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Abstract
Purpose of Review  Sensory evaluation holds vital significance in the food sector. Typically, humans conduct sensory analysis. 
Humans, being the ultimate consumers, assess food traits effectively. However, human judgment is influenced by various 
factors. Hence, countering subjectivity is crucial for objective evaluation while retaining hedonic insights.
Recent Findings  Food’s sensory assessment primarily employs humans. Various techniques differentiate, depict, or rank 
food. Modern sensory tools, aiming to enhance objectivity and reliability, are emerging to supplement or supplant human 
assessment. This advance can bolster quality, consistency, and safety by mimicking human senses such as smell, taste, and 
vision, mitigating risks tied to human assessors.
Summary  This paper provides a review about sensory analysis of food using technological methodologies. A review of 
different technological tools to analyze sensory characteristics of food, as well as a discussion of how those technological 
tools can relate to humans’ perception of food is presented.

Keywords  Sensory evaluation · Spectroscopy · Biometric measurements · Artificial senses

Introduction

Sensory analysis is a scientific method used to evaluate and 
understand the human perception of food, drink, and other 
consumer products. The sensory evaluation of foods presup-
poses the analysis of their intrinsic and extrinsic character-
istics. While the intrinsic characteristics are related to how 
the physicochemical characteristics of food are perceived 
by the sense organs, such as its appearance, aroma, texture, 
and flavor, using the senses of sight, smell, taste, touch, and 
sometimes sound, the extrinsic characteristics have a more 
subjective character, relating to the way consumers react to 
the former. We speak of sensory science in the first case and 
consumer science in the second. Traditional sensory evalu-
ation methods (discriminative, descriptive, and hedonic [1]) 

rely on human senses to assess the quality and characteris-
tics of a product. While these traditional methods have been 
effective, they can be time-consuming, expensive, and sub-
jective due to their reliance on human evaluators. Moreover, 
they may not fully capture the complete range of sensory 
experiences associated with complex products like multi-
component foods or beverages.

Recognizing the considerable time and economic invest-
ments required for training assessment panels in descriptive 
analysis, numerous innovative methodologies for sensory 
characterization emerged in the early 2000s [2]. These meth-
odologies prove to be less time-intensive and more adaptable 
and can involve partially trained assessors and even consum-
ers. They generate sensory maps that closely resemble the 
outcomes of traditional descriptive analysis conducted with 
highly skilled panels. These novel techniques, mentioned 
and used by various authors, employ diverse approaches, 
such as methods centered on the assessment of specific 
attributes (such as intensity scales [3], check-all-that-apply 
questions or CATA [4–8], flash profiling [9], and paired 
comparisons [10, 11]), methods focused on evaluating 
overall differences (sorting [12], projective mapping or Nap-
ping® [5, 13–15]), methods involving the comparison with 
product references (polarized sensory positioning [5, 16]), 
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and methods based on an open, comprehensive evaluation of 
individual products (Open-ended questions [17]). Addition-
ally, hedonic methods such as just about right (JAR), ideal 
profile method (IPM), relative preference mapping (RPM), 
and temporal dominance of sensations (TDS), among others, 
were reported [18]. Nonetheless, the above methodologies 
still exhibit certain limitations.

In response to the need for more objective and com-
prehensive assessments of sensory attributes of food, and 
perceive how consumers react to them, emerging methods 
have gained attention. Novel techniques such as the use 
of biometric measurements (including facial expressions, 
heart rate, skin conductance, body temperature, and eye-
tracking) [19, 20•, 21, 22], virtual environments (virtual and 
augmented reality) [23, 24], and artificial senses (e-nose and 
e-tongue [25•, 26]) are being explored as tools to under-
stand the complex nature of human responses in sensory 
tests [27, 28••, 29]. Other methods include chromatogra-
phy [30] and spectroscopy [29, 31], which employ sen-
sors to detect and quantify specific compounds associated 
with flavor, aroma, and texture. Digital imaging (E-eye) is 
another emerging method that uses cameras and algorithms 
to analyze the visual characteristics of products [25•, 32]. 
Additionally, consumer-based methods such as social media 
analysis and online surveys have become valuable tools [33]. 
These emerging methods offer advantages such as increased 
objectivity, faster data collection, and the ability to capture 
a broader range of sensory experiences. However, they also 
have limitations, such as high costs and the need for special-
ized equipment or expertise.

