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Abstract
The prāṇakalāntara, which is the difference between the longitude of a point on the ecliptic and its corresponding right ascen-
sion, is an important parameter in the computation of the lagna (ascendant). Mādhava, in his Lagnaprakaraṇa, proposes six 
different methods for determining the prāṇakalāntara. Kolachana et al. (Indian J Hist Sci 53(1):1–15, 2018) have discussed 
these techniques and their underlying rationale in an earlier paper. In this paper, we bring out the geometric significance of 
these computations, which was not fully elaborated upon in the earlier study. We also show how some of the sophisticated 
relations can be simply derived using similar triangles.

Keywords  Lagnaprakaraṇa · Prāṇakalāntara · Dyujyā · Mādhava · Longitude · Right ascension · Radius of diurnal circle

1  Introduction

The prāṇakalāntara is the difference between the longitude 
( � ) of a point on the ecliptic and its corresponding right 
ascension ( � ). That is,

Among other applications, the prāṇakalāntara is essential for 
the precise computation of the lagna or the ascendant. In his 
Lagnaprakaraṇa, Mādhava proposes six different methods for 
determining the prāṇakalāntara. Later astronomer, Putumana 
Somayājī (2018, pp. 249-251), in his Karaṇapaddhati, also 
mentions the first three methods of prāṇakalāntara against the 
six given by Mādhava. These methods and their rationales have 
been discussed by Kolachana et al. (2018b) in an earlier study. 
The study also discusses some of the geometry associated with 
these computations, particularly with respect to the determina-
tion of intermediary quantities such as the dyujyā or the radius of 
the diurnal circle, and conceives of epicyclic models to explain 
the rationales for some methods. However, crucially, the study 
does not explain how to geometrically visualize the difference 
� − � , and the significance of intermediary quantities such as 
bhujaphala, koṭīphala, and antyaphala therein. In this paper, we 
explain how to geometrically visualize the prāṇakalāntara (par-
ticularly for the last four methods), bring out the interconnected 

geometry of the different methods, and discuss the significance 
of the intermediary terms employed. This gives us a clue as 
to how Mādhava and other Indian astronomers might have 
approached these sorts of problems in spherical trigonometry 
and brings out some of the unique aspects of their approach.

It may be noted that this paper is to be read in conjunction 
with Kolachana et al. (2018b), and we employ the same sym-
bols and terminology employed therein. Further, we have not 
reproduced the source text but have directly stated the expres-
sions for prāṇakalāntara from the earlier paper, which includes 
the source text and translation. Finally, as many of the given 
expressions seem to hint at the use of proportions, we have tried 
to prove them primarily through the use of similar triangles, 
even when other methods may be possible. With these caveats 
in mind, we now proceed to discuss the geometric rationales 
for each of the six methods in the coming sections.

2 � Method 1

The first expression given for the prāṇakalāntara in the 
Lagnaprakaraṇa (verse 6) is:

Kolachana et al. (2018b) derive the above result by spher-
ical triangles. Here, we show how the result can be derived 
using planar triangles.1

prān
.

akalāntara = 𝜆 − 𝛼.

(1)� − � = � − R sin
−1

(
R sin � × R cos �

R cos �

)
.
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1  It may be noted that this proof is based on the discussion on the third 
method of determining the prāṇakalāntara by Kolachana et al. (2018b) 
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2.1 � Proof

Figure 1a depicts a portion of the celestial sphere, where 
the planes of the equator and the ecliptic intersect along the 
line ΓΩ , at an angle of � . Consider a point S on the ecliptic 

Fig. 1   a A diagram showing a part of the celestial sphere depicting different triangles associated with the point S which is on ecliptic, and b–e 
are the enlarged views of the triangles therein describing their corresponding sides

and the discussion on the fourth method of determining the ascensional 
difference by Kolachana et al. (2018a). Also, see Somayājī (2011, p. 78).

