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Abstract

Rapid climate and environmental change at limited, regional, and general scales have been a
major concern for researchers in a number of fields, such as topography, economy,
environment, and sustainable development. Changes in land cover and land use have taken
into account due to potential impacts on soil depletion, amplified run-off, water balance, and
climate change. A detailed understanding of the characteristics of land exploitation and land
structure is indispensable for the study of their influences on life and nature. In addition,
urban extension is a major form of land extraction and land transformation, as it relates to the
rise in population and the availability of financial services. Remote sensing records have
been shown to be important for reporting and perceiving urban development and transition,
and for providing critical information for future growth. Transformation and shift identifi-
cation are the tools used to recognise distinctions in a land cover by tracking them at various
times. In addition, various change identification and detection approaches are routinely
tested with the goal of providing the greatest change detection deductions for a particular
appliance. This review would aim to establish a practical plan that combines remote sensing
techniques, on the one hand, and modelling approaches, on the other, to track land use, to
cover changes, and to predict future trends.
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Introduction

Changes in the surface of the globe have significant consequences for the global radiation
balance and energy flows, contributing to changes in biogeochemical cycles and changes in
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hydrological cycles, and affecting ecological balances and complexity. It is generally held that
understanding land use and land cover change is essential to the public discourse on sustain-
ability. It has been widely reported that the globe has been subject to a significant number of
variations over the last decades [1-3]. These have frequently been correlated with the rise in
deforestation, desertification, and land degradation observed in large parts of the area, and
there has been a need for constant monitoring and oversight [4, 5].

However, despite its greatness to scientists and policy makers confronting the challenges of
environmental change, land use and land cover change is still not well underpinned. Remote
sensing offers cost-effective multispectral and multi-temporal information that is useful for the
analysis and monitoring of land use models and trials and for the creation of land use and land
cover data sets in a geographic information system context that provides a versatile environ-
ment for storing, analysing, and viewing digital information that is important for the identifi-
cation of change and database evolution [6, 7].

Urban growth is actually a big category of land use and land use change, as it is related to a
rise in populations and their financial systems [8]. More fundamentally, it has significant
environmental consequences, such as the degradation of water and air quality [9]. It also has
socioeconomic outcomes, including economic gaps, community disintegration, and improved
infrastructure charges [10].

Remote sensing information has confirmed that it is important to observe and identify urban
transformation, and to provide the necessary information for future progress. In the past,
researchers and planners relied on visual aerial photo analysis to develop land exploitation
plans [11]. Nevertheless, land use maps can now be made more appropriate, inexpensive, and
more accurate with the growth of remote sensing devices and the availability of the latest high-
resolution digital technology [12]. Urbanised growth, driven by increasing population, eco-
nomic development, and technological progress, has become an international phenomenon.
Such development is often seen as the energy of a territorial economy [10, 13]. However, it has
had unconstructive effects on the environment such as biodiversity deprivation, soil erosion,
hydrological disturbances, water and solid contamination, and global warming. Monitoring
and modelling urban spatial development are important for environmental sustainability and
urban planning [6, 14].

The latest environmental and biological changes in the context of widespread and enhanced
social inequality, along with the prevalence of poor living conditions, have had an effect on the
pattern of disease spread. These environmental, economic, and political developments increase
epidemiological uncertainty, favouring the introduction of new pathogens and the re-
emergence of old infectious diseases, historically linked to rural communities and potentially
existing in new settings [8, 9]. These concerns have prompted health-related organisations and,
in addition, international institutions such as the World Health Organization to take action. A
review of the scientific knowledge gained from the application of this approach to the study of
endemic diseases, such as the coronavirus disease, is continuously carrying out. Analysis aims
to evaluate the potential for the use of this technology as a tool for the study and management
of the most prevalent and most dangerous diseases.

Recognition of changes is the method of identifying differences in land cover by monitor-
ing them at various times [15]. Different methods of recognition of changes are usually
compared to the most significant results of detection of changes for a specific function [15,
16]. The most commonly used methods of change detection are image differentiation, post-
classification, transformation vector testing, and principal component analysis [17]. Studies
confirm that these methods have been able to effectively recognise changes in diverse land
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cover through multi-temporal satellite images for different purposes [18, 19]. Furthermore, the
research looked at methods for the detection of functional change for urban change [14, 20].