Both traditional and emerging sensory evaluation meth-
ods have their strengths and weaknesses. The choice of 
method depends on the specific needs and goals of the food 
industry. By combining different methods, the industry can 
obtain a more comprehensive understanding of the sensory 
attributes of their products and make informed decisions 
regarding product development, marketing, and quality 
control. Precise sensory evaluation methods are crucial 
in the food industry for ensuring consistency, safety, effi-
ciency, and compliance with regulatory standards. Failure 
to implement appropriate sensory analysis can lead to nega-
tive consequences such as customer dissatisfaction, com-
promised public health, production inefficiencies, and legal 
repercussions(Fig. 1).

The purpose of this paper is to provide a comprehensive 
review of emerging methods in sensory analysis that can 
enhance our understanding of sensory attributes in the food 
industry. The review focuses on various techniques, includ-
ing spectroscopy, artificial senses, and biometric measure-
ments. These methods offer innovative approaches to obtain 
more objective and comprehensive assessments of sensory 
attributes. Despite some limitations, ongoing advancements 
and research continue to address these challenges, making 

emerging methods valuable tools in enhancing product 
development, consumer understanding, and quality control.

Spectroscopy

In this section, the significance of diverse spectroscopy 
methodologies in food analysis is elucidated, affirming their 
pivotal role in upholding stringent quality and safety control 
measures, ultimately contributing to consumer satisfaction 
and safety. The emergence of spectroscopic techniques pre-
sents objective, swift, and non-destructive tools for assessing 
food quality [34]. Within the most common spectroscopic 
techniques used in food science, visible and near-infrared 
spectroscopy, Fourier-transform infrared spectroscopy, and 
Raman spectroscopy in combination with chemometric 
methods have been used in assessing the characteristics of 
several products such as dairy and honey products [35–37], 
meat and seafood [38–41], cereals [42–45], vegetable oils 
[46–48], and coffee [49, 50]. In recent years, hyperspectral 
imaging has emerged as a valuable tool in food science, ena-
bling the determination of composition parameters such as 
moisture and protein content. A rapid, nondestructive, and 
noncontact analytical method is useful to assess the quality 
and safety of meat and meat products, vegetables and fruits, 
cereals, aquatic products, and others [51].

Moreover, it has been successfully utilized to study the 
optical properties of various food products including oils, 
juices, milk, yogurts, and eggs [52]. Similarly, nuclear mag-
netic resonance (NMR) has found significant applications in 
food science, food analysis, and food quality control [53]. 
NMR has proven particularly effective in the analysis of milk 
and milk products [54–56], enabling characterization based 
on geographic origin and feeding diet [57]. It has also been 
employed in studying the effects of freezing on pasta filata 
and non-pasta filata cheeses [58], as well as in the analysis 
of meat [59, 60], edible oils [61], cereals and beer [62, 63], 
and fruits and vegetables [64]. These advanced techniques 
(hyperspectral imaging and NMR) have demonstrated their 
efficacy in providing valuable insights into the composition, 
physical characteristics, and quality of various food prod-
ucts. Their successful applications in diverse areas of food 
science contribute to improved food analysis, quality control, 
and understanding of food properties.

The assessment of most physicochemical parameters in 
food is typically linked to sensory properties. When it comes 
to determining the ultimate quality of a product based on 
consumer preference, sensory analysis by trained sensory 
panels serves as the key. However, it is important to note 
that maintaining sensory-trained panels can be challeng-
ing, costly, and time-consuming. Considering these chal-
lenges, the utilization of spectroscopic techniques as non-
destructive, fast, and precise methods has been explored as 
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an alternative to traditional sensory panels. While there have 
been numerous studies published in this area, only a few 
directly relate spectroscopic and chemometric techniques 
to sensory traits. Table 1 shows a selection of studies that 
related the spectroscopy techniques and chemometrics tech-
niques with sensory attributes in various food products.

