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Abstract
The latitude algorithm of Indian astronomy has been a long-standing puzzle. All interpretations of the algorithm by various 
authorities of the past have failed to produce a reasonably accurate result for the latitude of the heavenly bodies. In this paper 
we examine the latitude algorithm of the Moon in detail. It is determined that a central cause for the failure is a misinterpre-
tation of the mean-max parameter as specified in ancient texts such as the Sūryasiddhānta. In addition, there appears to be 
a missing sub-algorithm for the calculation of maximum latitude, a key component in the overall latitude algorithm. After a 
detailed analysis, we provide a conjecture of what the missing algorithm for the Moon’s maximum latitude may have been 
like and why it was possibly expunged from the Sūryasiddhānta.
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1  Introduction

One of the long-standing puzzlements in Indian astronomy 
has been the calculation of latitude. By that, we mean the 
computation of the latitude of the five visible planets and the 
Moon. Various interpretations of the Indian latitude algo-
rithm that the savants of the past have put forward have 
thus far been unsuccessful in calculating the actual latitude 
of these heavenly bodies with any reasonable accuracy, and 
there appear to be two reasons for this failure.

First, the terse and cryptic nature of ancient Indian texts, 
where information is presented in a highly compressed and 
minimalistic fashion, makes them prone to misinterpretation. 
Second, the curious fact that there appears to be missing 
information in the Sūryasiddhānta, perhaps erased unwit-
tingly or withheld deliberately. Though the overall latitude 
algorithm given in the Sūryasiddhānta is entirely correct 
per modern spherical trigonometry, a vital sub-calculation 
in the process, namely, that of computing the maximum lati-
tude, appears to be missing altogether. The mystery is com-
pounded by the puzzling fact that Indian astronomers of yore 
have completely ignored this missing bit of information.

To summarize, the latitude conundrum in Indian astron-
omy comprises two related issues: (i) a missing sub-algo-
rithm relating to the calculation of maximum latitude and (ii) 
the curious fact that this missing algorithm has never been 
noticed or mentioned by Indian astronomers of the past. In 
this paper, we take a detailed look at the Indian latitude algo-
rithm while keeping our scope limited to that of the Moon. 
We do this primarily because the algorithm for the Moon is 
considerably simpler than that for the planets, and our cur-
rent approach needs to be vetted on the simplest case first.

2 � The wayward Moon

The study of Lunar motion has vexed not a few people in the 
past, including Sir Isaac Newton. It is well-known that our 
closest neighbor in space moves in a highly erratic fashion, 
making the accurate prediction of its motion a daunting task. 
This irregularity is because the motion of the Moon is influ-
enced by two bodies–the Earth and the Sun. The combined 
gravitational effect of these two bodies produces great fluc-
tuations in the motion of the Moon, as shown in Fig. 1a, b.

Figure 1a shows the variation of the anomalistic period 
of the Moon over 200 orbits starting January 1, 2000. 
The anomalistic period is the time taken by the Moon to 
move from one perigee to the next. Its average duration is 
27.55 days. As seen in the figure, the anomalistic period 
changes continuously from month to month, from orbit to 
orbit. It varies from about 27 days to nearly 28 days – almost 
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a full day, which is a considerable variation for a 28 day 
cycle.

Similarly, Fig. 1b shows the variation of lunar apogee 
distance from the Earth for the same time range. The aver-
age distance is about 405,400 km. It can be observed that 
there is considerable variation in this distance from month 
to month. Quite a few short-term and long-term variations 
can be discerned in these figures.

The motion of the Moon is highly irregular due to the 
dual influences of the Earth and the Sun, and accurately pre-
dicting its longitude and latitude will be no easy task.

3 � The Moon in Indian astronomy

The Moon occupies a central place in Indian calendric 
astronomy. Since time immemorial, the fundamental units of 
the Indian calendar have been the Lunar Day and the Lunar 
Month. In the Luni-Solar calendar, a new month always 
begins at Sun-Moon conjunctions. Furthermore, Lunar and 
Solar eclipse calculations depend critically on accurate pre-
diction of the Moon’s position. Thus, it becomes apparent 
that an error-prone Moon calculation can throw the entire 
calendar into chaos, which is not the case in the long-stand-
ing traditional Indian Luni-Solar calendar that is brought 
out every year. The ancient Indians appear to have devel-
oped two techniques for astronomical computation: (i) the 
Siddhāntam method and (ii) the Vākiam, or Kārana method.

The former is a rigorous procedure that starts from first 
principles and adopts a complex planetary model involving 
multiple epicycles. This technique is suited for mathemati-
cians and astronomers. The second is a practical approach 
that relies heavily on reference tables. This method is 
adopted by calendar makers, astrologers, and amateur 
astronomers, who want results quickly without dwelling 
deep into geometry and mathematics (Narayanan, 2022).

The extensive amount of ancient literature available on 
these two techniques is a strong testament to the antiquity 

and maturity of Indian astronomy and its popularity and 
widespread use among the masses. It becomes obvious that 
the ancient Indians expended a great deal of effort towards 
the science of astronomy, the Moon in particular, due to its 
paramount significance to the Indian calendar.