Satellite Imagery

Satellite imagery refers to the assignment of globe imagery from detectors and sensors placed
on sophisticated satellites in orbit around the globe [6, 21]. Satellite images provide significant
data that can be used in a number of remote sensing applications, such as meteorology,
cartography, urban change recognition, and agricultural inspection. Campbell and Wynne
[22] have identified and categorised the satellite images by four different types of image
resolution:

1. Spatial resolution: The spatial resolution of a satellite picture refers to the dimension in
square meter of the globe, calculated on the ground, which is covered by a picture pixel.
Nevertheless, the most general metric used to illustrate spatial resolution is the metre,
which explains the length of the ground on each side of the square image pixel [23]. The
spatial resolution is influenced by the altitude of the satellite orbit around the globe, and
also the type of sensors positioned on satellite. The higher the spatial resolution of the
image is, the lower the surface area a pixel represents. As a result, a satellite image of
elevated spatial resolution allows for a particular land vision given that even small objects
are captured and then visible [24].

2. Spectral resolution: The spectral resolution of a satellite image is identified as the number
of spectral bands it contains and the size of wavelength variation calculated in nanometres
that each satellite image band captures [25]. This means that the spectral information
extracted from each satellite may change. Most satellites can provide images with at least
four channels where, apart from the standard red-green-blue (RGB) channels, there is also
a near-infrared channel involved. For example, the IKONOS satellite provides 4-channel
satellite images, while the LANDSAT-7 satellite gets 7-channel images. Moreover, even
the wavelength interval of the same spectral channel may vary from sensing element to
sensing element, and this means that the same spectral channel may contain slightly
different information when captured from different sensing elements. Table 1 shows the
wavelength and resolution for each specific band (http://web.pdx.edu/~nauna/resources/
10_BandCombinations.htm). For example, the green channel of the QuickBird satellite
consists of 520—600 nm, while the green channel of the WorldView-2 satellite consists of
510—580 nm. In addition, Table 2 shows the combination bands and corresponding
frequencies (http://maps.unomaha.edu/Peterson/gis/notes/RS2.htm).

3. Temporal resolution: The temporal resolution of a satellite image refers to the time,
normally counted in days, required by a satellite to perform a complete circle around
the globe and return to the same position as before with the objective to accumulate
picture of the identical surface zone [26]. This case of resolution depends mainly on the
orbit of the satellite around the earth.

4. Radiometric resolution: The radiometric resolution of the satellite image refers to the
degrees of brightness of the sensing elements that can be captured by the satellite. The
radiometric resolution is described in bits and the most typical measurements are 8, 11, 12,
and 16 bits. The range of values that the pixels of a satellite image can achieve depends on
the radiometric resolution of the sensor used to capture the image [27]. In particular, given
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Table 1 Wavelength (um) and resolution (m) bands of Landsat 7

Landsat 7 (ETM+ sensor)

Wavelength (micrometres)

Resolution (metres)

Band 1
Band 2
Band 3
Band 4
Band 5
Band 6
Band 7
Pan band

0.45-0.515
0.525-0.605
0.63-0.69
0.75-0.90
1.55-1.75
10.40-12.5
2.09-2.35
0.52-0.90

that the resolution of the radiometric image is » bits, the intensity of the image pixels is
within the range (0, 2n—1). As a result, the pixel size of the 8-bit resolution image is within
the range of 0-255, while the pixel values of the 16-bit resolution image are within the
range of 0—65535 [28]. Figure 1 provides a global overview of the resolution types of the

different optical satellite systems [29].

Land Use Change Detection and Land Covering

Land use and land cover change play a key role in global change and have important
implications for many international policy developments. Over the last few decades, popula-
tion growth and urbanisation have led to a dramatic transition from grassland and forest to
cropland and residential areas. As a result, land use and land cover change have been a major
concern for its results in terms of the water cycle, biological diversity, soils and their fertility,
and water and air quality [30]. Careful consideration is shown by local and regional land
managers and policy makers to take decisions that balance positive growth and bad with the

Table 2 Landsat TM band combinations

Red Green Feature Screen colour

7 4 Bare soil Magenta/lavender/pink
Crops Green
Urban areas Lavender
Wetland vegetation Green
Trees Green

