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Abstract
Pollutants in the environment are growing as a result of the use of plastic. Our environment 
and food chain contain plastic particles and other pollutants made of plastic, threatening 
human health. From this point of view, biodegradable plastic material focuses on building 
a more sustainable, greener world with a lower impact on the environment. This evaluation 
should be kept in view of the objectives and priorities for producing a wide variety of 
biodegradable plastics throughout their entire life cycle. The properties of biodegradable 
plastics are similar to traditional plastics. Additionally, the greatest benefits of biodegradable 
polymeric materials are the preservation of fossil fuel resources and the reduction of 
environmental pollution in the environment of sustainable development. This review 
summarizes the main synthesis methods and the most common type of biodegradable 
polymers. Lastly, the biodegradation mechanism of biodegradable polymers is also discussed.

Keywords Biodegradable polymers · Biobased plastics · Synthesis methods · 
Biodegradation mechanism · Application areas

Introduction

A major environmental issue today is plastic pollution. Plastic is present in the atmosphere, 
soils, sediments, rivers, lakes, oceans, and animal biomass [1]. The development of a 
“disposable” lifestyle, rising consumption, and the usage of disposable packaging have all 
contributed to this problem [2]. Recently, the advancement of eco-friendly materials has 
received a lot of attention, due to the virtue of biodegradability which may completely resolve 
the problem of “white pollution” [3]. In the perspective of sustainability, the primary benefits 
of biodegradable polymeric materials are the preservation of fossil resources and the reduction 
of environmental pollution [4]. In the near future, petrochemical plastics will likely be replaced 
with biobased and biodegradable plastic as one of the solutions to the plastic industry’s 
sustainable growth [5]. Despite the terms “biobased” and “biodegradable” are commonly 
used interchangeably, they do not mean the same thing. Biobased plastics are produced by 
using non-petroleum biological resources [6]. Plastics that are biodegradable, whether they 
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are petroleum- or biobased, decompose when they are exposed to naturally occurring bacteria 
[7]. Even though some biobased plastics are biodegradable, not all of them are biodegradable 
[8]. The phrase “biobased” primarily refers to the method used to manufacture the material. It 
does not indicate what could happen to it at the end of its existence [4].

In order to achieve this sustainable expansion of the plastic sector and provide a viable 
alternative to petrochemical plastics in the near future, biobased and biodegradable plastics 
can be considered one of the options. In contrast to ordinary plastics, which have a lifespan of 
between 100 and 1000 years, biodegradable plastic may degrade into carbon dioxide  (CO2) 
and water  (H2O) in 20 to 45 days if there is sufficient humidity, oxygen, and a sufficient quan-
tity of microorganisms [9, 10]. Therefore, biodegradable polymers can be utilized in place of 
conventional plastics.

Biodegradable polymers already have a big influence across a variety of areas [11]. How-
ever, their low mechanical strength, relatively high cost, and thermomechanical properties 
compared to conventional plastics limit the application. These restrictions can be solved by 
producing biodegradable polymer blends with desirable characteristics by incorporating a 
suitable compatibilizing agent during the blend preparation [12]. Usually, synthetic fibers such 
as carbon and glass fibers are used to reinforce bioplastics, but they are not biodegradable. 
Therefore, they can be replaced by more abundant, affordable, and environmentally friendly 
materials: natural fillers such as nano-/micro-sized particles of layered alumino-silicate: hal-
loysite, bentonite and montmorillonite, hydroxyapatite, calcium carbonate, and natural fibers 
(lignin, lignocellulosic fibers, wood, and vegetable fibers etc.) exert reinforcement and protec-
tion actions. Furthermore, they enhance considerably the system rigidity, thermal-resistance, 
and, in some cases, the durability [13–16]. For instance, the addition of fillers and fibers can 
greatly increase the elastic modulus and tensile strength of polymer and biopolymer-based 
systems, while the number of fillers added and their aspect ratio have a major impact on the 
reduction of elongation at break [17]. The literature indicates that the aspect ratio of fillers and 
fibers is an important factor for their dispersion and distribution into the organic matrices. It is 
obvious that the morphology of the generated fillers and/or fibers has a significant impact on 
the final properties and performance of the polymer and biopolymer-based complex systems, 
expanding their application fields [18, 19]. Moreover, natural fillers that are hydrophilic and 
more biodegradable enhance the adhesion of microorganisms to the composite material and 
enable degradation [20]. As an example, a 40-µm thick polybutylene succinate (PBS) poly-
mer film degrades at a rate of 50% every month in garden soil [21]. Furthermore, mold tem-
perature rise, dehydrothermal treatment, and ultrasound application are different approaches 
for physical strengthening methods. Applying heat treatment, dehydrothermal treatment, and 
ultrasounds resulted in a structure with fewer holes in soy protein-based bioplastics while also 
improving their mechanical characteristics and superabsorbent capacity. As a consequence, 
biobased plastics which have been processed can be used for a wide range of applications [14].