The Indian model for the planets, with its dual-pulsating 
epicycles, is, mathematically speaking, far greater in com-
plexity than those of any other ancient civilization. There-
fore, it is reasonable to suppose that the Moon too must 
have received an equally rigorous treatment at the hands of 
the ancient Indians, and their acumen must have produced 
a near-perfect prediction method for the Moon’s latitude as 
well. Proceeding with that assumption, let us look at the 
latitude algorithm for the Moon in Indian astronomy.

4 � Latitude algorithm of the Moon

The Indian text we will refer to is the Sūryasiddhānta (Bur-
gess, 1858), a revered, extant treatise among the various 
works of ancient Indian astronomy, many of which are now 
lost. The original text has been estimated to be older than 
3000 BC (Brennand, 1988; Narayanan, 2010).

Figure 2 shows a schematic of the Moon’s latitude. The 
Moon (m) revolves around the Earth (e). The plane of the 
Moon’s orbit is observed to incline with respect to the eclip-
tic. The ecliptic, as we know, represents the plane of the 
Earth’s orbit around the Sun. This tilt is approximately five 
and ¼ degrees and varies a little from orbit to orbit due to 
the Sun's gravitational influence.

The inclined orbit of the Moon meets the ecliptic at two 
points, the nodes. At the ascending node (a) the Moon moves 
from the southern side of the ecliptic to the northern, while 
at the descending node (d) it does the opposite.

At any point, the Moon’s latitude (L) is its angular dis-
tance from the ecliptic. In the diagram, this is represented 
by the arc bm. The maximum latitude (Lmax) is the arc cp.

The arc ab, which represents the longitude of the Moon 
along the ecliptic from the ascending node, is called the 

Fig. 1   Irregular motion of the Moon

Fig. 2   The Moon’s latitude
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argument of latitude (AoL) since the Moon’s latitude has 
a direct relation to it. When the Moon is at either node 
(a or d) the AoL is 0° or 180°, and its latitude is zero. 
Conversely, when the Moon is at p or q, the AoL is 90° 
or 270°, and its latitude (north or south) is at a maximum.

Using standard laws of mathematics, we can calculate 
the arc bm, which is the latitude L. According to the laws 
of spherical geometry (Smart, 1977), Δabm and Δacp are 
similar spherical triangles. Thus, their sides are related by 
the following expression:

Since Indian astronomy employs RSines instead of 
plain Sines, we will multiply both sides of the above 
expression by the radius (R).

Or,

The standard radius in Indian astronomy is set as 3438 
arc-minutes. Hence, RSine(bm) equals the arc bm in arc-
minutes, which is the Latitude (L). Similarly, RSine(cp) 
gives the maximum latitude (Lmax) in arc minutes, and 
since angle ac = 90°, RSine(ac) simply equals the radius R.

In other words, the modern relation for calculating the 
Moon’s latitude equates to the following expression:

Referring to the Sūryasiddhānta (Chapter-II/Verse-
57), we find the following instructions for computing the 
Moon’s latitude:

The RSine of the arc found by subtracting the place 
of the node from that of the Moon, being multiplied 
by the extreme latitude, and divided by the radius, 
gives the latitude.

Thus, we see that the ancient Indian expression for com-
puting the Moon’s latitude exactly matches the modern 
expression, indicating that the ancient Indians were well-
versed in spherical trigonometry, as concluded by John 
Warren (Kāla Sankalita, 1825):

From modern rules of mathematics, it becomes 
apparent that the people of India, at some former 
period, were well acquainted with the theory of 
Spherical Trigonometry, if they be not acquainted 
with it at present.

sin (bm)

sin (ab)
=

sin (cp)

sin (ac)
.

R × sin (bm)

R × sin (ab)
=

R × sin (cp)

R × sin (ac)
,

RSine (bm)

RSine (ab)
=

RSine (cp)

RSine (ac)
.

(1)L =
RSine (ab) × L

max

R

.

We note from Eq. 1 that the Moon’s latitude algorithm is 
simplicity itself. However, there is one puzzling fact associ-
ated with it. Nowhere in the Sūryasiddhānta is mentioned 
how to compute the maximum latitude (Lmax), which, as we 
know, varies from orbit to orbit.

The text itself does provide a clear hint that Lmax is vari-
able by presenting something called the Mean-Max latitude 
(Lindian-mean-max), which represents a sort of mean value for 
the maximum latitude, but it does not provide a way to com-
pute Lmax. We may conjecture that perhaps Lmax is expected 
to be obtained in some well-known or obvious way from 
Lindian-mean-max, since nothing more is mentioned on the subject 
in the text. This is the crux of the puzzle we are investigating.

Let us begin our analysis by examining the actual month-
to-month variation of the Moon’s maximum latitude.

5 � The Moon’s maximum latitude

Figure 3, shows the actual variation of the Moon’s maxi-
mum northern latitude from orbit to orbit (month-to-month) 
for 100 consecutive months, starting from January 1, 2020, 
computed using modern formulae (Meeus, 2000). Each dot 
represents the maximum latitude for that month. A similar 
variation occurs for southern maximum latitudes as well.

We can observe that Lmax changes periodically, varying 
from a minimum of around 5° to a maximum of about 5.3°, 
the mean value being 5.14° (upper dashed line in the figure), 
which we will call the Actual Mean-Max latitude.

