proposed. 
As medium band-gap materials, electron/hole pairs are 
produced over TGCN and AgI under visible light. The 
CB potential of TGCN is more negative than Ag2WO4 and 

Fig. 5   a TGA and b BET analyses for the prepared materials
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AgI semiconductors. Accordingly, the created electrons 
on TGCN easily migrate to the CB of Ag2WO4 and AgI. 
Inversely, the generated holes over the VB of AgI transmit 
unto the VB of TGCN, thanks to the more positive poten-
tial of the holes in AgI. The electrons accumulated in the 
CB of TGCN and AgI were attracted with oxygen to form 
•O2

−, since the standard potential of O2/•O2
− (− 0.33 eV) 

is more positive than the CB potentials of the mentioned 

materials [52]. Additionally, the electrons on the CB of 
Ag2WO4 could be gained by oxygen to generate •OH (E° 
(O2/H2O2) =  + 0.682 eV vs. NHE). Subsequently, the gen-
erated H2O2 and •O2

− species react with pollutant species 
to degrade them. Moreover, the holes in VB of TGCN are 
not positive sufficient to oxidize H2O/–OH to generate •OH 
radicals (E°H2O/OH° =  + 2.72 eV, E°–OH/OH° =  + 2.38 eV) 
[53]. Then, the produced holes at the VB of TGCN react 

Fig. 6   a Photodegradation and 
b kinetic rate constants for 
tetracycline over the prepared 
materials
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Fig. 7   a PL, b EIS, and c transient photocurrents for the materials

Fig. 8   a Effect of scavengers on the photocatalytic ability of TGCN/Ag/Ag2WO4/AgI (20%) in TC degradation and b Mott-Schottky plots for 
TGCN, Ag2WO4 and AgI
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with pollutants and oxidize them to different products. In 
summary, appropriate band energies of TGCN, Ag2WO4, 
and AgI components and the presence of metallic silver 
facilitate segregation of the generated charges, resulting 
in impressive photocatalytic activity. In addition, the pres-
ence of metallic silver and medium band gap semiconduc-
tors (TGCN and AgI) in the structure of the photocatalyst 
help to generate a large number of charges under visible 
light to participate in the degradation reactions [53].

The stability and recyclability of a photocatalyst have 
a great role in its widespread usage. Figure 10a shows the 
repeated application of the TGCN/Ag/Ag2WO4/AgI (20%) 
nanocomposite for the elimination of TC under visible 
light. As illustrated, the photocatalyst has enough stabil-
ity for four photocatalytic runs with a small decrease in 
the activity. Therefore, the nanocomposite is considered 
as a stable photocatalyst for environmental applications. 
Furthermore, as seen in Fig.  10b, the XRD pattern of 
the photocatalyst does not show any change in the phase 
and structure after the repeated degradation reaction. 
These results disclose that the TGCN/Ag/Ag2WO4 (20%) 

nanocomposite is stable and it has high durability during 
photocatalytic reactions. In addition, in Fig. 10c, the SEM 
image of the nanocomposite after the photocatalytic reac-
tion is shown. By comparison between Fig. 2b and this 
figure, it is inferred that the nanocomposite retained its 
morphology during the degradation reaction.

For representing the ability of TGCN/Ag/Ag2WO4/
AgI (20%) nanocomposite for photocatalytic removal of 
different pollutants, the degradation of AMX, RhB, MB, 
MO, and fuchsine were conducted and the results are dis-
played in Fig. 11. Among these contaminants, RhB, MB, 
and Fuchsine have cationic and MO has anionic char-
acteristics and amoxicillin (AMX) is an antibiotics. As 
detected, the activity of TGCN/Ag/Ag2WO4/AgI (20%) 
nanocomposite for the elimination of AMX, RhB, MB, 
MO, and fuchsine are 9.78, 4.21, 3.25, 4.97, and 5.18-
folds higher than the TGCN and 14.7, 52.2, 7.46, 9.79, 
and 13.2-folds as much as GCN, respectively. Hence, the 
TGCN/Ag/Ag2WO4/AgI (20%) nanocomposite shows sig-
nificant photocatalytic activity in degradation of different 
water pollutants.
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Fig. 9   The segregation mechanism of charge carriers in the TGCN/Ag/Ag2WO4/AgI photocatalysts
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4 � Conclusion

In summary, novel plasmonic TGCN/Ag/Ag2WO4/AgI pho-
tocatalysts were synthesized by an ultrasonic-assisted pro-
cedure. The fabricated plasmonic photocatalyst illustrated 
remarkable performance in the degradation of different pol-
lutants including two antibiotics and four dye pollutants. 
The incremented activity of TGCN/Ag/Ag2WO4/AgI (20%) 
nanocomposite in the removal of TC was about 1.32, 4.03, 
and 45.6-folds as high as the TGCN/Ag/Ag2WO4 (20%), 
TGCN, and GCN photocatalysts, respectively. Moreo-
ver, the photoactivity of TGCN/Ag/Ag2WO4/AgI (20%) 

nanocomposite in the removal of AMX, RhB, MB, MO, 
and fuchsine was 9.78, 4.21, 3.25, 4.97, and 5.18-folds pre-
mier than TGCN, and 14.7, 52.2, 7.46, 9.79, and 13.2-folds 
as high as GCN, respectively. According to the reactive-
species-trapping tests, it was displayed that •O2

− and h+ 
were generated and had a vital role in photocatalytic per-
formance. The enhanced activity of the rational designed 
plasmonic photocatalyst was attributed to more produc-
tion and promoted segregation of charges, thanks to the 
presence of metallic silver, two medium band-gap energy 
components, and appropriate band-energy alignment in the 
nanocomposite.

Fig. 10   a Reusability of the TGCN/Ag/Ag2WO4/AgI (20%) system, b XRD patterns of the TGCN/Ag/Ag2WO4/AgI (20%) nanocomposite 
before and after photocatalysis and c SEM image of the nanocomposite after photocatalytic reaction
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