This review mainly focuses on biodegradable polymeric materials consisting of types of 
biodegradable polymers, preparation techniques, and biodegradation mechanisms.

Biodegradable Polymers

The word “biobased” refers to a polymer produced entirely or partly from biomass, 
which comprises any sort of renewable organic material of biological origin, as well as 
organic waste [8]. The degradation of plastic materials is significantly reliant on the par-
ticular exposed environmental factors. Degradable plastics are those that demonstrate 
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considerable loss in features due to environmental influences such as light, heat, and mois-
ture over time [22]. The word compostability refers to biodegradable polymeric substances 
that are digested by naturally occurring microorganisms. Biodegradation can take place in 
a variety of environments, including marine, soil, and composting ecosystems. Composta-
ble plastics, according to the ASTM D6400 standard, should degrade under composting 
circumstances to generate H2O, CO2, biomass, and inorganic compounds at a consistent 
rate of recognized compostable materials while leaving no obvious distinctive or harm-
ful residue [23]. Compostable materials can be considered to be biodegradable materials. 
Under particular climatic circumstances, biodegradability and compostability can be evalu-
ated by the quantity of carbon dioxide evolved or the amount of oxygen demand during the 
degradation process [8]. Several parameters (such as sample size, sample composition, and 
crystallinity) influence the rate of degradation of biodegradable materials under compost-
ing conditions [24].

In practice, biodegradable (compostable) plastic materials have a more positive impact 
on the environment than non-biodegradable plastics. As a result, environmental regula-
tions, prohibitions on non-biodegradable plastic bags, and global warming are all driving 
up demand for biodegradable plastic materials. Biodegradable plastics have the potential to 
eliminate the disposal problem while also encouraging long-term sustainable development.

Biobased Biodegradable Polymers

The monomer sources of biodegradable polymers can be used to classify them. Now, there 
are various commercially available biodegradable polymers on the market. Polymers which 
are generated from 100% renewable resource-based monomers are called biobased biode-
gradable polymers. For instance, polylactic acid (PLA), polyhydroxyalkanoates (PHAs), 
and starch are most commonly used biobased biodegradable polymers [25].

Polylactic Acid (PLA)

PLA is a biodegradable thermoplastic aliphatic polyester synthesized by condensation 
polymerization of lactic acid, which is obtained from renewable sources, like corn, 
sugarcane, starch, roots, chips, and tapioca [26, 27]. PLA is primarily utilized in the food 
market to manufacture disposable tableware items including drinking cups, cutlery, trays, 
food plates, food containers, and packaging for delicate food goods [28]. Nevertheless, 
PLA bioplastics are too brittle to be employed in other package manufacturing methods. 
As a result, PLA requires additives to increase its durability [29]. Remarkably, PLA is the 
most biodegradable polymer, degrading mostly by hydrolysis (Fig. 1) [30, 31].

Some commercial types of PLA are particularly engineered for processes like 
thermoforming and extrusion/injection molding [32]. Furthermore, it can be used for 
soil retention sheathings, agricultural films, garbage shopping bags, and packaging 
materials. PLA can also be converted to fibers and used to make woven, disposable, 
and biodegradable fabric items such as disposable clothes, feminine hygiene products, 
and diapers [30, 31].

Polyhydroxyalkanoates (PHA)

PHAs belong to the polyhydroxester family of 3-, 4-, 5-, and 6-hydroxy alkanoic acids 
[33]. The general chemical structure of PHA is demonstrated in Fig. 2 [31]. PHAs are 
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biocompatible, biodegradable, and non-toxic polyesters produced by certain bacteria 
and plants from renewable sources [32, 34]. Currently, only a few types of PHA struc-
tures are marketed, particularly medium chain length PHA (mcl PHA), polyhydroxy 
butyrate (PHB), and poly (hydroxy butyrate-co-valerate) (PHBV) [35]. PHB is one of 
the most researched short-chain lengths PHA polymers. The restrictions of the PHB 
consist of brittleness, slow crystallization, poor thermal stability, and poor melt pro-
cessability. PHB functionalities can be adjusted by copolymerizing with hydroxyvaler-
ate (HV). The resulting copolymerized PHB with HV is known as PHBV. The PHBV 
polymer with high HV content illustrated much better ductility and toughness than PHB 
[25, 29]. Shopping bags, disposable products (razors, cutlery, cups, compostable bags, 
and packaging), food and cosmetic containers, thermoformed articles, medical surgical 
garments, and medical implants are the most common applications for PHAs [36, 37]. 
Many researchers, notably Choi et  al. [38] Kumar et  al. [39], and Li et  al. [40], have 
exhaustively investigated the preparation, characteristics, uses, and future advancements 
of PHAs.