3 2 Bare soil White/light grey
Crops Medium-light green
Urban areas White/light grey
Wetland vegetation Dark green/black
Trees Olive green

4 3 Bare soil Blue/grey
Crops Pink/red
Urban areas Blue/grey
Wetland vegetation Dark red
Trees Red

4 5 Bare soil Green/dark blue
Crops Yellow/tan
Urban areas White/blue
Wetland vegetation Brown

Trees

Tan/orange brown
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Fig. 1 An overview of spectral, spatial, temporal, and radiometric resolution of different optical satellite systems
[26]

idea of maintaining environmental resources and enhancing socioeconomic well-being. In
order to understand how land use and land cover change make and interact with global world
schemes, it is necessary to provide information on what changes occur, when and where they
seem, the values at which they occur, and the natural and social drivers of these changes [31].

Satellite remote sensing data may provide useful information on the geographical disper-
sion of land use and land cover change, along with price and time savings for information
gathering over traditional inventories and studies across large regions [32]. In addition, data on
remote sensing may provide information on the temporal trends and spatial distributions of
urbanised regions involved in understanding, modelling, and designing land change. Figure 2
shows the main devices used for remote sensing imaging [33]. Remote sensing change
detection is the process of identifying differences in the status of an object or phenomenon
by observing it at different times. Remotely sensed data has become a major source of
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Fig. 2 The main devices used for remote sensing imagery [33]
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information for various change detection application programmes in recent decades, due to
repetitive data acquisition and digital formats that are suitable for computer processing [34].
Although most of the change detecting research studies have focused on land use and land
cover change, recent work has used change detection techniques in a number of applications,
such as forestry [35] and vegetation modification, forest fire [36], wetland change, and urban
change [37].

Urban Change Detection

Land cover change and land use are key elements of global environmental change and have
significant impacts on many aspects of ecosystem processes and functions at local, regional,
and global scales. Over the last few decades, agricultural expansion and intensification,
deforestation, and urbanisation have progressively affected more than half of the Earth’s
unfrozen surface [38]. A number of published studies have suggested that land cover change
and land use have significant impacts on biodiversity, water production and quality, climate,
soil status, food protection, and human well-being [39—41]. Although urbanised regions
comprise only a small part of the world’s land area, urbanisation is widely viewed as the
most intensive and important land cover change and land use type [42]. Land transformations
from forest and other natural land to urbanised land are typically permanent and may lead to a
number of ecosystem-related problems, such as impaired air and water quality, the spread of
invasive species, and habitat fragmentation [43]. With the rapid migration of population to
urban areas, urbanisation processes have accelerated over the last decades. Monitoring past
and recent urban scale and urbanisation operations is of vital importance for the assessment of
ecosystem services and for the promotion of policy making [44].

Urbanisation is one of the most important forms of global change in both developing and
developed countries. Urbanisation is caused by the growth of population and economy, as well
as by the concentration of human population in large metropolitan areas. Inappropriate land
preparation and land management cover changes associated may be associated to. The urban
development may have major impacts on climate and ecosystems, including degradation of
water and air quality, loss of farmland and forests, and the socioeconomic effects of economic
disparities, social fragmentation, and monetary value of infrastructure [45]. In addition, urban
areas have higher solar radiation absorption and thermal capacity and conductivity than other
land-based types. As a result, urban areas tend to have higher temperatures than adjacent
agricultural areas due to impervious surfaces such as roads and buildings. This thermal
difference leads to the development of urban thermal islands [46]. Monitoring and representing
the urban development needs robust techniques and methods. Traditional study and mapping
methods do not have the capacity to provide the necessary data in a timely and cost-effective
manner. In recent decades, studies have shown the potential for remote sensing modification
detection techniques to provide accurate and timely data on urbanised land change [47, 48].
Mas [49] found that post-classification is the most successful method of urban change
detection, with information on various soil moisture and vegetation phenology circumstances.
In addition, Li and Yeh [50] concluded that multi-date principal component analysis (PCA)
and categorization could be successfully applied to determine rapid urbanised expansion in the
Chinese river. Principal component analysis is the foundation of a multivariate analysis of data
based on projection techniques. The most significant application of principal component
analysis is the implementation of a multivariate record board as a small set of variables with
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the aim of viewing trends, bounds, groups, and outliers [51]. Principal component analysis is a
very flexible device and allows the study of datasets that may include, for example, multi-
collinearity, misplaced values, and categorical records, in addition to incorrect data [52]. The
objective is to detect and express significant data records as a set of primary indices or main
components [51, 53]. Anees et al. [54] used remote sensing with geographic information
systems (GIS) change detection techniques to map the spatial dynamics of urban land
modifications.