Further below in the figure is shown another dashed line, 
which represents the mysterious Indian Mean-Max latitude 
(Lindian-mean-max) of Indian astronomy, which is defined as 
4.5° for the Moon in the Sūryasiddhānta. It is obvious from 
the figure that the Indian Mean-Max latitude has no rela-
tion to the Actual Mean-Max latitude, which brings up the 
question–what exactly does the Indian Mean-Max represent?

Fig. 3   Variation of maximum northern latitude of the Moon



	 Indian Journal of History of Science

Let us examine the verses that define the Indian Mean-Max 
latitude in the Sūryasiddhānta (Chapter-I/Verses-68, 69, 70):

The Moon is, by its node, caused to deviate from the limit 
of its declination, northward and southward, to a distance, 
when greatest, of an 80th part of the minutes in a circle.

Jupiter, to the 9th part of that multiplied by 2; Mars, to 
the same amount multiplied by 3; Mercury, Venus, and 
Saturn, to the same amount multiplied by 4

Thus: 270, 90, 120, 60, 120, and 120, are the number 
of minutes of Mean-Max Latitude of the Moon and the 
planets in their order.

 The first verse indicates the physical reason, according to 
the ancient Indians, due to which the planet strays from the 
ecliptic, northward or southward. This is stated to be due 
to the action of the two nodes. The ascending node (Rāhu) 
attracts the planet northwards, while the descending node 
(Ketu) pulls it southwards. The net lateral movement of the 
planet at any point is a result of the ‘combined pull’ of the two 
nodes, which naturally depends upon the planet’s proximity 
to these nodes.

The first verse also indicates that the maximum latitude 
produced by the action of the nodes on the Moon is 4.5°, 
but it states so in a strange fashion–the 80th part of a cir-
cle (360°/80 = 4.5°). Why this strange wording? Why not say 
4.5° directly? Is this simply an attempt by the author of the 
Sūryasiddhānta to fit the poetic meter of the verse, or are there 
deeper waters here? We will come back to this later.

The second verse indicates how to compute the Mean-Max 
latitudes for the five visible planets. To ensure no ambigu-
ity, the third verse explicitly states these computed values of 
Mean-Max for each planet. For a terse and succinct text like 
the Sūryasiddhānta, this repetition of information is quite out of 
character and is indicative of the great significance attached to 
these Mean-Max latitudes by the text. This verse also explicitly 
states that these numbers are only mean values of the maximum 
latitude (madhyama-vikṣepa), which is important to note.

As an aside, the ‘order’ of the planets in the third verse 
refers to the order of weekdays: Monday (Moon), Tuesday 
(Mars), Wednesday (Mercury), Thursday (Jupiter), Friday 
(Venus), and Saturday (Saturn).

Before continuing our analysis any further, it may be use-
ful to examine how various Indian astronomers of the past 
interpreted the Moon’s Mean-Max latitude.

6 � Interpretations by various authorities

6.1  �Āryabhaṭa (~ 495 CE)

We learn from ancient writers that Āryabhaṭa was the 
foremost astronomer of his time and that he had written 

several treatises on mathematics and astronomy, all of 
which have unfortunately been lost, except a minor pam-
phlet – the Āryabhaṭīyam (Clark, 1930). His major work, 
the Ārya-Siddhānta, was one of a trio of books from India 
that taught the first generation of Arab astronomers.

The Gola (spherics) section of the Āryabhaṭīyam pre-
sents the following verse (V3):

The Moon, from its nodes, moves northward and 
southward of the ecliptic.

Verse 6 of the Dasa-Gītika (ten verses) section has a single 
mention of the Moon’s maximum latitude:

The greatest deviation of the Moon from the ecliptic 
is 4.5 degrees.

Thus, while the Sūryasiddhānta clearly states that 4.5° is 
only a sort of mean of the maximum, Āryabhaṭa appears 
to consider this value as an absolute maximum for the 
Moon’s latitude.

6.2  �Varāhamihira (~ 530 AD)

Varāhamihira was an astrologer who lived in the Ujjain 
region of central India. Though his date is not very certain, he 
is known to have lived after Āryabhaṭa, whose work he men-
tions. He wrote several books on astrology and one on astron-
omy—the Pacasiddhāntas (five treatises) (Thibaut, 1889), 
which is a compendium containing the distilled essence of 
five well-known astronomical works of his time, namely, 
the Sūryasiddhānta, Brahmasiddhānta, Vaśiṣṭhasiddhānta, 
Pauliṣasiddhānta, and the Romakasiddhānta.

In the Pauliṣasiddhānta chapter, we find:

When the Moon is 90° distant from the ascending 
node her latitude attains its maximum of 270 minutes 
(4.5°).

 In the Romakasiddhānta chapter, the following expression 
is given to find the Moon’s latitude:

Multiply the Sine of the Moon’s distance from its 
node by 21 and divide by 9.

 Instead of the usual Indian radius of 3438 units, the 
Romaka adopts the Greek radius of 120 units and its asso-
ciated sine. Thus, Eq. 1 becomes:

Therefore, Lmax = 120  21/9 = 280 min = 4.67˚.