Footnote 1 (continued)
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whose longitude ( � ) is measured by the angle ΓÔS or arc 
ΓS  , and right ascension ( � ) is measured by the angle ΓÔS � 
or arc ΓS � . From S, drop a perpendicular onto the equatorial 
plane such that it meets OS ′ at A. The angle SÔS � = SÔA 
measures the declination ( � ) of the point S. From A and S ′ , 
drop the perpendiculars AB and S ′

H  respectively onto ΓΩ.
Now, we obtain five right angled triangles—△OBS  , 

△OHS
′ (and △OBA ), △OAS and △BAS—as depicted 

in Fig. 1b, c, d and e respectively. △OBS is a triangle in 
the ecliptic plane, and △OHS

′ and △OBA are the tri-
angles in the equatorial plane. △OAS lies in the plane  
of the secondary to the equator passing through S,  
which is perpendicular to the plane of the equator. △BAS 
also lies in a plane perpendicular to the plane of the equator.

In △OAS  , as SÔA = 𝛿 and OS = R (radius of the celes-
tial sphere),

In △OBS  , as SÔB = 𝜆 and OS = R,

In △BAS  , as SB̂A = 𝜖 , employing (3) we obtain2

As △OBA and △OHS
′ are similar, OS � = R , and 

S
�
ÔH = AÔB = 𝛼 , employing (2) and (4) we obtain

Thus,

Hence, we obtain the expression for the prāṇakalāntara

which is the same as (1).

3 � Method 2

The second expression given for the prāṇakalāntara in the 
Lagnaprakaraṇa (verse 7) is:

Kolachana et al. (2018b) once again derive the above 
result using spherical triangles. Here, we show how the 
result can be derived using planar triangles.

(2)OA = OS cos � = R cos �.

(3)BS = OS sin � = R sin �.

(4)BA = BS cos � = R sin � cos �.

HS
�

OS
�
=

BA

OA

⟹
R sin �

R

=
R sin � cos �

R cos �
.

(5)� = R sin
−1

(
R sin � × R cos �

R cos �

)
.

(6)� − � = � − R sin
−1

(
R sin � × R cos �

R cos �

)
,

(7)� − � = R sin
−1

(
R cos � × R

R cos �

)
− R sin

−1
(R cos �).

3.1 � Proof

This expression can be obtained by considering  
Fig. 1b, c.

In △OBS  , as BŜO = 90 − 𝜆 = 𝜆
� and OS = R , we have

As △OBA and △OHS
′ are similar, OS � = R and 

HŜ
�
O = BÂO = 90 − 𝛼 = 𝛼

� , employing (2) and (8) we 
have

Thus,

From (9) and (10), we have the prāṇakalāntara

which is the same as (7).

4 � Method 3

The third method (verse 8) introduces a term known as 
antyaphala and provides an expression for computing it. It is 
further utilized in the computation of prāṇakalāntara as follows:

Kolachana et  al. (2018b) discuss the geometry of the 
first two expressions above, but do not describe how the 
prāṇakalāntara is to be visualized geometrically. We discuss 
the same here.

4.1 � Proof

In deriving the expression for the prāṇakalāntara, 
Mādhava appears to have conceived the idea to superim-
pose the geometric entities that lie on the equatorial plane 

(8)OB = OS × sin �
� = R cos �,

(9)⟹ R sin �
� = R cos �, ⟹ �

� = R sin
−1
(R cos �).

OH

OS
�
=

OB

OA

⟹
R sin �

�

R

=
R cos �

R cos �
.

(10)�
� = R sin

−1
(
R cos � × R

R cos �

)
.

(11)
� − � =�� − �

� = R sin
−1

(
R cos � × R

R cos �

)

− R sin
−1
(R cos �),

(12)antyaphala (A
p
) =

R sin � × R versin �

R

,

(13)R cos � =

√
(R sin � − A

p
)2 + (R cos �)2,

(14)� − � =
A
p
× R cos �

R cos �
.