Indirectly related but largely influencing the food sensory 
quality is the fat content, particularly the intramuscular fat or 
marbling, which is one of the most important characteristics 
of meat quality. It is often associated with the meat’s color, 
another determining factor for consumers when purchasing 
meat. Hyperspectral imaging has been successfully applied 
to characterize intramuscular fat distribution in beef and 
classify beef marbling with great accuracy [80, 81], and in 
pork [82]. It has also been applied in lambs [83] with prom-
ising results.

For predicting the intramuscular fat, NIR spectroscopy 
has also been used [84] showing the potential of Vis–NIR to 
predict moisture and IMF using homogenized pork muscles 

[85] and for example to predict chemical composition in 
goats [31], and in beef [86]. In sheep and goats, an extensive 
revision on the use of non-destructive imaging and spec-
troscopy techniques for the assessment of meat quality was 
made [87].

The detection of fat content, an important factor related to 
fish quality, in salmon or grass carp is also achievable using 
hyperspectral imaging [88–90]. Additionally, a multispectral 
model has been developed to detect changes in docosahex-
aenoic acid (DHA) and eicosapentaenoic acid (EPA) levels 
in fish fillets [91]. These two n-3 polyunsaturated fatty acids 
have been proven to offer beneficial health effects, particu-
larly for cardiovascular and inflammatory conditions. Also, 
in fruits, hyperspectral technology is used to detect charac-
teristics related to sensory quality as in apples for predicting 
bruise susceptibility [92]. The recent advances and appli-
cations of hyperspectral Imaging in detecting, classifying, 
and visualizing quality and safety attributes of fruits and 
vegetables were summarized in a revision by Lu et al. [93].

Objec ve and precise measurements with 
advanced sensors for color, texture, aroma, flavor.   

analysis and profilling integrated with classical 
sensory evalua on ..

.. aided by efficient and consistent automated 
processes and in-depth data analysis will 

potenciate the understanding of consumers 
requirements and  help fulfill their demands

Spectroscopy

Ar ficial sensesBiometric 
mesurements

Odor

Texture

Apperance Flavour

Automa on and data 
analysis

Sensory analysis of food is of capital importance 
but when made by humans can be subjec ve

Fig. 1   The integration of technology enhances objectivity and efficiency in food sensory evaluation
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With the advancement of computer image processing 
technology, various procedures such as ultrasounds and 
computed tomography have been employed to obtain mus-
cle images for assessing intramuscular fat through computer 
image analysis. The computer vision–based marbling assess-
ment has been performed in beef [94–96], pork [97, 98], and 
lamb [99] and also in cheese quality evaluation [100] or even 
in fruit classification [101]. Additionally, computer vision 
has been employed for the assessment of color grading in 
beef fat [102] and the color of salmon fillets [103].

Spectroscopy techniques have emerged as powerful 
tools for assessing food quality attributes in a rapid, non-
destructive, and objective manner. While their applications 
in food science and sensory analysis have already shown 
great promise, the future holds even greater potential for 
these techniques to revolutionize the assessment of sensory 
food quality. Continued advancements in technology, data 
analysis, and integration with other disciplines will propel 
these techniques to new heights. By leveraging these tools, 
the food industry can optimize product development, ensure 
consistent quality, and meet the ever-evolving demands and 

preferences of consumers. Spectroscopy techniques are 
poised to revolutionize sensory food quality assessment and 
drive innovation in the field of food science.

Artificial Senses

Electronic Noses and Tongues

The electronic tongue (E-tongue) and electronic nose 
(E-nose) are recent tools that can redefine the traditional 
methods of evaluating food attributes, bringing a data-driven 
and objective dimension to the intricate world of taste and 
aroma analysis. Both align with the imperative for precise 
and swift quality assessment of food products, driven by the 
paramount importance of safety considerations within the 
food supply chain.