The main challenge for the categorization of urbanised land cover is to accurately identify
the relative contribution of reflection from a number of materials in an urbanised environment.
Furthermore, consideration needs to be given for changes that are not linked to urbanised land
cover change, such as seasonal vegetation variations. In addition, some works, including other
spatial data, have been investigated in order to overcome the sub-pixel mixing problem and
improve per-pixel compartmentalisation by using textural [55] and contextual [56]
information.

Change Detection

Detection of changes in computer vision can generally be identified as a problem with the
identification of the character and magnitude of the changes between the two compared images
that describe the corresponding scene and were obtained at different time periods. Depending
on the objectives of each task, some changes are fundamental and require further analysis and
modelling, while others are superficial or improper and should be discarded. Detection of
change can be a challenging task as it affects various elements, such as temporal, spectral and
spatial, restraint, radiometric resolution, and atmospheric conditions [57]. In an effort to
overcome the difficulties and provide accurate change in the detection of outcomes, different
changes to detecting skills have been prepared. Authors grouped change detection techniques
based on different points of view and grouped them into pre-classification or post-
classification methods [58] and pixel-based or object-based methods [59]. Pixel-based change
detection methods consider the image pixel to be the basic unit of image analysis and change.
These techniques, which can also be considered as pre-classification techniques due to the fact
that they are employed on raw data, are most often used in the literature on change detection
methods. Several pixel-based change detection methods have been developed and their
advantages and disadvantages have been analysed in an attempt to improve the accuracy of
the change detection [60, 61].

Famous pixel-based change detection techniques include image differentiation, image
rationing, picture regression, background subtraction, principal component analysis, and
change vector analysis (CVA). Change vector analysis is used to recognise spectral changes
involving two identical scenes that have been produced at different times. Change vector
analysis is limited to two bands for each image. The change vector in the spectral dual-
dimensional space is estimated for each pixel. It explains the transformation of one attribute
across a variety of events (variables) between two limits of time as a vector within the space of
variables [62]. Fundamentally, a vector with a direction element and a magnitude can be
expressed. The magnitude constituent expresses the quantity of change as the direction
element indicates the type of change. Picture differentiation calculates the absolute differences
between the pixel values of the grayscale image and is the easiest way to execute, but no
information on the type of change is provided. An overview of the use of image differentiation
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for land cover change detection was provided in [63]. Image rationing calculates the ratio of
grayscale pixel measurements and it has the reward that it is better able to handle calibration
errors [64] but no complete change data matrix is provided. Picture regression attempts to
adjust the pixel values of the objective image to those of the reference image by regression
analysis. It accounts for variations in mean and variance between pixel measurements for
different dates and thus reduces the adverse effects caused by atmospheric conditions and sun
angles [65]. Unfortunately, it is difficult to determine precise regression functions due to local
luminance fluctuations present in images. Background subtraction [66] attempts to find the
background information from the photos compared and then deducts it from the photos in
order to obtain change information. Although simple to implement, the background subtrac-
tion is subject to low accuracy [67].

Principal component analysis applies dimensionality reduction to the withdrawal of infor-
mation redundancy between multispectral bands and the punctuation of different information.
Principal component analysis was used in [68] as a distance metric to determine the magnitude
of change in the value of the pixel when the Bayes principle was used to distinguish pixels in
two classes, “change” and “no change”. The disadvantages of the principal component
analysis change detection methods are the difficulty in interpreting and labelling the results
of the principal component analysis and the lack of extracted data on the nature of the changes
[69].