2  This result can also be derived using similar triangles. See the dis-
cussion to the third method by Kolachana et al. (2018b).
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onto the ecliptic plane (or vice-versa). This is achieved by 
rotating the equatorial plane in Fig. 1a anticlockwise about 
the ΓΩ axis by an angle � such that the equator aligns 
with the ecliptic. The resulting geometry is depicted in 
Fig. 2a. Further, Mādhava introduces different terms like 
antyaphala, bhujaphala and koṭīphala to refer to differ-
ent portions of the resulting geometry and assist in the 
computations.

To derive the given expressions, construct the perpen-
diculars AC and S ′

G on OS. Construct a line perpendicular 
to BS at A such that it meets OS at D. Also, construct DE 
perpendicular to OB.

Now, from (4)

As △OBS and △OED are similar, we have

Thus,

and

As △OBS and △DAS are similar, employing (3) and 
(17), we have

(15)ED = BA = R sin � cos �.

OD

ED

=
OS

BS

⟹
OD

R sin � cos �
=

R

R sin �
.

(16)OD = R cos �,

(17)DS = OS − OD = R − R cos � = R versin �.

Fig. 2   a A diagram showing superimposed geometrical entities of equatorial plane on the ecliptic plane, b the enlarged view of △CAS showing 
antyaphala ( A

p
 ), bhujāphala ( B

p
 ) and koṭīphala ( K

p
 ) used in methods 3 and 4, and c the enlarged view of △DAS showing bhujaphala ( B′

p
 ) and 

koṭīphala ( K ′
p
 ) used in method 5
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AS is the quantity referred to as antyaphala ( A
p
 ). Thus,

which is the same as (12). Alternatively, employing (3) and 
(4), we get

Employing (2), (3), (8) and (18) in △OBA,

which is the same as (13).
As △ACS and △OBS are similar, we have

Thus,

Now, it may be noted that the arc SS � = � − � . Thus,

As △OAC and △OS
′
G are similar, employing (2), (20) 

and (21), we have

Thus,

which is the same as (14).3

5 � Method 4

The fourth method (verses 9 and 10) introduces the 
terms bhujāphala and koṭīphala for the computation of 
prāṇakalāntara:

AS

DS

=
BS

OS

⟹
AS

R versin �
=

R sin �

R

.

(18)A
p
= AS =

R sin � × R versin �

R

,

Ap = AS = BS − BA = R sin � − R sin � cos � = R sin � versin �.

(19)

R cos � = OA =
√
BA

2 + OB
2
,

=
√
(BS − AS)2 + OB

2
,

=

�
(R sin � − A

p
)2 + (R cos �)2,

AC

AS

=
OB

OS

⟹
AC

A
p

=
R cos �

R

.

(20)AC =
A
p
× R cos �

R

.

(21)S
�
G = R sin(� − �).

S
�
G

OS
�
=

AC

OA

⟹
R sin(� − �)

R

=
A
p
× R cos �

R × R cos �
.

(22)R sin(� − �) ≈ � − � =
A
p
× R cos �

R cos �
,

They are employed in the computation of R cos � and the 
prāṇakalāntara as follows:

Kolachana et al. (2018b) show the mathematical equivalence 
of (25) and (26) with (13) and (14) respectively, and further 
propose an epicyclic model to explain the terms bhujāphala, 
koṭīphala, and antyaphala. Here, we show the geometric 
significance of the above relations by making use of Fig. 2a, 
b. Figure 2b is an enlarged view of the △CAS in Fig. 2a.

5.1 � Proof

In Fig. 2a, the terms bhujāphala ( B
p
 ) and koṭīphala ( K

p
 ) 

refer to CS and AC respectively. This can be understood as 
follows.

As △ACS and △OBS are similar, we have

Thus,

which is the same as (23). Similarly, as already derived in 
(20),

which is the same as (24).
From △OAC,

which is the same as (25).
As △OAC and △OS

′
G are similar, employing (21) and 

(2), we have

(23)bhujāphala (B
p
) =

R sin 𝜆 × A
p

R

,

(24)kot.𝚤phala (Kp) =
R cos 𝜆 × Ap

R
.

