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Abstract

It is well known that the concept of derivative was used in finding the rates of motion of planets in Indian astronomy
texts beginning with Laghumanasa (c. 932 CE). In his Vasanabhasya of his own work, Siddhantasiromani (c.1150 CE),
Bhaskaracarya explains the necessity of using the concept of tatkalikagati (instantaneous rates of motion) of planets, which
involves using the derivative of the sine function, and discusses the retrograde motion of planets also, using the concept.
Later, Kerala texts like Tantrasangraha also discuss this concept. In two Kerala texts, Karanottama of Acyuta Pisarati (late
sixteenth century) and Drkkarana (1608 CE), the use of the concept of derivative is used in a very different context, namely,
computations pertaining to vyatipata. In this paper, we describe the algorithms involving the ‘krantigati’ or the rate of change

of the declinations of the Sun and the Moon involving the derivative conept, in these two texts.
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1 Introduction

Calculus related concepts are to be found in Indian
Siddhantic texts, from Laghumanasa of Muifijala (932
CE) onwards (Datta et al., 1984; Sriram, 2014; LM, 1944,
Ramasubramanian & Srinivas, 2010). They are in the con-
text of the rates of motion of the planets. Due to the eccen-
tricity of the orbit of a planet, an ‘equation of centre’ correc-
tion should be apllied to the mean planet, 8, (which moves
uniformly with time) to obtain the ‘true’ planet, 6,. In many
texts, the expression for the true planet, 6, is of the form

@:90—%f@0$nM

as such, or in an approximation. Here, M = 6, — 6, is the
manda-kendra (anomaly), where 6, is the ‘apogee’. Here,
%’ is the ratio of the radius of the manda-epicycle and the
radius of the mean planet’s orbit. Also, /(M) = lis a func-
tion of M. The second term in the above equation is the
mandaphala or the ‘equation of centre’.
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In earlier texts, the rate of motion of the planet was found
by just computing the true planet, 6, at the mean sunrise on two
successive days. The difference between them was considered
the true rate of motion through out the intervening day.

It is in Laghumdnasa that the rate of motion is
treated very differently. In this text, 6, has the form (LM,
1944, pp. 38-49; Shukla, 1990, pp. 125-127)

0 —p. 0 sin M
! * R 1+2r—;cosM’

and the true rate of motion is given as

-

cos M % AM
At At R

To At’
1+ " cosM

where the first term in the RHS is the madhyamagati or the
‘mean rate of motion’ and the second term is the gatiphala
(result of correction to the mean rate of motion). This is the
rate of motion at any instant or ‘instantaneous velocity’,

though it is not stated explicitly in the text Laghumanasa.

Here, it is clear that AS;—HZM is taken as cos M X %, and the

variation due to the factor 1s not taken into account.

1
70
1+§ cos M

Clearly it is recognised that the derivative of sin M is cos M,

AsinM __ AsinM AM AM
(T == X3 =cosMx— ), though not stated

as such.
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In the Mahdsiddhanta of Aryabhata-II (tenth century CE)
(MS, 1910, p. 58), the manda-sphuta-graha is given by

7o .
0, =0,— ExsmM,

and the rate of motion is given as

A6, A, 1, AM
—_ = 0
At Ar R

Here also, the derivative of sine is recognised as the cosine.

In the Grahaganitadhyaya part of Siddhantasiromani,
in the chapter on Spastadhikara (SS, 2005, chapter 2,
verse 30, p. 50), Bhaskara’s expression for 6, is

FO .
0,=0,— (E ><s1nM>.

Then, the rate of motion would be:

AO A 7

¢ = —0 0 SM X A_M

At At R At

which is the same as in Mahasiddhanta. 1t is stated in verse

37 of this chapter (SS, 2005, chapter 2, p. 52), as follows:

HIfCHHGr ligohrs;ﬁlrh'écqm;&m HipTTehs |
AT AT TEAAHeh AThITOH FauRepeT @ ||

kotiphalaghni myrdukendrabhukti-
strijyoddhrta karkimyrgadikendre |
tayd yutona grahamadhyabhukti
tatkaliki mandaparisphuta syat ||

The daily motion of the mandakendra (mean anom-
aly) being multiplied by the kotiphala and divided by
the radius, and the result being added to or subtracted
from the mean motion depending upon whether the
anomaly is in karkyadi or mrgadi gives the true
instantaneous [rate of motion] of manda-sphuta.