In contrast to previous pixel-based change detection techniques, the change vector analysis
can provide information on the type of change. Change vector analysis uses all the available
multispectral image data, interprets each pixel as a vector, and differentiates on vectors. As a
result, the Euclidean vector distance identifies the magnitude of the change, while the vector
angle provides information on the type of change. The disadvantage of changing vector
analysis change detection method is that it requires accurate radiometric correction for
atmospheric effects to be mitigated and such precise radiometric correction is not possible
[19]. All pixel-based change detection methods suffer from two major disadvantages or
limitations that have led to research into object-based change detection techniques. The first
drawback is that a threshold is necessary to distinguish between pixels that belonging to the
“change” class from those that belonging to the “no change” class. Selecting the optimum
threshold is a problematic procedure and pixel-based techniques are usually subject to mis-
detection or over-detection [70]. This is because the threshold is too weak to allow too many
surfaces of change, while the threshold is too high to expel surfaces of change. The other
limitation of pixel-based techniques is the fact that they do not take into account the spatial
links between adjacent pixels [71]. This exclusion from the spatial context leads to the removal
of primary information, which would greatly contribute to accurate results in the detection of
changes. The special subcategory of pixel-based change detection techniques is based on
texture analysis methods. These methods are used at the window/block level, implying that the
statistical characteristics are calculated over the imbrications windows that move across the
compared images. As a result, these techniques take into account the spatial setting of pixels
and they may be more noise-proof than other pixel-based techniques.

Change detection solutions for these algorithms are based on the rating of similarity metrics
between the windows being compared. A common similarity metric used in several texture
analysis supported change detection methodologies is a correlation that can be used either in
the time domain in the form of normalised cross-correlation (NCC) [72] or in the frequency
domain by transforming images using Fourier and then analysing the index spectrum (phase
correlation (PC)) [73]. NCC is a main mathematical instrument for signal and image
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processing for character matching, correspondence analysis, signal tracking, and object iden-
tification [74, 75]. In order to improve its real-time and efficient performance, it was suggested
that digital standardised cross-correlation be implemented by some fast algorithms and
hardware structures due to its high computational complexity [76, 77].

In addition, the Bhattacharyya distance is used to compare pixels inside the imbrication
windows [78]. In digital image processing, an estimate of the theoretical distance involves two
normal distributions of spectral categories, which operates as a higher boundary on the
possibility of miscalculation in a Bayesian approximation of the acceptable classification.

Texture-based methods are subject to the same limitation as different pixel-based tech-
niques, which is the demand for the best threshold that distinguishes pixels that correspond to
true changes from all other pixels. In an attempt to overcome the limitations of pixel-based
change detection techniques, object-based methods have been developed. Object-based
methods can usually be identified as post-classification methods due to the fact that the images
are commonly fragmented into regions or categories before any change detection method is
used. The unit for analysis in object-based change detection techniques is an image object with
valuable data, such as texture, shape, and spatial relations with adjacent objects, providing for
the use of spatial settings [79].

Picture partition is at the centre of the object-based change detection methods and different
supervised or unsupervised partition techniques are used with varying results. Most object-
based change detection techniques can be classified in either field-based (similarity of pixels)
or boundary-based (discontinuity of pixels) or edge-based methods [80]. The expectation-
maximization (EM) algorithms [81], the artificial neural networks (ANNs) [82], and the
support vector machine (SVM) classifiers [7, 83] are image partition algorithms that are
usually used in object-based change detecting methodological analyses. The expectation-
maximization algorithm is a methodology for achieving the maximum probability assessment
of hidden variables. It does this by first approximating the values for hidden variables, then
optimising the prototype, and then reiterating the two steps of the union. It is an efficient and
common methodology and is most commonly used for density evaluation through missing
records, such as clustering algorithms such as the Gaussian mixture model.

In addition, support vector machines are a kind of machine learning classifier, possibly one
of the most common types of classifiers. Support vector machines are particularly useful for
numerical prediction, categorization, and sample detection tasks [12, 21]. Support vector
machines run through the representation of decision limits between records points, aiming at
a decision boundary that most excellently divides the information points into categories. The
objective when using a support vector machine is that the decision boundary between the
points is as large as possible so that the distance between the specified data point and the
boundary contour is maximized.