L =
RSine (ab) × L

max

120

,

or ,

L
max

120

=
21

9

.
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We may conjecture that the Romaka intended to use the 
Indian value of 270 min (4.5°) for the maximum latitude and 
that 21/9 is an approximation for 270/120.

One interesting observation here is that according to 
Western scholars, both the Pauliṣa and Romakasiddhāntas 
were borrowed by the Indians from Greek sources. How-
ever, Ptolemy’s Almagest (mentioned further below) gives 
the maximum latitude of the Moon as 5.0°. If the Paulisa and 
Romaka are truly of Greek origin, it is puzzling why they did 
not adopt Ptolemy’s value for the Moon’s maximum latitude.

6.3  �Brahmagupta (~ 630 CE)

The astronomer Brahmagupta is believed to have lived in the 
Bhinmal region of modern Rajasthan in India. In later life, 
he is said to have moved to Ujjain, one of two major centers 
for astronomy in India. After moving to Ujjain he composed 
his second major work, the Khanda Khādyaka (Sengupta, 
1934). According to the Persian scholar Al-Birunī, this was 
a much sought-after book by both amateurs and experts alike 
in those times.

In the chapter on Lunar Eclipses of the Khanda khādyaka 
we find:

From the longitude of the Moon subtract that of the 
ascending node; The sine of the resulting arc multi-
plied by 9 and divided by 5 gives the latitude of the 
Moon in minutes.

Since Brahmagupta’s system employed a radius of 150 
units, Eq. 1 becomes:

Therefore, Lmax = 150  9/5 = 270 min = 4.5°.

6.4  �Lalla (~ 760 CE)

Lalla was an Indian astronomer who lived in the southern 
part of Gujarat. Only two of his works are currently extant. 
In the Lun ar Eclipse chapter of Śiṣyadhīvṛddhida Tantra 
(Chatterjee, 1981) the following verse is found:

Subtract from the Moon’s longitude the longitude of 
the ascending node.

   Find RSine of the result, multiply it by 15, and divide 
by 191. The result is the latitude of the Moon.

Since Lalla used the standard Indian radius of 3438 units, 
Eq. 1 becomes:

L =
RSine (ab) × L

max

150

,

or ,

L
max

150

=
9

5

.

Thus, Lmax = 3438  15 /191 = 270 min = 4.5°.

6.5  �Mañjula (~ 935 CE)

Though the astronomer Mañjula’s location is not known for 
certain, he is thought to have lived in northern India, possibly 
near Patna in modern Bihar. In his Laghu-Mānasa we find the 
following reference to the Moon’s latitude (Shukla, 1990):

Subtract the longitude of the ascending node from that 
of the Moon; Find the RSine of the result and multi-
ply it by 36. The result is the latitude of the Moon in 
minutes.

Mañjula’s system employed the unusual radius of 8′ 8′′, 
so Eq. 1 becomes:

Therefore, Lmax = 8.133  36 = 292.8 min = 4.88°.

6.6  �Bhāskara‑II (~ 1150 CE)

Bhāskara II, the great mathematician and astronomer who 
dates to the early part of the second millennium, is believed 
to have lived in the region of present-day Maharashtra. In 
his astronomical treatise, the Graha-Gaṇita (Arka Somayaji, 
1980), within the section on Lunar Eclipses, is found the 
expression to calculate the latitude of the Moon:

Thus, the maximum latitude will be 270 min = 4.5°, which 
will occur when RSine = R, that is, when the argument of 
latitude is 90°.

6.7  �Nīlakaṇṭha (~ 1500 AD)

Nīlakaṇṭha Somayājī was an astronomer and mathemati-
cian who belonged to the Kerala School of Mathematics 
and flourished during medieval times. His most influential 
astronomical work, the Tantrasaṅgraha, was completed in 
1501 CE (Ramasubramanian, 2011).

L =
Sine (ab) × L

max

3438

,

Or,

L
max

3438

=
15

191

.

L =
Sine (ab) × L

max

8.133

,

Or,

L
max

8.133

=
36

1

.

L =
RSine (ab) × 270

R

.
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In the Lunar Eclipses chapter are found the following 
verses:

The RSine of the longitude of the node subtracted 
from the Moon is multiplied by 270 and divided by 
the Radius, which gives the latitude of the Moon.
This multiplied by the Moon’s orbital radius and 
divided by the actual distance between the Earth and 
the Moon gives the true value of latitude.

While the first verse appears to suggest that 270 min 
(4.5°) is the maximum latitude of the Moon, the second 
verse clarifies, in line with the general concept of the 
Sūryasiddhānta, that 4.5° is only the Mean-Max latitude.

Nīlakaṇṭha proclaims the actual latitude of the Moon as:

where Dmean is the mean distance of the Moon, and Dactual is 
the actual distance.

According to modern data, the mean distance of the 
Moon from the Earth is 239,000 miles, while the minimum 
and maximum are 226,000 and 252,000 miles, respec-
tively. Plugging these values into Eq. 2 gives us the range 
of maximum latitude for the Moon as 4.27˚–4.76˚ accord-
ing to Nīlakantha.