(25)R cos � =

√
(R − B

p
)2 + (K

p
)2,

(26)� − � =
K
p
× R

R cos �
.

CS

AS

=
BS

OS

⟹

B
p

A
p

=
R sin �

R

.

(27)bhujāphala (B
p
) = CS =

R sin 𝜆 × A
p

R

,

(28)kot.𝚤phala (Kp) = AC =
R cos 𝜆 × Ap

R
,

(29)

R cos � = OA =
√
OC

2 + AC
2
,

=
√
(OS − CS)2 + AC

2
,

=

�
(R − B

p
)2 + (K

p
)2,

3  As noted by Kolachana et al. (2018b) in their discussion of the third 
method, max(� − �) ≈ 2.6

◦ at � = 46
◦ . Thus, R sin(� − �) ≈ (� − �).
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Thus,

which is the same as (26).

6 � Method 5

Like the fourth method, the fifth method (verses 11 and 12) 
also makes use of bhujaphala and koṭīphala for the compu-
tation of prāṇakalāntara. However, these terms represent 
different quantities here:

They are used in the computation of R cos � and the 
prāṇakalāntara as follows:

Kolachana et al. (2018b) show the mathematical equiva-
lence of (33) and (34) with (13) and (14) respectively, and 
again propose an epicyclic model to explain the terms bhu-
japhala and koṭīphala. Here, we show the geometric sig-
nificance of the above relations by making use of Fig. 2a, 
c. Figure 2c is an enlarged view of the △DAS in Fig. 2a.

6.1 � Proof

In Fig. 2c, the terms bhujaphala ( B′
p
 ) and koṭīphala ( K ′

p
 ) 

refer to AC and DC respectively.4 This can be understood as 
follows.

As △DAS and △OBS are similar, employing (8) and 
(17), we have

Thus,5

S
�
G

OS
�
=

AC

OA

⟹
R sin(� − �)

R

=
K
p

R cos �
.

(30)R sin(� − �) ≈ � − � =
K
p
× R

R cos �
,

(31)bhujaphala (B�

p
) =

R cos � × R versin �

R

×
R sin �

R

,

(32)kot.𝚤phala (K�

p
) =

R cos 𝜆 × R versin 𝜖

R
×
R cos 𝜆

R
.

(33)R cos � =

√
(R cos � + K

�
p
)2 + (B�

p
)2,

(34)� − � =
B
�
p
× R

R cos �
.

DA

DS

=
OB

OS

⟹
DA

R versin �
=

R cos �

R

.

(35)DA =
R cos � × R versin �

R

.

As △DCA and △OBS are similar, we have

Thus, employing (35),

which is the same as (31). Similarly, we have

Again, employing (35),

which is the same as (32).
From △OAC  , employing (16), we have

which is the same as (33).
Finally, as △OAC and △OS

′
G are similar, employing 

(21) and (2), we have

Thus,

which is the same as (34).

7 � Method 6

Like the previous two methods, the sixth method (verses 
15–17) also employs the quantities bhujāphala and koṭīphala 
for computation of prāṇakalāntara. These terms represent 
the following quantities here:

AC

DA

=
BS

OS

⟹ AC = DA ×
R sin �

R

.

(36)
bhujaphala (B�

p
) = AC =

R cos � × R versin �

R

×
R sin �

R

,

DC

DA

=
OB

OS

⟹ DC = DA ×
R cos �

R

.

(37)
kot.𝚤phala (K�

p
) = DC =

R cos 𝜆 × R versin 𝜖

R
×
R cos 𝜆

R
,

(38)

R cos � = OA =
√
OC

2 + AC
2

=
√
(OD + DC)2 + AC

2

=

�
(R cos � + K

�
p
)2 + (B�

p
)2,

S
�
G

OS
�
=

AC

OA

⟹
R sin(� − �)

R

=
B
�
p

R cos �
.