Change detection methods based on the EM algorithm achieve higher accuracy than other
methods but they require a priori knowledge of the joint probability class [81]. The artificial
neural networks approach can provide significant change detection results, particularly when
categories are not normally distributed, but it needs a lot of preparation time and it is sensitive
to the amount of training data [84]. Artificial neural networks are seen as nonlinear statistical
data modelling tools where complex relationships involving inputs and outputs are designed or
patterns are found. Data flowing through the network affects the structure of artificial neural
networks because the neural network varies on the basis of input and output. Artificial neural
networks are deep learning frameworks capable of forming identification and machine learn-
ing. They are part of the broader domain of artificial intelligence (Al) technology [85].
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Finally, the advantage of support vector machine classifiers is that they do not make
assumptions about the underlying data distribution and process the task of detecting change
as a dual classification problem. The support vector machine classifier learns from the training
records and the optimum threshold is automatically defined [86] from the spectral character-
istics with the aim of classifying the pixels in the “no change” or “change” categories. Other
machine learning algorithms used to monitor categorization, classification, and change detec-
tion include fuzzy logic [87], random forest [88], or genetic programming [89]. Fuzzy logic is
a valued logic structure that may have accurate variable values in any actual number between 0
and 1. The fuzzy logic algorithm makes it easier to resolve a problem after taking into account
all existing records. After that, the most likely result for the specified input is taken. Common
phenomena, such as environmental change, rarely have crisp limits and therefore cannot be
approached in the conventional method by means of dual logic (weak or not: 0 or 1) [90]. As a
result of fuzzy logic, units are allowed to have a partial association with a given category,
which is allocated through bias formulas. Among the fuzzy relational calculus, a numerical
foundation is built to treat all types of cases where the uncertainty of the status of the
environment cannot be ignored.

Lately, random forest algorithm has become particularly famous in the field of remote
sensing, and is rather quick compared to other machine learning methodologies [91]. The
concise description of the random forest algorithm is derived from the denomination.
Rather than employing the forecast of an individual decision tree, the algorithm will
result in a large number of decision trees being assembled. The “random” fraction of the
name comes from the expression “bootstrap aggregating”, or “bagging”. This means that
every tree within the forest can only learn to train on some division of the complete
training dataset. The components of the training records for each tree left hidden are
believed to be “out-of-bag” for precision evaluation. Uncertainty also helps to having the
choice which variables of the input attribute are observed at each node in each decision
tree. Once all the trees are robust for random division of the training records, by means
of an arbitrary set of attribute variables for each node, the assembly of all the trees is
used to provide the final forecast [92].

Genetic algorithms (GA) are the ideal option for heuristic unsupervised classification.
Heuristic unsupervised classification is based on the creation of some mathematical
designs and, subsequently, the improvement of a predefined indicator to determine the
cluster information and the centroids mechanically [93]. Heuristic optimization proce-
dures are considered to be a reproducible, accurate, and time-efficient method of repeat-
edly categorising remote sensing images. Previously, genetic algorithms have been
successfully approved for image processing [94] and image identification for specific
uses such as therapeutic treatment [95].

Object-based techniques that rely on image segmentation suffer from over-
segmentation or under-segmentation miscalculations. Such miscalculations produce ob-
jects that do not accurately represent real-world objects [96]. Under-segmentation creates
larger objects that hide more than one object in the real world, and they may contain
mixed categories of objects, whereas over-segmentation creates finer components of real-
life objects that need to be merged to make current objects more pragmatic [97].
Unfortunately, the miscalculations of the used image classification process are dissem-
inated in the final change map, which reduces the accuracy of the most recent change
detection results [98]. In order to improve the results of the change detection, the
classification of individual images must be as accurate as possible.
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Conclusion

Apparent urban growth, driven by rising population, economic expansion, and technological
progress, has become an international trend. Such growth is often seen as the strength of a local
economy. However, it has had unconstructive effects on the environment, such as biodiversity
loss, soil erosion, hydrological disturbances, water and solid contamination, and global
warming. Screening and modelling of urban spatial expansion are essential for ecological
sustainability and urban planning. Due to the ability to deal with nonlinear and multifaceted
phenomena, the integration of analytical techniques and methods with remote sensing has
enhanced the performance of image classification for the disjointed and varied landscape in the
urban environment. The other component is to differentiate spatial urban expansion in the
practical zone, and cellular phases by using three methodologies: urban land change planning,
site metrics survey, and moving windows examination.
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