6.8  �Ptolemy (~ 140 CE)

Finally, to round off our analyses of ancient savants, we 
must make a mention of the Greeks. Claudius Ptolemy was 
the greatest among the astronomers of Greek descent who 
lived in Alexandria, Egypt during the second century CE. 
His works represent the culmination of Greco-Roman sci-
ence, particularly his work on astronomy, the ‘Mathemati-
cal Syntaxis’, known among the Arabs as the Almagest 
(Ptolemy, 1952).

In Book-V of the Almagest, he provides a lookup table 
for lunar latitudes, which presents the maximum latitude 
of the Moon as 5.0° exactly.

6.9  �Summary of ancient literature

Table 1 shows a summary of information from ancient lit-
erature with regard to the maximum latitude of the Moon.

We have added an extra column at the end that shows the 
obliquity of the ecliptic according to these ancient astrono-
mers, which may have a bearing on the topic at hand, as will 
be explained later. From the third column of the table, we 
note that all Indian astronomers of yore have misconstrued 
the Sūryasiddhānta where it is explicitly stated that 4.5° is 
only a sort of mean value for the Moon’s maximum latitude 
and not the absolute maximum. In addition, all of them, 

(2)L
max

=
L
Indian - mean - max

× D
mean

D
actual

,

except for Nīlakanṭha, have also assumed this supposed 
maximum of 4.5° (or near about) to be a constant as well.

This appears to indicate, quite shockingly, that none of 
these Indian or Greek savants of old ever made any actual 
observations of the Moon’s latitude themselves, or else they 
would have been aware that the maximum latitude is about 
5.3°.

Figure 4 shows the Moon at 4.5° and 5.3° latitudes in 
a typical landscape, which indicates the magnitude of the 
error. It is seen that the difference between the two values 
amounts to more than 1 and ½ full-Moon widths; large 
enough to be easily perceived with the naked eye, and cer-
tainly not a trivial error. Yet, it appears that these leading 
lights of Indian and Greek astronomy have not noticed 
the substantial difference between their assumption and 
actuality.

The beginnings of modern European astronomy can be 
traced back to the 16th century when the Danish astronomer 
Tycho Brahe, vexed by the inaccurate astronomical tables 
of his time, decided to create a good observational data set 
for himself. His efforts over the years yielded an extensive 
collection of very accurate observational data, which eventu-
ally paved the way for significant discoveries by himself and 
others. This was the pre-telescope era, in which all observa-
tion was done with the naked eye. From his observations of 
the Moon, Tycho discovered, among other things, that the 
maximum inclination of the Moon’s orbit to the ecliptic was 
not 5° as stated by Ptolemy, but about 5.25°.

Thus, we are confronted with the startling realization that 
no Indian or Greek astronomer of old was able to determine 
by observation what Tycho Brahe found easily, namely, that 
the maximum latitude of the Moon is about 5.25°, and that 
this maximum varies from month to month. Note that the 
Moon attains its maximum latitude 2 times every month 
(north and south), therefore this is not one of those rare phe-
nomena for which an astronomer must wait many years for 
a chance of observation.

A similar situation also occurs with the obliquity or tilt 
of the ecliptic. The tilt was 24° at about 3000 BC, and it 
has been decreasing slowly over the years, its current value 

Table 1   Maximum lunar latitude according to various authorities

Author Date Max lunar latitude Obliquity

Āryabhaṭa 495 CE 4.5° (constant) 24°
Varāhamihira 530 CE 4.5° and 4.67° (constant) 24°
Brahmagupta 630 CE 4.5° (constant) 24°
Lalla 760 CE 4.5° (constant) 24°
Mañjula 935 CE 4.88° (constant) 24°
Bhāskara-II 1150 CE 4.5° (constant) 24°
Nīlakaṇṭha 1500 CE 4.27°–4.76° (variable) 24°
Ptolemy 140 CE 5.0° (constant) 23.86°
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being 23.44°. The obliquity is a parameter that can be deter-
mined easily by observation, and it is seen from the fourth 
column of the above table that 350 years before Āryabhaṭa, 
the Greek astronomer Ptolemy had determined this param-
eter to be 23.86°. Yet, like the Moon’s maximum latitude, all 
Indian astronomers have simply assumed the obliquity to be 
a constant 24° as stated in the ancient Sūryasiddhānta, with-
out making any observational verification for themselves.

Summarizing our three findings thus far: (i) While the 
oldest extant Indian text, the Sūryasiddhānta, clearly indi-
cates that 4.5° is only a sort of mean value for the Moon’s 
maximum latitude, the text does not provide a way to deter-
mine this maximum latitude; (ii) All Indian astronomers of 
old appear to have assumed the stated mean-max value of 
4.5° to be the maximum latitude of the Moon, without mak-
ing any observational verification themselves; (iii) These 
astronomers also appear to have assumed the obliquity of 
the ecliptic to be 24°, once again, without making any obser-
vational verification.

Let us take up the first item, and make a detailed study of 
the actual variation of the Moon’s maximum latitude from 

month to month, to see if we can perchance discover the 
missing algorithm in the Sūrya siddhānta.