The electronic tongue, known as the E-tongue, serves as 
a versatile instrument for decoding taste profiles and can be 
constructed using diverse measurement principles, includ-
ing optical, electrochemical (potentiometric, impedimetric, 

Table 1   Food sensory evaluation studies using different spectroscopy methods

NIR near-infrared spectroscopy, PTR-Tof–MS analysis via proton transfer reaction-time of flight-mass spectrometry, CVS computer vision sys-
tem, FLUO Fourier-transform infrared fluorescence, NMR nuclear magnetic resonance, WOF warmed-over flavor, NIRR NIR in reflection mode, 
NIRT NIR in transmission mode

Food product Spectroscopy technique Sensory evaluation Reference

Coffee (expresso) NIR associated NIR can be successfully applied for sensory quality estimation [65]
Coffee (expresso) Nosespace (NS) with (PTR-Tof–MS) A better understanding of coffee flavor perception [66]
Cheddar cheese NIR Predict sensory attributes (crumbly, rubbery chewy, mouthcoating, 

and mass forming)
[67]

Cheese NIR Sensory attributes and instrumental texture measurements were 
modeled with sufficient accuracy

[68]

Milk and ripened cheese NIR and PTR-Tof–MS High rate of discrimination according to the farming system using 
sensory profiles. Interesting as a research tool. Not at an industry 
level

[69]

Tea Micro NIR and CVS Portable and low-cost tool to evaluate the black tea fermentation 
quality

[70]

Black tea NIR and CVS A useful strategy to classify black tea [71]
Pineapple FLUO For odor, the FLUO sensor achieved the highest overall perfor-

mance
[72]

Peas NIR Potential for predicting the sensory quality (texture and flavor) [73]
Walnut kernels NOR Excellent potential for monitoring the quality (rancid, nutty, sweet 

bitter)
[74]

Pork NIR, Raman, fluorescence, NMR Fluorescence spectroscopy and TBARS were able to follow the 
WOF during storage

[75]

Beef NIR (NIRR and NIRT) The better prediction of sensory attributes was obtained in the 
NIRR mode

[76]

Beef Raman Raman spectroscopy technology can predict texture, tenderness, 
and overall acceptability

[77]

Lamb NIR Intramuscular fat and water are accurately predicted by NIR, 
related to sensory characteristics

[78]

Beef Raman High potential to predict the sensory quality traits of young dairy 
bull beef

[79]

80



Current Food Science and Technology Reports (2024) 2:77–90

voltammetric, or amperometric), mass-based, and spec-
troscopic detection techniques [104]. The potentiometric 
E-tongue with polymeric lipid sensors stands out as the 
most extensively employed option. [105]. Resembling an 
artificial palate, it is a multisensory apparatus designed to 
mimic the human gustatory system. Comprising an array of 
chemical sensors that respond to various taste compounds, 
the electronic tongue generates unique response patterns, 
or sensor “fingerprints,” for each food sample that is ana-
lyzed. These fingerprints are subjected to advanced statisti-
cal analyses and machine learning algorithms to decode taste 
attributes such as sweetness, bitterness, saltiness, sourness, 
and umami. The E-tongue bridges the gap between tech-
nology and human evaluation. Its ability to swiftly discern 
complex taste profiles showcases its potential in various food 
sectors, such as in the meat area. Some different examples of 
potentiometric electronic tongue applications in meat, poul-
try, and fish are pork/chicken adulteration in minced mutton 
[106]; salt taste intensity effect of saltiness-enhancing pep-
tides in meat products [107]; flavor profiles of sheep breeds 
[108]; crayfish flesh flavor evaluation due to different dietary 
protein sources [109]; flavor compounds in dry-cured pork 
with different salt content [110]; and physical–chemical and 
microbiological changes in fresh pork meat under cold stor-
age [111].

Parallelly, the E-nose mimics the human olfactory prow-
ess by identifying and distinguishing diverse odors and 
aromas. This device is also an emerging approach capable 
of detecting and differentiating between various aromas 
through an array of electronic sensors (usually, semicon-
ductor gas sensors). The data harnessed from these sensors 
also undergoes sophisticated algorithms to craft distinct 
aroma patterns, revealing the nuanced scent signatures of 
diverse food samples. The E-nose is also a non-destructive 
and low-cost system that can be applied to evaluate food 
quality, safety, and adulterations since it is capable of char-
acterizing food quality factors [112].