(39)R sin(� − �) ≈ � − � =
B
�
p
× R

R cos �
,

4  It may be noted that AC was referred to as the koṭīphala ( K
p
) in the 

previous method.
5  It may be noted that DA can be conceived of as the 
antyaphala ( A′

p
 ) here, though the text makes no mention of it, as 

(A�
p
)2 = (B�

p
)2 + (K �

p
)2.



177Indian Journal of History of Science (2023) 58:171–180	

1 3

They are used in the computation of R cos � and the 
prāṇakalāntara as follows:

Further, the Lagnaprakaraṇa explicitly states the condi-
tion for the sign of the koṭīphala in (42) through the phrase 
“mṛgakarkaṭādyoḥ svarṇaṃ”. That is, the koṭīphala is to 
be added when 2� is in the range from mṛga (Capricorn) 
to karkaṭa (Cancer), and subtracted from Cancer to Cap-
ricorn. In other words, the koṭīphala is to be added in 
the range 270◦ < 2𝜆 < 90

◦ , and subtracted in the range 
90

◦
< 2𝜆 < 270

◦ . This is because the koṭīphala is a func-
tion of the cosine function which is positive or negative in 
the aforesaid ranges. We discuss more later.

Kolachana et al. (2018b) show the mathematical equiva-
lence of (42) and (43) with (33) and (14) respectively and 
do not discuss the geometry associated with these expres-
sions. Here, we show the geometric significance of the above 
expressions by making use of Figs. 3 and 4.

7.1 � Proof

The above expressions can be derived by first considering 
Fig. 3. In Fig. 3a, having superimposed the geometric enti-
ties that lie on the equatorial plane onto the ecliptic plane 
as before, mark points S ′′ and S ′′′ on the ecliptic such that 
SÔS

�� = 2𝜆 and SÔS ��� = 180
◦ . Evidently, OS �� = OS

��� = R , 
S
��
I = R sin 2� and IO = R cos 2� . Also, S ′′′

S
′′
S is a right-

angled triangle, and similar to △DAS  . Construct a line AF 
parallel to S ′′

O so that △CAF is similar to △IS
′′
O.

In △S
′′′
S
′′
S  , S ′′

O bisects the side S ′′′
S  , and also 

S
��
O = OS =

1

2

S
���
S  . Similarly, in △DAS  , as depicted in 

the enlarged Fig. 3b, AF will bisect DS, and also6

using (17).

(40)
bhujāphala (B��

p
) =

R sin 2𝜆 ×
1

2

R versin 𝜖

R

,

(41)kot.𝚤phala (K��

p
) =

R cos 2𝜆 ×
1

2
R versin 𝜖

R
.

(42)R cos � =

√(
R −

1

2

R versin � ± |K ��
p
|
)2

+ (B��
p
)2,

(43)� − � = R sin
−1

(
B
��
p
× R

R cos �

)
.

(44)AF = FS =
1

2

DS =
1

2

R versin �,

Now, in Fig. 3b, the terms bhujāphala ( B′′
p
 ) and koṭīphala 

( K ′′
p

 ) refer to AC and FC respectively.7 This can be under-
stood as follows.

As △IS
′′
O and △CAF are similar, we have

Thus,

which is the same as (40). Similarly,

Thus, we obtain the magnitude of the

which is the same as (41).8
Further, from △OAC  , employing (44),

The expression of R cos � in (47) is observed to be 
valid for 90◦ < 2𝜆 < 270

◦ , when the cosine function 
is negative. In this case, F lies in between C and S, as 
depicted in Fig. 3. In case of 270◦ < 2𝜆 < 90

◦ , when the 
cosine function is positive, C lies in between F and S, as  
shown in Fig.  4. Here too, following similar construc-
tions and arguments as earlier, we can again easily obtain  
(44), (45) and (46) from the similar triangles IS ′′

O and CAF.
However, in the computation of R cos � from △OAC  , 

we observe

AC

AF

=
S
��
I

S
��
O

⟹
AC

1

2

R versin �

=
R sin 2�

R

.