7  �Variation of the Moon’s maximum latitude

7.1  �With anomaly

The first variable we will examine is the Moon’s anomaly. 
As depicted in Fig. 5, the anomaly (θ) is the angular distance 
of the Moon (m) from its apogee (a) as observed from the 
Earth (e). Note that when the anomaly is 0° the Moon is at 
its greatest distance from the Earth while at 180° it is the 
closest.

Recall from the previous section that the Indian astrono-
mer Nīlakantha, unlike his compatriots, had stated that 
the Moon’s maximum latitude is not a constant but varies 
inversely with its distance from the Earth.

Figure 6 shows the variation of the Moon’s maximum 
latitude with respect to its anomaly over 600 consecutive 
months, starting from January 1, 2020. It is seen that the 
data is quite dispersed, with no perceivable linkage between 
the anomaly and maximum latitude, though we do observe 
a slight upward shift of the dataset when the anomaly is 
near 90°.

7.2  �With node‑apogee separation

Another factor worth checking is the effect of the separation 
between the apogee and the node on the maximum latitude, 
for the same time range as above. The results are shown in 
Fig. 7.

Once again, we observe that the data appears to be highly 
dispersed with no clear correlation between the Node-Apo-
gee separation and the maximum latitude, though there 
appears to be a slight downward shift of the dataset near 90°.

Fig. 4   Margin of Error for the Moon's Maximum Latitude

Fig. 5   Moon's anomaly
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7.3  �With elongation

Finally, we examine the variation of the Moon’s maximum 
latitude with its separation from the Sun, known as the 
Elongation, over 600 consecutive months starting January 
1, 2020.

As seen in Fig. 8, we appear to have hit the jackpot with 
this parameter. Lmax is observed to have a direct relation to 
the elongation, almost a simple sinusoidal variation. We note 
that Lmax is a minimum when the elongation is 0° or 180°, 
and a maximum when it is 90° or 270°, and the entire vari-
ation closely resembles a sine wave.

Figure 9 depicts a physical summary of this finding. In 
Fig. A on the left, we see that when the separation between 
the Sun (s) and the Moon (m) is 90° or 270°, that is, first 
or third quarter Moon phase, and when the Sun is at either 
node, the Moon’s maximum latitude will be greatest (around 
5.3°).

Conversely, as shown in Fig. B, when the Sun is aligned 
to the Earth-Moon axis, that is, at full Moon or new Moon, 
and the Sun is 90° from either node, the Moon’s maximum 
latitude will be least (around 5°).

8 � Proposal for the missing algorithm

With these results, we are now in a position to make a broad-
based proposal for the missing algorithm of the Moon’s 
maximum latitude in Indian astronomy.

Figure 10 shows two views of the standard Indian epi-
cycle model for the Moon. The 2-D view depicts the Moon 
(m) revolving clockwise around the epicycle center, while 
the epicycle itself revolves counter-clockwise around the 
larger deferent circle, which has the Earth (e) at its center. 
The Mean Moon (mʹ) is located at the center of the epicycle. 
Note that the radius of the epicycle varies in time, as shown 
by the dashed line.

In the 3-D view, we see that the deferent circle, on 
which the mean Moon revolves, is inclined to the eclip-
tic at 4.5°. This is the mean-max latitude (Lindian-mean-max) 
specified in the Sūryasiddhānta. Further, we note that the 
epicycle plane, in its turn, is inclined to the deferent plane. 
According to the Sūryasiddhānta, the nodes act upon both 
the Mean Moon (deferent) as well as the True Moon (epi-
cycle), hence both will have separate inclinations of their 
own. Note that in this paper our focus is on the maximum 
latitude of the Moon, and Fig. 10 is only a general sche-
matic representation to indicate that the deferent and epi-
cycle circles have separate inclinations. This figure is not 
intended as a detailed model for the calculation of general 
latitude. The calculation of latitude in the epicycle model 
is an exceedingly complex affair. The interested reader can 
refer to available literature for further details (Swerdlow, 
2005).

Fig. 6   Variation of the Moon’s maximum latitude with anomaly

Fig. 7   Variation of the Moon’s maximum latitude with node-apogee 
separation

Fig. 8   Variation of the Moon’s maximum latitude with elongation
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In the Indian epicycle model for the calculation of longi-
tudes, the angular velocity of the mean planet on the defer-
ent is set equal to the angular motion of the true planet on 
the epicycle. We may conjecture that a similar condition 
is applied implicitly to the calculation of latitudes as well, 
that is, the lateral motion of the mean planet on the defer-
ent is proportionately equal to that of the true planet on the 
epicycle.

Now, while the Mean-Moon’s maximum latitude on the 
deferent is specified as 4.5°, how can we determine the 
maximum latitude of the True-Moon on the epicycle? We 
do that using the instruction in the Sūryasiddhānta (given 
in Sect. 5 above), which says that the maximum inclina-
tion equals an 80th part of the circumference. The Moon’s 
epicycle circumference (Cep) has been specified in the 
Sūryasiddhānta as approximately 32°, whose 80th part will 
be the inclination of the epicycle concerning the deferent, 
that is, 32/80 = 0.4°.

Putting all this together, we can propose the following 
empirical expression for the maximum latitude of the Moon, 

which comprises a base mean value over which a variation 
is superimposed:

where, the elongation (E) = (Sun’s Longitude)–(Moon’s 
Longitude).