Numerous instances exemplify its application in the realm 
of highly perishable muscle-based foods, including meat, 
poultry, and fish. These instances demonstrate its potential 
as a promising tool for evaluating quality attributes such as 
freshness, spoilage detection, and the identification of adul-
teration in meat products. For instance, the presence of pork 
in meat and meat sausages [113], the adulteration of beef 
meat involving varying proportions of pork meat [114, 115], 
and the blending of minced mutton with duck [116] were 
subjected to analysis using an E-nose. The outcomes of these 
analyses revealed acceptable accuracy, markedly shortened 
detection time, and good detection efficiency. Similar results 
were obtained in studies centered on beef spoilage [117], 
pork spoilage [118], and fish meal spoilage [119], as well as 
the freshness of chicken [120], freshness of pork [121], and 
shelf-life evaluation of meat and fish products [122, 123].

Aroma Tests

Aroma tests involve evaluating how consumers perceive 
food aromas by exposing them to various scents and rating 
their preferences and intensities. These tests utilize special-
ized sensory evaluation methods like olfactometry or gas 
chromatography–olfactometry, allowing precise presentation 
and analysis of aromas. Human evaluation remains essential 
despite using technology. While sensory approaches provide 
valuable data on the overall nature and intensity of aroma 
mixtures, they may not fully capture the intricate interactions 
during odor perception. To address this, researchers use 
models based on complex mixture compositions to under-
stand odor nature and intensity [124]. Similarly, headspace 
solid-phase microextraction coupled with gas chromatogra-
phy–mass spectrometry was employed [125, 126] to study 
the aroma components of dark tea varieties. Odor activity 
value calculation and aroma profile tests were conducted to 
understand the aroma characteristics of “aged fragrance” 
and “fungi flower aroma.” Moreover, Hawko et al. [124] 
utilized an experimental mixture design with sensory analy-
sis to develop numerical models converting chemical data 
into sensory data. They used Langage des Nez® (LdN), an 
objective odor-nature description method, to characterize the 
odor nature for each mixture and modeled the variation in 
odor nature based on mixture composition. It is worth not-
ing that aroma tests can also be associated with electronic 
noses (E-nose).

Electronic Eye

An electronic eye (E-eye) is a computer vision technology 
that converts optical images using an image sensor, elimi-
nating subjective human vision [127]. It finds applications 
in food quality evaluation [128], providing fast, accurate, 
and non-destructive assessment of product shape, size, 
color, and texture [129]. This versatile technology integrates 
mechanics, optics, electromagnetic detection, colorimetry, 
spectrophotometry (discussed in detail previously), digital 
video, and image processing, making it valuable for moni-
toring visual quality changes during production [130, 131]. 
Appearance and color are vital factors in consumers’ quality 
experience, and the E-eye ensures reliable and consistent 
monitoring [132]. It offers objectivity, reproducible meas-
urements, and data storage for product traceability and does 
not affect product consistency or texture. The E-eye allows 
in-depth analysis and can correlate with sensory panel 
assessments [133]. Its applications extend to agricultural and 
food industry processes, monitoring product aging, detect-
ing foreign substances, verifying color changes during food 
processing, and assisting the brewing industry in automation 
for optimizing product quality [134–137].
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Conventional image analysis is highly valuable for stud-
ying meat products’ appearance characteristics due to its 
cost-effectiveness, consistency, speed, and accuracy in auto-
mated applications [138–140]. Extensive research has been 
conducted on the use of the E-eye for quality evaluation in 
various fresh meat and meat product applications. Its ver-
satility includes assessing color [141, 142] and monitoring 
color changes [143, 144], grading marbling level [145–147], 
quality prediction [148] and control [32], defect detection 
[149–151], and sorting operations [152–154]. Color is a 
critical attribute in meat and meat products, closely linked to 
freshness, and color discrepancies may lead to the rejection 
of meat cuts [155]. Studies have shown favorable correla-
tions between E-eye and colorimeters, with good results for 
lightness and reasonable regression coefficients for redness 
and yellowness in chicken meat [156]. Globally, E-eye tech-
nology holds the potential to bring advantages to the recent 
trends in automation and online control in food production 
[157].