Fig. 1  Hydrolysis of polylactic acid (PLA) [31]

Fig. 2  PHA’s chemical structure 
[31]
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Starch

Starch is a low-cost, renewable, and easily adjustable biopolymer derived from plant 
resources such as tubers of plants, seeds of cereal grains, and tapioca palm [41]. 
Starch-based bioplastics are utilized for packaging products and for generating food 
utensils such as cups, bowls, bottles, cutlery, egg cartons, and straws [31]. It comprises 
of a significant number of glucose units linked together by glycosidic bonds, with 
linear amylose homopolymer units and helical/branched amylopectin homopolymer 
units (see Fig.  3) of 20–25% and 75–80%, respectively [25]. Amylose is a linear 
polysaccharide formed of -D- glucose monomers joined by -1,4-glycosidic linkages, 
whereas amylopectin is comprised of the same monomers but is highly branched by 
a different type of network, the -1,6-glycosidic linkage [42]. Starch properties vary 
considerably between species depending on crystallinity, glass transition temperature 
(Tg), and ratio of amylose and amylopectin [43]. The high Tg (240  °C), strong 
inter- and intra-hydrogen bonding, susceptibility to the water, and weak flowability 
of virgin starch granules restrict the starch processability and applications [44, 45]. 
Therefore, starch can be chemically modified and blended with other biopolymers to 
improve its properties. The intrinsic characteristics of starch, involving its digestibility, 
solubility, thickening power, pasting properties, and shear stability, can be enhanced 
by the chemical modification starch, which includes introducing functional groups at 
the molecular level to change the bulk properties [46]. The properties obtained via 
the chemical modification of starch are affected by several parameters, for instance 
the botanical source, reaction conditions (reactant concentration, reaction time, pH, 
and the presence of a catalyst), the type of substituent, degree of substitution, and 
substituent distribution in starch molecules [47]. Chemical modification of starches is 
usually achieved by derivatization such as acetylation, cationization, acid hydrolysis, 
oxidation, and cross-linking [48, 49]. However, these methods are restricted  because 
of environmental and consumer safety concerns. Combining multiple chemical 
methods has become a growing trend as a way to produce new sorts of modification. 
Similar to this, several physical modification techniques, like extrusion, radiation, and 
microwave, have been combined with various chemical modification techniques to 
yield a starch with certain functional characteristics [50, 51]. Table 1 lists several of 
the latest chemical modification techniques.

Fig. 3  Chemical structure of amylose and amylopectin
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Petroleum‑Based Biodegradable Polymers

Synthetic polymers are often synthesized from crude oil, although they can also be derived 
from natural gas and coal. Because these polymers do not exist naturally, the majority of them 
are not biodegradable or compostable. However, petroleum-based non-biodegradable polymers 
can be rendered degradable through integrating unstable (amide, ether, or ester) bonds that can 
undergo hydrolysis under particular circumstances [59, 60]. Poly (butylene succinate) (PBS), 
polycaprolactone (PCL), polyvinyl alcohol (PVA), and poly (butylene adipate terephthalate) 
(PBAT) are the most well-known polymers in this class, and their chemical formulas are 
illustrated in Fig. 4 [61]. They can be synthesized by using biomass or fossil fuels and they 
are biodegradable polymers which are evaluated in anaerobic environments. Anaerobic 
degradation is a biological procedure that alters organic materials in an atmosphere devoid of 
oxygen. It can follow two paths: a process known as anaerobic fermentation in which organic 
materials can serve as an electron donor or receptor, or anaerobic respiration, which needs 
acceptors such as  CO2,  SO4

2−, and  NO3
−. The process is enhanced in four stages—hydrolysis, 

acidogenesis, acetogenesis, and methanogenesis—which cause the production of a mixture of 
 CH4 and  CO2, known as biogas. Two thirds of  CH4 produced in an anaerobic process is due 
to fermentation and one third by respiration [37, 62, 63]. The existence of volatile fatty acids, 
sulfate, ammonia, and heavy metals influences how effectively anaerobic biodegradation takes 
place [64]. The efficiency of anaerobic biodegradation is also affected by pH, temperature 
[63], redox potential, and hydrogen concentration [65, 66]. Additionally, it relies on the 
concentration and type of microorganisms that exist in the media [67], presence of nutrients 
[68], and the characteristics of the substrate [69].

Poly (Butylene Succinate) (PBS)

PBS is semicrystalline thermoplastic polyester generated by polycondensation of succinic 
acid and 1–4-butanediol [70]. PBS can be synthesized from renewable or non-renewable 

Fig. 4  Chemical formula of poly (butylene succinate) (PBS), polycaprolactone (PCL), polyvinyl alcohol 
(PVA), and poly (butylene adipate terephthalate) (PBAT) [61]
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monomers; however, the large percentage of commercially accessible PBS is generated 
from fossil-based resources.

PBS is a semicrystalline thermoplastic polymer. Because of the high crystallinity 
degree, it demonstrates a relatively slow biodegradation rate. PBS is utilized in a wide 
range of applications, including food packaging films, shopping bags, agricultural mulch 
film, plant pots, and hygiene goods. However, it is not widely used in the biomedical area, 
due to its limited biocompatibility and bioactivity. PBS is also applied as a filler in blends 
and composites to enhance thermal conductivity, mechanical performance, gas-barrier 
characteristics, and flame resistance [71, 72].