(45)
bhujāphala (B��

p
) = AC =

R sin 2𝜆 ×
1

2

R versin 𝜖

R

,

FC

AF

=
OI

S
��
O

⟹
FC

1

2

R versin �

=
R cos 2�

R

.

(46)kot.𝚤phala (K��

p
) = FC =

||||||

R cos 2𝜆 ×
1

2
R versin 𝜖

R

||||||
,

(47)

R cos � = OA =
√
OC

2 + AC
2

=
√
(OS − FS − FC)2 + AC

2

=

��
R −

1

2

R versin � − K
��
p

�2

+ (B��
p
)2.

6  Alternatively, employing the sine rule in △FAS  , and substituting 
(18) and solving, we obtain AF.

7  It may be noted that AC was referred to as the koṭīphala ( K
p
) in 

method 4 and bhujaphala ( B′
p
 ) in method 5.

8  It may be noted that AF from (44) can be conveived of as the 
antyaphala ( A′′

p
 ) here, though the text makes no mention of it, as 

(A��
p
)2 = (B��

p
)2 + (K ��

p
)2.
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Fig. 3   a A diagram showing the superimposed geometrical entities of the equatorial plane on the ecliptic plane and also depicting a situation 
when 90◦ < 2𝜆 < 270

◦ , and b the enlarged view of the △DAS showing bhujāphala ( B′′
p
 ) and koṭīphala ( K ′′

p
 ) pertaining to method 6
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Fig. 4   a A diagram showing the superimposed geometrical entities of the equatorial plane on the ecliptic plane and also depicting a situation 
when 270◦ < 2𝜆 < 90

◦ , and b the enlarged view of the △DAS showing bhujāphala ( B′′
p
 ) and koṭīphala ( K ′′

p
 ) pertaining to method 6
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Thus, from the expressions for R cos � in (47) and (48), we 
obtain (42).

Finally, as △OAC and △OS
′
G are similar, employing 

(21) and (2), we have

Thus,

which is equivalent to (43).

8 � Discussion

In this paper, we have elaborated upon the geometry 
associated with prāṇakalāntara computations in the 
Lagnaprakaraṇa. We observe that the first two expressions 
for the prāṇakalāntara are directly based on results for � and 
� . The other four methods introduce intermediary terms such 
as antyaphala, bhujāphala and koṭīphala, and employ these 
to determine the radius of the diurnal circle as well as the 
prāṇakalāntara. By superimposing geometric entities that 
lie in the equatorial plane onto the ecliptic plane, we have 
shown how to geometrically visualize the prāṇakalāntara, 
the geometric significance of the intermediary terms, and 
how the former can be expressed in terms of the latter. We 
have also shown how the given relations can be derived 
simply through the use of similar triangles.

(48)

R cos � = OA =
√
OC

2 + AC
2

=
√
(OS − FS + FC)2 + AC

2

=

��
R −

1

2

R versin � + K
��
p

�2

+ (B��
p
)2.

S
�
G

OS
�
=

AC

OA

⟹
R sin(� − �)

R

=
B
��
p

R cos �
.

(49)� − � = R sin
−1

(
B
��
p
× R

R cos �

)
,

Our analysis reveals the sophisticated nature of spherical 
trigonometry employed in the Lagnaprakaraṇa. The diver-
sity of approaches employed by Mādhava toward solving 
a single problem not only showcases his genius, but also 
reveals him to be a true connoisseur of mathematics and 
astronomy, and validates the title of ‘golavid’ bestowed upon 
him by later scholars.
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Journal of History of Science, 53(1), 1–15.

Putumana Somayājī (2018). Karaṇapaddhati. Trans. and comm. by 
Venketeswara Pai, K. Ramasubramanian, M. S. Sriram, and M. 
D. Srinivas. Sources and Studies in the History of Mathematics 
and Physical Sciences. New Delhi: Hindustan Book Agency and 
Springer.

Somayājī, N. (2011). Tantrasaṅgraha. Trans. and comm. by K. 
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