Biometric Measurements

The use of neuro-physiological data in models of consumer 
choice is gaining popularity. Eye tracking, facial expres-
sions, and electroencephalography (EEG) are some exam-
ples [19, 29]. Food experiences are shaped not only by the 
inherent qualities of the food such as its appearance, taste, 
texture, and flavor but also by external factors like visual 
branding and the consumers’ past encounters with the food. 
Advancements in automated facial expression analysis and 
heart rate detection, utilizing remote photoplethysmography 
(RPPG) [20•] based on changes in skin color, have made it 
possible to monitor food experiences through video images 
of the face. This type of methodology/technology can be 
applied remotely using video images, opening opportunities 
for large-scale testing in consumer science, and allowing 
researchers to conduct studies with a broader reach [20•, 
158].

Facial Expressions

Numerous researchers globally have extensively documented 
the recent sensory method of measuring facial expressions 
[20•, 21, 22, 159]. When exposed to stimuli, humans uncon-
sciously display emotions, often through involuntary facial 
movements, which researchers use to understand emotional 
states. While psychologists have employed this approach for 
a considerable time, its popularity among sensory scientists 
has grown due to the integration of automated mechanisms 
for quick response processing [160]. Software solutions like 
FaceReader™, developed by Noldus Information Technol-
ogy in Wageningen, The Netherlands, or Affectiva Affdex®, 

created by Affectiva Inc. in Waltham, MA, USA, utilize 
built-in algorithms to detect and measure various facial 
movements. These algorithms then translate the captured 
signals into emotional responses [161]. Facial expressions 
have proven to be valuable in assessing consumers’ emo-
tional reactions to a variety of products, including choco-
late [158, 162], beers [163, 164], sports drinks [22], meat 
products [165], yogurt [166], and soy sauce [20•]. Table 2 
provides a summary of the results obtained in studies where 
facial expressions were utilized to evaluate food products, 
showing great potential for the use of this technology.

Furthermore, the findings from a study exploring whether 
facial expressions during food consumption could pro-
vide additional insights into temporally dynamic, implicit 
responses to foods beyond self-reported conscious measures 
[167] suggest that facial electromyography (EMG) has the 
potential to aid in understanding consumer responses to food 
in future research. However, while it showed a connection to 
the hedonic liking of commercially available chocolate sam-
ples, the sensory variations in these samples made it chal-
lenging to use facial EMG to distinguish samples based on 
mean liking, which is better achieved through self-reporting 
methods.

Exploration of how sensorial perceptions change with 
age and whether biometric analysis can help uncover uncon-
scious consumer responses was made [168], focusing the 
investigation on the effects of consumer age on facial expres-
sion responses (FER) while consuming beef patties with 
varying firmness and taste. Two age groups were consid-
ered—younger (22 to 52) and older (60 to 76). Video images 
were recorded during the consumption, and the FERs were 
analyzed using the FaceReader™ software. Younger partici-
pants exhibited higher intensity for happy, sad, and scared 
expressions but lower intensity for neutral and disgusted 
expressions compared to older participants. Additionally, 
interactions between age and texture/sauce showed minimal 
FER variation in older individuals, while younger partici-
pants showed significant FER variation. Notably, younger 
participants displayed the lowest intensity of happy FER and 
the highest intensity of angry FER when consuming the hard 
patty. The addition of sauce led to a higher intensity of happy 
and contempt expressions in younger consumers but not in 
older consumers. Results demonstrated a successful differ-
entiation between the unconscious responses of younger and 
older consumers by analysis of FER using FaceReader™. By 
utilizing automatic facial coding (face reader) and skin con-
ductance response (SCR) measurements along with context 
information during the observation, olfaction, manipulation, 
and consumption of liquid foods by children [169], the study 
observed that the methodology employed successfully dis-
tinguished the three samples throughout these stages. The 
most effective discrimination between samples occurred dur-
ing the manipulation task.
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Other Autonomic Nervous System Responses