Polycaprolactone (PCL)

PCL is a slow-degrading aliphatic polyester that is commonly used in biomaterials and 
sustainable packaging. PCL is a semicrystalline polymer with great toughness and 
flexibility, with a glass transition temperature of − 60  °C and a melting point of around 
60 °C [73]. It is a hydrophobic, biocompatible, and relatively slow-degrading polymer that 
has been widely employed in medical applications such as some sutures, drug delivery 
systems, and tissue engineering scaffolds [74, 75]. PCL, like other petrochemical-derived 
biodegradable plastics, is applied in blends with biobased biodegradable plastics including 
such starch-based polymers, PLA, PHAs, and PBS [61, 76].

Polyvinyl Alcohol (PVA)

PVA is derived primarily from polyvinyl acetate by hydrolysis. Its features are determined 
by the degree of hydrolysis, which can be complete or partial and normally ranges 
between 80 and more than 99% [77]. Its degradability is improved by hydrolysis due to the 
presence of hydroxyl groups on the carbon atoms [78]. Furthermore, it is water-soluble and 
hydrophilic, so it is commonly employed by blending with other polymer compounds for 
using in a variety of industrial applications to improve the mechanical properties of films 
[77, 79].

PVA is utilized in biomedical applications, because of its compatibility [46]. PVA 
composites, for instance PVA gels, are used in different biomedical fields, like in the 
manufacturing of contact lenses, artificial heart surgery, drug delivery systems, and wound 
dressings. In medical devices, PVA is used as a biomaterial due to its highly desirable 
properties, such as biocompatibility, nontoxicity, non-carcinogenic, swelling properties, 
and bioadhesive characteristics [77–80].

Poly (Butylene Adipate Terephthalate) (PBAT)

PBAT is an aliphatic–aromatic random copolyester, synthesized from a polycondensation 
reaction of adipic acid, terephthalic acid, and 1,4-butanediol [81]. PBAT has good mechanical 
properties because of the aromatic unit in the molecule chain [82].

Pure PBAT features are insufficient for consumer adoption because of higher 
manufacturing costs or inferior mechanical properties as compared to traditional 
polymers. As a result, the improvement of a PBAT market will be achievable if 
production costs are reduced or its features are enhanced. The use of inexpensive 
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components (such as starch) and strengthening substances (such as PLA) is an efficient 
strategy to reduce the final price and enhance the characteristics while keeping the 
composites’ biodegradability. PBAT-based composites such as packaging, mulch film, 
and cutlery have been commercialized in the last 10 years [82, 83].

Biodegradable Polymers Derived from Renewable and Petroleum‑Based Resources

In this group, at least one renewable resource-based monomer is utilized to synthesize 
biodegradable polymers. For example, polypropylene carbonate (PPC) is an aliphatic 
polyester which is generated from  CO2 and propylene carbonate by copolymerization 
[25, 84].  CO2-based polymers are attractive because of their advantages of synthesizing 
biodegradable polymers by utilization of the abundant greenhouse gas—CO2 [85]. Poly 
(cyclohexene carbonate) (PCHC) and poly (propylene carbonate) (PPC) are the most 
researched  CO2-based polycarbonates [85, 86]. Compared to PCHC which is usually 
produced through the copolymerization of  CO2 and cyclohexene oxide, PPC has advan-
tages such as cheaper price to produce and better mechanical properties. PCHC is too 
fragile for applications [87].

PPC films have good tensile and barrier  (O2 and  H2O vapor) properties [88], but 
the amorphous PPC shows various restrictions such as poor thermal stability, high 
shrinkage, low glass transition temperature (25–45  °C), and performance variability 
based on the type of catalyst employed to produce the PPC [89]. Various attempts 
have been taken to address the restrictions of PPC through blending PPC with various 
biodegradable polymers [89–91]. The application areas of PPC are demonstrated in 
Fig. 5 [92].

Fig. 5  Application areas of PPC 
(style referenced from [92])
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Synthesis Methods of Biodegradable Polymers

Modification of Natural Polymers

Polysaccharide polymeric materials, for example chitosan, chitin, starch, and cellulose, are 
readily biodegradable in nature and can be modified into new biodegradable polymer mate-
rials by coblending [93].

Natural polymers can be modified chemically in a variety of ways, including nitration, 
hydroxylation, sulfonation, acylation, alkylation, phosphorylation, thiolation, xanthation, 
quaternization, and graft copolymerization, which is the most promising approach that 
leads to a broad range of molecular designs [93, 94]. Graft copolymerization is a popular 
method for improving chitosan’s antibacterial, chelating, and complexation properties. The 
grafting of chitin and chitosan through covalently binding a molecule onto the backbone 
allows for the synthesis of functional derivatives [95].