The quantity (1 + sin(E)) can be regarded as a ‘pulsation 
factor’, which causes the circumference of the epicycle to 
vary (pulsate) in size from Cep to 2Cep.

Substituting known values into Eq. 3, we will have:

In the next section, we will compare the results of this 
proposed expression with actuality.

9  �Results and discussion

Figure 11 compares the actual variation of the Moon’s maxi-
mum latitude with values obtained from Eq. 4 for 100 con-
secutive months starting January 1, 2020.

It can be seen that the proposed expression is in good 
agreement with actuality, except for a few points near the 
least maximum latitude, which is good enough for a first-
cut estimate. The proposed expression can no doubt be 
improved with some simple extensions to bring it closer to 
actuality, but we will not attempt any further enhancements 
in this paper.

Using modern techniques such as the Fourier Transform, 
one can obtain a near-exact formula for the actual variation. 
However, that would likely result in very lengthy and com-
plex expressions, which would be beyond what the ancient 
astronomer was capable of. Any future enhancements to the 
proposed expression for the missing algorithm should bear 
that in mind.

(3)L
max

= L
Indian−mean−max

+
C
ep
× (1 + Sin(E))

80

,

(4)L
max

= 4.5 + 0.4 × (1 + sin(E))

Fig. 9   Configuration for Maximum and Minimum Lmax

Fig. 10   The Moon’s Epicycle
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9.1  �Possible reasons for the missing algorithm

Having shown that the variation of the Moon’s maximum 
latitude can be captured using a simple mathematical expres-
sion that is well within reach of the ancient Indian astrono-
mer, we have now to deal with the question of why such an 
easy algorithm is missing in the Sūryasiddhānta in the first 
place, especially when the text indicates that the maximum 
latitude is variable. And there is the related question of why 
no Indian astronomer of old was even aware that the Moon’s 
maximum latitude is not 4.5° but 5.3°. Let us explore some 
possible answers to these questions.

9.1.1  �The declination

It is, of course, quite inconceivable that no Indian astrono-
mer ever made any actual observations. What is very likely, 
and practical moreover, is that the Moon’s latitude was not 
measured directly by the ancient astronomer, but only in an 
indirect manner, using the declination.

As mentioned, the latitude of heavenly bodies is meas-
ured regarding the ecliptic (see Fig. 2). To make this meas-
urement directly without sophisticated instruments is not 
a simple task since the exact location of the ecliptic is not 
easy to pinpoint in the sky. Instead, the ancient astronomer 
usually based his observations on four easy-to-use reference 
points, namely: (i) The cardinal directions (north, south, 
east, west); (ii) The horizon; (iii) The pole star; (iv) The 
zenith point (directly overhead).

In Fig. 12, the observer is at O and his zenith point (Z) is 
directly overhead. His geographical latitude (Lo) is, say, 40° 
north, and therefore the north celestial pole (P) will appear 
to him 40° directly above the north point of the horizon (N). 
The southern horizon point (S) is directly opposite N. The 
great circle containing N, P, Z, and S is called the merid-
ian for our observer. It is observed from the figure that the 

celestial equator, which lies 90° away from the pole, cuts the 
meridian at point E, which will be at a constant 40°south of 
the zenith for our observer.

The declination (δ) of a heavenly body is defined as its 
angular distance, north or south, from the celestial equator. 
An ideal time to determine the declination of a heavenly 
body (including the Moon) is when it arrives at the observ-
er’s meridian since the location of the celestial equator on 
the meridian is known (point E). Referring to the figure, the 
Moon’s declination is then simply the arc Em.

In practice, it is usual for the astronomer to measure 
either the altitude h (arc Sm) or the polar distance (arc Zm) 
of the body, both of which can be determined easily using 
instruments like the meridian circle. Given h, the declination 
(arc Em) can be found by Eq. 5 given below. Note that the 
Moon is south of the equator in the figure, so its declination 
will be negative.

Thus, we see that the Moon’s declination is a quantity that 
is fairly easy to determine.

Coming to the latitude, its determination is a different 
matter altogether. As mentioned, the latitude of a heav-
enly body is its angular distance, north or south, from the 
ecliptic. Now, while the location of the celestial equator on 
the observer’s meridian (point E) is fixed and known, as 
explained earlier, where the ecliptic cuts the meridian (point 
T) is variable throughout the year.

In standard works of spherical trigonometry (Smart, 
1977), the relation between the latitude (β) and the decli-
nation (δ) involves the right ascension (α) and the obliq-
uity of the earth’s axis (η). The full expression is as shown 
in Eq. 6.

(5)� =
(

L
o
+ h

)

− 90
◦

.

(6)sin (β) = sin (δ) cos (η) − cos (δ) sin (η) sin (α).

Fig. 11   Variation of the proposed formula with actuality

Fig. 12   Determining the declination of the Moon



Indian Journal of History of Science	

For the special case where � = 90
◦ , that is, when the 

Moon is on the meridian and the equinox point is located on 
our observer’s horizon, Eq. 6 will become:

Applying standard trigonometric identities we will have:

Therefore,

Or,

Thus, we see that for this special case, the declination, 
latitude, and obliquity have a simple relation among them-
selves. In general, the declination will be a maximum when 
latitude is a maximum since the obliquity of the ecliptic is 
a constant for a given epoch. However, the obliquity does 
change over longer periods, and it has been decreasing stead-
ily for the past 8000 years. How does this affect the Moon’s 
maximum declination? The answer is shown in Fig. 13.