Apart from analyzing facial expressions, several other bio-
metric techniques can be employed to evaluate the emo-
tional responses of participants or panels toward different 
stimuli. These techniques, implicit measurements of food 
experience [170], include measuring heart rate [20•], body 
temperature [159], and skin conductance [171]. Further-
more, a recent review focused on the application of specific 
neuroscientific methods in consumer sensory analysis, par-
ticularly highlighting the use of EEG and eye movements 
[172]. Techniques mainly used for collecting brain signals 
(EEG, electroencephalography; fMRI, functional magnetic 
resonance; and MEG, magnetoencephalography), active 
muscle fibers electric signals (EMG, electromyography), 
and heart-beat rates (ECG, electrocardiogram) [173] are 
referred as new non-invasive sensory approaches in food 
sensory analysis and market survey. The application of 
this novel technology has shown to be appealing in the 
context of sensory and consumer sciences, complementing 
information from explicit measures of the sensory proper-
ties themselves obtained by objective evaluation of a taste 
panel. As referred by Viejo et al. [164], the combination 
of sensory and biometric responses in consumer accept-
ance tests proved to be a dependable tool for beer tast-
ing, enabling the extraction of valuable information from 
consumers’ physiology, behavior, and cognitive responses.

Electrophysiology, specifically using EEG, measures 
brain electrical activity in response to sensory stimuli, 
providing insights into neural patterns linked to different 
sensory experiences, such as sweetness or bitterness. This 
information helps in understanding how consumers perceive 
food and how sensory perception affects preferences and 
behavior. EEG enables predictive models for sensory per-
ception, optimizing food formulation and packaging to cater 
to diverse consumer groups. Several studies have utilized 
electrophysiology for this purpose [174–178].

When applying biometric techniques to food-related stud-
ies, the results can differ based on the type of product being 
evaluated and the cultural background of the participants 
or panel involved. Table 3 resumes the results from stud-
ies made with the application of biometric measures when 
consuming food.

Virtual Reality and Immersive Techniques

The environment in which consumers taste their foods or 
beverages can significantly affect their sensory responses 
[24]. Traditional sensory tests use isolated booths to elimi-
nate external interference, but some argue that this lacks 
real-life context [181]. To address this, researchers conduct 
consumer tests in real-world settings like restaurants and 
kitchens [182], though this can be time-consuming and 
costly. Immersive virtual reality offers a promising solution, 

Table 2   Results from studies applying facial expressions when consuming food/beverages

Product Result Reference

Commercial 
breakfast 
drinks

ANS responses (including heart rate, temperature, and skin conductance) and facial expressions were different 
depending on the type of food sample evaluated

[159]

Chocolate Video advertisements evoked a higher emotional response compared to perfumes, and perfumes elicited more 
emotions than chocolates. Discrimination between video advertisements and perfumes was achieved through a 
facial expression measurement protocol, revealing a temporal emotional response for these products. However, no 
discrimination was found between different chocolates, and they did not elicit a temporal emotional response

[158]

Sports drinks The participants’ implicit emotional responses, as reflected in their facial expressions, indicated a higher level of 
engagement with energy drink B when compared to energy drink A. The study revealed that the overall liking and 
the explicit (CATA) and implicit (facial expressions) emotional measurements demonstrated weak to moderate 
correlations

[22]

Soy sauce The main factors influencing liking and arousal were the specific tastes, while branding and familiarity had minimal 
impact on these aspects. On the other hand, facial expressions were primarily influenced by branding and familiar-
ity, with specific tastes playing a secondary role

[20•]

Beer The facial expressions “Lip suck” and “Lip press” have the potential to serve as effective indicators for predicting 
beer choices after tasting. While the current study did not confirm reproducibility, it was observed that “Lip suck” 
before swallowing was associated with a reduced number of beer choices. On the other hand, “Lip press” after 
swallowing demonstrated a positive correlation with beer choices and was established as a consistently replicable 
finding

[163]

Yogurt Using the facial expression recognition (FER) approach, the study successfully differentiated the acceptability of 
various yogurt samples, particularly identifying the disliked ones. However, it should be noted that this method 
only explained a small portion of the variability in the consumer data. Moreover, the FER results also revealed 
cultural differences, with each culture displaying a distinct set of emotions in response to the tasted yogurts

[166]
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allowing the simulation of various contexts in controlled 
laboratory facilities. This approach has been valuable in 
studying the sensory impact of different environments, such 
as tasting wines and chocolates [183, 184]. Augmented real-
ity is another option, integrating virtual elements into the 
real world to assess consumer perceptions and emotional 
responses, as demonstrated in tasting yogurt products [185].