Chemically Synthesized Biodegradable Polymers

Polymeric materials are chemically produced with chemical structures similar to natural 
polymers. The chains of ester, amide, and peptide bonds found in polymeric materials are 
readily biodegradable. Polymerization is the term used to describe the process by which a 
large number of little molecules, referred to as monomers or repeating units, combine to 
make a covalently bonded chain or network. Each monomer can lose a few chemical groups 
as the process progresses [96]. Ring-opening polymerization (ROP) is the most flexible 
method for the synthesis of major groups of biopolymers to obtain product in large quanti-
ties. PLA is generated through the polycondensation of lactic acid or the chain growth ROP 
of lactide. The ROP of lactide can be carried out with the help of a variety of catalysts and 
initiators. Sn(Oct)2 is a frequently employed catalyst/initiator [97]. High-molecular-weight 
PLGA is produced by the ROP of lactide and glycolide and the cyclic diesters of lactic acid 
and glycolic acid, respectively, under catalyst Sn(Oct)2 (see Fig. 6) [93, 98, 99].

Microbiologically Synthesized Biodegradable Polymers

Microorganisms can produce a variety of complicated polymeric materials by utilizing 
certain organic materials as food sources such as glucose or starch. These polymeric 

Fig. 6  Synthesis of poly(lactide-co-glycolide) by using ROP process (PLGA: m = number of lactide units, 
and n = number of glycolide units) [99]
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materials include PCL, various types of silk, polysaccharides, and polyesters like poly 
(hydroxybutyrate) (PHB) and poly (hydroxybutyrate-hydroxyvalerate) (PHBV), and 
poly (hydroxyalkanoates) (PHAs). The separation of these products is difficult because 
of their similar chemical properties [6, 100, 101]. PHAs are a group of intracellular 
biopolymers generated by bacteria through the fermentation of lipids or sugars to store 
carbon and energy. Furthermore, PHAs, which can be made from a variety of renewable 
resources, have received a lot of attention because of their putative high biodegrada-
bility in different environments, biocompatibility, chemical diversity, their manufacture 
from renewable carbon resources, and release of non-polluting and non-toxic products 
after degradation [102, 103]. Many prokaryotic bacteria produce and accumulate PHAs 
as energy and carbon storage compounds when a primary non-carbonaceous nutrient 
(such as nitrogen or phosphorus) is limited [104]. The accumulation of these polymers 
enables better survival under unfavorable environmental circumstances [105].

Degradation of polymers by microbial (Fig. 7) is a promising method to depolymer-
ize waste polymers into monomers for recycling, or mineralize them into carbon diox-
ide, water, and new biomass, with concomitant production of higher value bioproducts 
[102]. Polymers are biodegraded by microorganisms by the release of extracellular 
enzymes, attachment of the enzyme to the polymer’s surface, and hydrolysis to short 
polymer intermediates, which are then assimilated by microbial cells as a carbon source 
to emit  CO2 [102, 106].

Enzymatic Synthesis of Biodegradable Polymers

Enzymatic polymerization’s kinetics has been researched in innovative works and is 
typically explained as a monomer-activated process. Some enzymes exhibit various 
characteristics by catalyzing particular polymerizations. Because of the high specificity 
of enzymes, these reactions do not yield any by-products, making the products easy to 
separate [107].

Biodegradable polymers such as polyamide, polysaccharide, and polyester can be 
produced through enzyme-mediated synthesis. Enzymes may also be recycled. Enzymes 
can be used to catalyze reactions under fairly mild conditions (typically at room temper-
ature and atmospheric pressure), which can dramatically lower processing costs [108].

Cheng et  al.[109]. reported that the bulk lipase-catalyzed polymerization (LCP) of 
diamines and diesters (see Fig. 8), which resulted in aliphatic polyamides, roughly have 
a 3000–15,000 g/mol molecular weight.

Fig. 7  The main process that causes polymers to degrade microbiologically
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Chemoenzymatic Synthesis of Biodegradable Polymers

Chemoenzymatic methods demonstrate both high stereoselectivity and economic efficiency 
when compared to chemical and enzymatic approaches [110]. The chemoenzymatic 
synthesis methodology incorporates traditional polymerization with an extremely effective 
enzymatic strategy. As a result, it can be described as a desirable method for producing high-
molecular-weight biodegradable polymers.

Using an effective chemoenzymatic method, researchers were able to synthesize some 
optically active polymeric prodrugs as nonsteroidal anti-inflammatory substrates with high 
molecular weights. Cai et al. [96] have utilized an efficient chemoenzymatic method to synthesize 
some optically active polymeric prodrugs for nonsteroidal anti-inflammatory drugs with high 
molecular weight. Gutman et al. [97] reported the lipase-catalyzed ROP of ε-caprolactone (ε-CL) 
in n-hexane to successfully produce PCL which has up to a 4400 g/mol molecular weight.

Biopolymer Processing Techniques

The functioning of the biopolymer is dependent on a number of parameters in addition 
to its structure and composition, including the type, quality, and quantity of the sol-
vent employed and the processing method utilized to form the final structure that will 
identify the interaction of the materials [111, 112]. The main processing methods for 
biobased polymers from renewable sources are mentioned as follows.