The solid line in the figure, which has been computed per 
modern astronomy (Meeus, 2000), shows that the Moon’s 
maximum declination has been decreasing steadily over the 
centuries due to the decreasing obliquity. Its current value 
is the sum of the Moon’s maximum latitude (5.3°) and the 
current obliquity (23.44°), which comes to 28.74°.

The dashed line in the figure shows the Indian value for the 
Moon’s maximum declination, which is a constant since both 
the Moon’s maximum latitude (4.5°) and the obliquity (24°) are 

sin (β) = sin (δ) cos (η) − cos (δ) sin (η).

sin (�) = sin (� − �)

� = � − �

(7)� = � + �

deemed constants, their sum equating to 28.5°. Recall from the 
third and fourth columns of Table 1 that all Indian astronomers 
of old have assumed the obliquity to be constant at 24° and the 
Moon’s maximum latitude as 4.5° (or near about).

Thus, we see the interesting circumstance in Indian astron-
omy where the negative error in the Moon’s maximum lati-
tude compensates for the positive error in the obliquity, such 
that their sum (the maximum declination) comes to within 
0.5° of the actual maximum declination, as seen in Fig. 13.

The relative size of the full Moon is depicted on the right 
in Fig. 13 to indicate the magnitude of the Indian error for 
the Moon’s maximum declination. The width of the full 
Moon is 0.5°, and it is noted from the figure that the actual 
and Indian maximum declinations fall within the Moon’s 
orb, at least since Āryabhaṭa’s time (500 CE), which may 
have contributed to the Indian astronomer being satisfied 
that his values for the Moon’s maximum latitude (4.5°) and 
the obliquity (24°) were correct.

The important point being made here is that it is the decli-
nation that was of primary interest to the ancient astronomer, 
not the latitude.

9.1.2  �Eclipses and Moon phase

Apart from the declination, there may have been other reasons 
that have contributed to the Indian astronomer’s lack of interest 
in the actual maximum latitude of the Moon. For the ancient 
astronomer, the three primary reasons to calculate the Moon 
were: (i) The regulation of months (new Moon); (ii) The calcu-
lation of eclipses; (iii) Calculation of the Moon’s phases.

Fig. 13   Variation of the Moon’s Maximum Declination in Time
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For the first item, the Moon’s latitude does not figure any-
where in the calculation of New Moon. For the second, in the 
calculation of eclipses, the Moon’s latitude does matter, but not 
her maximum latitude. Both Lunar and Solar eclipses occur 
when the Moon is close to her node, in other words, close to 
zero latitude. For the third, in the calculation of the Moon’s 
phases, only her declination is employed, not her latitude.

9.1.3  �Summary

For the ancient Indian astronomer, the Moon’s maximum 
latitude was perhaps only of academic interest since it is 
not used in any subsequent calculations. The Moon’s maxi-
mum declination far superseded her maximum latitude in 
importance.

10  �Conclusions

Some conclusions that may be drawn from this study on 
the missing algorithm for the Moon’s maximum latitude in 
Indian astronomy are as follows:

(1)	 The expression to calculate the Moon’s latitude, as 
given in various Indian texts, is precisely correct per 
modern spherical trigonometry.

(2)	 One of the terms employed in the expression for lati-
tude is the Maximum Latitude. Though the oldest extant 
Indian text, the Sūryasiddhānta, clearly indicates that 
the maximum latitude of the Moon is variable, it does 
not explicitly present a way to calculate this maximum 
latitude, providing instead only a mean value of the 
maximum latitude.

(3)	 The analysis conducted in this paper discovered that the 
missing algorithm for the Moon’s maximum latitude 
may have had a simple form based on the elongation 
between the Sun and the Moon.

(4)	 It is speculated that the missing algorithm may have 
been expunged from the Sūrya siddhānta due to long 
disuse since the Moon’s maximum latitude is not an 
essential parameter in any other calculations.

(5)	 On the question of why the ancients were unaware that 
the Moon’s maximum latitude is not 4.5˚ but 5.3˚, it 
is conjectured that these astronomers were primarily 
concerned with the Moon’s maximum declination, and 
not the maximum latitude per se. Since the maximum 
declination is a combination of the maximum latitude 
and the obliquity, it is shown in this paper that the 
negative error due to assuming a maximum latitude 
of 4.5˚ is compensated by the positive error in assum-
ing an obliquity of 24˚, resulting in the summed maxi-

mum declination of the Moon to be close to the actual 
observed maximum declination.

More research is needed before anything mate-
rial can be established on the subject. The discovery 
of any ancient documents containing an algorithm for 
the maximum latitude would certainly be a fortuitous 
development in this regard and is eagerly awaited. In the 
meantime, one area to explore further is the possibility 
of improving upon the simple expression presented in 
this paper for the Moon’s maximum latitude to bring it 
closer to actuality.
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