In a preliminary study [186], the impact of immersive 
consumption contexts on food-evoked emotions was inves-
tigated using facial expressions and subjective ratings. The 

findings revealed the following three key points: (1) rec-
reating physical and social consumption contexts in the 
laboratory influenced general and food-evoked emotions, 
as evident from both self-reported emotions and facial 
expressions; (2) both the type of food and the context 
independently influenced food-evoked self-reported emo-
tions and facial expressions; (3) while there were simi-
larities between self-reported, food-evoked emotions and 
facial expressions, some differences were also observed, 

Table 3   Biometric studies on sensory evaluation of food

Product Technology Results Reference

Soy sauce Heart rate Both RPPG (remote photoplethysmography) and PPG (photoplethysmog-
raphy heart rate) heart rates demonstrated effects associated with brand-
ing and familiarity. Nevertheless, it became evident that the RPPG heart 
rate measurement necessitates additional refinement, given its tendency 
to underestimate heart rate when compared to PPG. Additionally, RPPG 
heart rate exhibited reduced sensitivity to variations over time and dur-
ing different activities, like viewing brand information and tasting

[20•]

Sucrose (sweet) and 
quinine (bitter) solu-
tions

Heart rate and skin conductance Heart rate decreased when tasted samples contradicted expectations and 
increased when the samples confirmed expectations. The sweet sample 
elicited larger heart rate increases compared to the bitter sample. The 
second experience led to heart deceleration

Skin conductance was influenced by novelty and valence, not by disconfir-
mation of expectations. Increased with the bitter sample and decreased 
with the sweet sample. Skin conductance was consistently higher during 
the first experience compared to the second

Findings suggest cardiac responses are more sensitive to novelty and 
disconfirmation of expectations, while skin conductance responses 
primarily reflect novelty and valence

[171]

Wine ECG and skin conductance After a brief and intensive sensory training focused on wine tasting, the 
participants’ autonomic nervous system (ANS) activity shifted toward a 
less sympathetic response once they became familiar with the odorous 
compounds

[179]

Beer Heart rate, temperature from 
the eye region, and EEG

A negative correlation was observed between body temperature and liking 
of foam height and stability, indicating consumers tend to prefer beers 
with greater foam when their body temperature is lower. Theta signals 
showed a positive correlation with bitterness, suggesting consumers tend 
to prefer beers with lower bitterness when their theta signals are higher. 
Overall, consumers’ beer preferences are influenced by both conscious 
and unconscious sensory responses, with a preference for beers with 
greater foam and lower bitterness

[164]

Beers EEG Participants evaluated beer sensory properties as relatively similar. How-
ever, during the gustatory phase, experts and general tasters displayed 
differences in brain activation related to memory processes, while gen-
eral tasters and consumers showed differences in brain activation linked 
to hedonic processing

There was an apparent stronger relationship between self-reported quality 
judgments and EEG activity, particularly in recognition and working 
memory components, in experts than in other groups. General tasters 
and consumers also exhibited connections, primarily involving hedonic 
processing and recognition memory components. Relationships differed 
significantly, especially between experts and consumers, with variations 
in the involvement of working memory components

Results suggest that beer experts have a more efficient pattern of gustatory 
processing and demonstrate a better alignment between explicit (judg-
ments) and implicit (EEG) measures of the sensory and hedonic quality 
of beers

[180]
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highlighting the additional value of measuring facial 
expressions in understanding emotional responses to food.

Conclusion

Never underestimating sensory evaluation performed by 
humans, in a world propelled by innovation, these technol-
ogies beckon a paradigm shift in sensory analysis, fusing 
cutting-edge prowess with culinary finesse. As they continue 
to evolve, the new techniques promise a new frontier where 
objectivity and data-driven insights heighten our apprecia-
tion of food attributes.
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