Compression Molding Method

In the compression molding process, sometimes referred to as press molding, the 
appropriate biopolymer is inserted between two molds that have been heated to a high 
temperature. In this process, after applying pressure to the molds, the material takes 
on its final shape, and after curing, its final matrix is cooled and removed [113, 114]. 
Figure 9 demonstrates the compression molding technique.

The advantages of the compression molding process include the ability to produce 
complex shapes and excellent reproducibility of the components produced by this pro-
cess. Additionally, the molding technique results in minimal material loss and high pro-
duction rate as the mold cycle time needs only a few minutes; therefore, it can be used 

Fig. 8  LCP for aliphatic polyamides [93, 109]
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on an industrial scale [115]. However, compared to other equipment used in other pro-
cesses, compression molds are more costly [113, 116, 117].

In accordance with the current literature, the most common natural polymers are those 
comprised of proteins and polysaccharides. These polymers exhibit numerous interactions 
between their intermolecular bonds, which widen the range of their functional properties 
[118]. The primary application of this method is in the production of films. Citric acid 
was used to produce chitosan films [119]. Additionally, this method was used to generate 
active films made of chitosan and cassava starch. The shelf life of pork slices kept in the 
refrigerator was increased by these films [116].

Injection Molding Method

One of the most common techniques to manufacture items made of biopolymers is 
injection molding. Figure  10 illustrates the injection molding technique. The injection 
molding technique involves injecting a paste into a mold, with many control variables, 
for instance powder granulation, paste temperature, filling rate, and mold temperature 
[120, 121]. It is desirable to employ the PLA biopolyester in this method because, in 
comparison to other biopolymers, it has good mechanical characteristics. Different mold 
temperatures were used to produce stereocomplex PLA compositions by injection molding. 
Biocomposites were made by combining PCL with crayfish meal. With PCL present, an 
improvement in the mechanical properties of the systems was seen [122]. Furthermore, 

Fig. 9  Scheme of the compression molding process [112]

Fig. 10  Schematic diagram of the injection molding method [112]
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this process is employed for the enhancement of PLA/PHA nanocomposites. PHA cannot 
be processed even if the chemical composition and flow temperature are similar to those 
of PLA. However, when incorporated with PLA, it functions as a nucleating agent, which 
enhances the material’s mechanical characteristics and barrier behavior [112, 123].

Film Blowing Technique

The film blowing technique is the most utilized for synthesizing plastic films [124]. The 
advantages of this method are simple production equipment, low-cost, adjustable film size, and 
continuous production. Additionally, this method is adaptable; it can be used for manufacturing 
single-layer or multilayer films with a range of film thicknesses and widths [121].

Film blowing methods are manufactured through the extrusion process using a circle-shaped 
extrusion die. Air pressure is then applied to the film to further expand it. The film is chilled to 
encourage the material’s solidification after expanding it to the desired size [125]. Starch is one 
of the most widely utilized materials in this technique. A mixture of chitosan and thermoplastic 
corn starch was employed to build the films. The investigation revealed homogenous films 
without the presence of starch or chitosan granules. In spite of losing some of their mechanical 
features, the films gained more extensibility and thermal stability [126].

Three‑Dimensional (3D) Printing Technique

Three-dimensional (3D) printing, which is an advanced additive manufacturing process 
by accumulating 3D parts with complex shapes layer by layer, is in high demand globally 
and will continue to grow over the coming decades [127]. The innovative method offers a 
distinct advantage for the quick prototyping of complicated products, such as parts with 
particular functions and multi-material with complicated geometric structures [115, 128].

Significant applications of this method have the potential to revolutionize fields like 
medicine. The use of 3D printing technology allows for the replacement or repair of worn-
out bone and cartilage tissues. For the repair of these, biopolymers for instance alginate are 
commonly used [129]. A collagen-alginate blend was evaluated  as a bioink for cartilage 
synthesis. This cartilage has suitable biological functionality and mechanical strength [130]. 
Chitosan is another biopolymer that is frequently employed in this method. Through the use 
of 3D printing, a chitosan hydrogel scaffold was enhanced [131]. A biopolymer-based scaffold 
was built with exceptional human fibroblast adhesion and proliferation capacity. Furthermore, 
starch contains heat- and pressure-sensitive molecules, which makes the depolymerization 
process used in 3D printing easier. The biopolymer’s structure, as well as its physical and 
chemical characteristics, is altered during this depolymerization, making it attractive for 
applications such as functional foods [132].

Biodegradation Mechanism

Biodegradation of a polymer is described as the deterioration of its physical and chemical 
characteristics as well as a reduction in its molecular mass to the production of CO2, H2O, 
and CH4 and other low-molecular-weight products under the influence of microorganisms 
in both aerobic and anaerobic environments with the assistance of abiotic chemical reac-
tions such as photodegradation, oxidation, and hydrolysis [101]. According to ASTM D 
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6400–99 [99], biodegradable plastic is determined as degradable plastic that is degraded 
through the action of naturally occurring microorganisms like bacteria, fungi, and algae.

Figure 11 summarizes the biodegradation stages [133]. Abiotic deterioration is the initial 
stage at the end of the polymer’s usable lifetime where the polymer starts to lose its physical 
and structural properties. The rate of the initial breakdown depends on many factors, for 
example, atmospheric pollutants or agrochemicals; thermooxidative; UV radiation from 
the sun or artificial light source; the polymer chain length; crystallinity; molecular weight 
distribution; the size, shape, and geometry of particle; the surface porosity; pore size and 
distribution; pore geometry; and water diffusivity in the polymer matrix—all of which are 
functions of the polymer’s manufacturing process [134, 135]. Lastly, physical forces such 
as compression, tension, and shear forces like air and water turbulence, snow pressure, and 
animal tearing also affect the initial degradation mechanism [136].

The second stage is biofragmentation. Polymer is more susceptible to enzymatic (i.e., 
biological) “attack” once it breaks up into shorter chains (oligomers) [137]. The substance 
is more physically and chemically accessible to the action of microorganisms and the 
enzymes they release, which results in a rise in the material’s bioavailability [138]. The rate 
of breakdown is linked with the nature of the polymers. In comparison to polymers with 
several functional groups that provide a handle for the enzymes to act on, linear non-reactive 
segments will be more difficult for the enzymes to reach and disrupt [139].

Microbial assimilation and mineralization are the last stage which can be thought of 
as the microorganism eating and digesting the polymers for its own development and 
energy requirements [107]. The assimilation of the monomers into microorganisms, 
which produce cellular biomass and either carbon dioxide or methane that depends 
on the availability of oxygen (effectively air), is the final stage of biodegradation [140]. 
Conditions with excess amount of oxygen are demonstrated as aerobic, limited oxygen as 
anoxic and no oxygen as anaerobic. When a reaction is carried out in a bioreactor, increases 
in the biomass of the selected microbe can be used to quantify the rate of this stage [141]. 
Other environmental parameters, including pH, temperature, and moisture content, will 
influence fragmentation and microbial degradation rate in addition to oxygen 148]. Table 2 
illustrates a list of environmental factors that influence how quickly plastics are assimilated 
by microorganisms.

Fig. 11  Summary of biodegradation [133]
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In deep waters, photodegradation and thermooxidative degradation are reduced due to 
UV availability and oxygen supply limitations and relatively low temperatures.

Discussions Regarding the Complicated Process of Biodegradation

Not all polymers degraded in the environment are biodegradable. There are three primary 
categories of ecologically friendly polymers, as defined by ASTM and ISO [149]. The first 
one is degradable polymer. Important modifications in the polymer’s chemical structure cause 
a loss of some of its properties. Without considering the naturally occurring microorganisms’ 
specific environmental conditions trigger decomposition that happens [150]. The second one 
is compostable polymers. Compostable polymer degrades biologically during composting 
to produce  CO2, water, inorganic compounds, and biomass at a rate comparable to other 
compostable materials and leaves no discernible, toxic, or visible residue [77]. Decomposition 
is the consequence of biological processes employing specialized microorganism combinations. 
The last one is biodegradable polymer. Microorganisms including bacteria, fungus, and algae 
that are present in nature perform the decomposition process. There should be no remains of the 
material in the environment after it has been entirely assimilated [151]. The various degrading 
paths need to be distinguished clearly in order to make it clear which waste route is appropriate. 
Since the incomplete degradation process results in a buildup of highly mobile micro-polymers 
in the environment, it is clear that polymers degraded into micro-polymers should not be 
allowed to enter landfills or rivers [152].

In a review, Singh et al. [153] discussed various polymeric degradation processes and 
their underlying mechanisms, such as thermal degradation, photo-oxidative degradation, 
catalytic degradation, biodegradation, mechanic-chemical degradation, and ozone-induced 
degradation. They also highlighted how various polymers can behave in a variety of ways 

Table 2  Environmental factors influencing the rate of microbial assimilation of plastics are listed briefly

Environment Degradation

Fresh water or salt water Moderate temperatures, UV rays, and atmospheric oxygen are all factors that 
can affect plastic that is floating on the surface [142]. This may accelerate their 
abiotic degradation

Because of limited UV, oxygen availability, and low temperatures in deep waters, 
photodegradation and thermooxidative degradation decreased [143]

The hydrolysis rate of polymers in saltwater is influenced by lower microorganisms’ 
concentrations [144] and based on the ability of the organisms to adhere to the 
polymer surface

Soil The UV rays of the sun, which are required for photodegradation to start, are 
not exposed to plastic that is buried in the soil. According to certain research, 
photodegradation is a chain process that can continue in ground-level polymers 
following UV light exposure [145]

Thermooxidative degradation is restricted in deeper soil areas by anaerobic 
conditions [146]

Landfill The rate of photodegradation and thermooxidation reduces in a dark and anaerobic 
environment. The production of methane and carbon dioxide will be favored by 
anaerobic conditions [147]

Composting facilities The fundamental components that are required for bacterial metabolism, such 
as nitrogen, potassium, and phosphorus, are lacking in plastics. This creates a 
necessity to add fertilizers in order to facilitate the degradation process [148]
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depending on the specific degradation environment and the underlying mechanisms. This 
was further supported by Ramasubramanian’s research [154] in his report of polymer deg-
radation mechanisms, which also provided some potential parameters affecting the deg-
radation process and stated that the degradation process is influenced by the nature and 
mechanism of the degradation process in addition to molecular weight, chemical structure, 
and bond type.

More research on the degradation of particular systems is provided in the paragraphs 
that follow, based on the biodegradable polymers used.

Fukushima et al. [155] reported the biodegradation of neat poly (DL-lactide) (PDLLA), 
PCL, and a partially miscible PDLLA/PCL blend in compost, over a 12-week period. 
According to their findings, the PDLLA degraded very quickly due to its amorphous 
structure, whereas the PCL showed to be resistant against abiotic hydrolysis due to its 
semicrystalline structure and hydrophobicity, in agreement with the previously reported 
discussion on the degradation mechanisms of PCL. A fascinating finding was observed 
about the blend: the continuous PDLLA phase sped up the PCL phase’s hydrolysis. The 
rate of degradation in compost seemed to be usually faster.

Tsutsumi et  al. [156] investigated the actual degradability, both enzymatic (induced 
by lipases) and chemical (in NaOH solution) of several biodegradable polyesters, such as 
poly (butylene succinate adipate) (PBSA), poly (butylene succinate) (PBS), poly (ethylene 
succinate) (PES), poly (butylene succinate)/poly(caprolactone) blend, and PBAT. Because 
of its aromatic ring, PBAT was not considerably degraded by several kinds of the lipases, 
but PBSA was illustrated to be significantly degradable. PES degraded in NaOH solution 
much more quickly than in the other polyesters, and under these circumstances, PBSA 
degraded at a slower rate than in enzymatic degradation.

Mofokeng et al. [157] utilized thermogravimetric analysis (TGA) and Fourier-transform 
infrared (FT-IR) spectroscopy to investigate the thermal stability of PLA/PCL mix 
nanocomposites including  TiO2. While pure PLA displayed a higher activation energy 
of degradation, pure PCL demonstrated better thermal stability. It means that the rate of 
degradation is more temperature-dependent, most likely as a result of a mechanism for 
degradation based on chain scission and re-formation. Although the  TiO2 nanoparticles 
enabled enhance it, the PLA/PCL mixture still displayed a decreased thermal stability.

Regarding the functions of other biodegradable polymers, Muller et  al. [158] studied 
how three different types of shopping bag polymers including standard, biodegradable, and 
degradable plastic decompose in the digestive juices of sea turtles. A standard bag was 
built on HDPE, and a degradable bag was attributed to a proprietary material comprised of 
either PE or PP with additives, whereas a biodegradable bag was built on Mater-Bi. Only 
negligible degradation rates (dependent on mass loss) were observed for the standard and 
the degradable plastic over a 49-day notice period, as anticipated. The degradation rate for 
the biodegradable bag, on the contrary was found to be as low as 9%, which is lower than 
what is generally anticipated under industrial composting environments.

Applications

The usage of biodegradable polymers is expanding quickly, and the global market for them 
is worth many billions of dollars per year. Applications for biodegradable polymers include 
food packaging, computer keyboards, auto interior components, and medical uses such as 
implanted big devices and medical delivery [159–161]. Figure 12 illustrates the numerous 
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uses for biopolymer materials [159]. Furthermore, biodegradable polymers are employed 
in certain applications in which plastics cannot be utilized, for instance making artificial 
tissue. These applications can demand biomaterial properties like biocompatibility, 
environmental responsiveness, and biodegradable candidates with sensitivity to variations 
in pH and physicochemical and thermal variations [162]. In comparison to synthetic 
polymers, biopolymers typically exhibit inferior thermal and mechanical properties (tensile 
strength and brittleness), chemical resistance, and processability. As mentioned in the 
“Introduction” section, they can be strengthened with fillers and fibers that significantly 
improve these properties in order to make them suitable for particular uses.

Conclusion

In a variety of fields, including surgery, pharmacology, agriculture, and the environment, 
biodegradable polymers for short-time applications have received a great deal of attention 
all over the world. The incompatibility of plastic waste with the environment where it 
is disposed of after use is the cause of this increasing interest. The recent technological 
advances into biodegradable polymers enable to reduce environmental pollution and 
greenhouse emissions and also have a critical significance in the lack of supply of oil 
resources. The high production costs and poor performance of some biodegradable plastics 
are the main issues that must be effectively resolved, which need further research to avoid 
competing with other environmental effects.
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