In the next verse, Bhaskara stresses the need for using
the instantaneous rate of motion in the case of the Moon
whose rate of motion of anomaly is large:

T =TS [ dehlosad gsad |

samipatithyantasamipacalanam vidhostu tatkalajayaiva
yujyate |

In the case of the Moon, the ending moment or the begin-
ning time of a ithi which is near at hand is to be computed
using the instantaneous (fatkala) rate of motion only.

This is explained in far greater detail in the vasana for the
verses. Here, it is pointed out that the earlier computation of
the rate of motion (by just finding the difference between the
true longitudes at successive sunrises) is only approximate,
and a more precise instantaneous rate of motion has to be
computed.

@ Springer

The actual planets, Mars, Mercury, Jupiter, Venus and Sat-
urn have one more correction, namely, Sighra. Finding their
exact rates of motion is challenging and Bhaskara solves this
by adopting a novel approach, in which only the derivative
of the sine function is involved (SS, 2005, pp. 54-58).

In Tantrasangraha of Nilakantha Somayaji [Ramsubrama-
nian & Sriram (2011), chapter 2, p. 76, p. 90 and pp. 114-116],
the manda-correction (mandaphala) for the mean planet
to obtain the true planet is of the form —sin™! (%"sinM ).
Nilakantha gives the exact expression for the correction to the
rate of motion of the planet due to this mandaphala as

% cos M X AM
2 CosM X ==

z .
<l - ;—"zsinzM>

So, the derivative of the inverse sine function is calculated
correctly in this text.

In his Sphutanirnayatantra (late sixteenth century) (SNT,
1974, chapter 3, verses 17—18 p. 20), Acyuta Pisarati essen-
tially considers a mandaphala of the form:

—2sinM
(1+ %’ cos M)
also, as in Laghumanasa. Acyuta gives the correct expres-

sion for the correction to the rate of motion due to this man-
daphala which is a ratio of two functions, —%0 sin M and

(1+ %“cosM), as
(’EO sinM)2

(1+%9 cosM)] A_M
At

_ |
[R cosM +

<1 + EOCOSM)

(SNT, 1974, chapter 3, verses 19-20, pp. 20-21; Ramasu-
bramanian & Srinivas, 2010, pp. 279-280).

All these are in the context of the rates of motion of
planets. However, a recent study of two Kerala texts,
namely Karanottama (KTM, 1964) of Acyuta Pisarati, and
Drkkarana [DK1, DK2, Venketeswara and Sriram (2019)]
by us has revealed that the calculus concepts (essentially the
derivative of the sine function) are used in another context.
This is in the context of finding the instant of vyatipata or
vaidhrta, when the magnitudes of the declinations of the
Sun and the Moon are equal, whereas their rates of change
are opposite (with one increasing and the other, decreas-
ing). The computation involves the rates of change of the
declinations of the Sun and the Moon, wherein use is made
of £ sin A = cos /1%, where A is the longitude of the Sun or
the Moon. In this paper, we elaborate the use of the deriva-
tive concept in finding the instant of vyatipata or vaidhrta
in the two texts.
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Fig. 1 Vyatipata and vaidhrta

2 Phenomena of vyafipata and vaidhrta

Vyatipata or lata and vaidhrta occur when the magnitudes
of the declinations of the Sun and the Moon are equal, and
their rates of change are opposite, that is, one of them is
increasing, while the other is decreasing.

For lata or vyatipata, the ayanas of the Sun and the
Moon should be different, that is, one is moving north-
wards, whereas the other is moving southwards. In the case
of vaidhrta, the ayanas of both are the same.

These are illustrated in Fig. 1. When the Sun is at S| or S,
it is /ata when the Moon is at M| and M, respectively, where
|6,] = |6,,], but the two objects have different ayanas. For
the same two positions of the Sun, it is vaidhrta when the
Moon is at M| and M) respectively, where |6| = |5,,], but
the two objects have the same ayanas. Similarly, one can
consider lata and vaidhrta, when the Sun is in the third or
fourth quadrants.

2.1 Computation of vyatipata and vaidhrta

To be specific, we consider the text Drkkarana first. The
text Drkkarana' (c. 1608 CE) is a comprehensive text on
astronomy which was composed based on observational data
[DK1, DK2, (Venketeswara & Sriram, 2019)].

The author declares right at the beginning of the text that
he is going to expound a karana based on observations,
to enable young students to understand the mathematical

! This has been attributed to Jyesthadeva, who is the author of
Ganitayuktibhasa by both Whish (1834) and Sarma (1972). However,
there is no indisputable evidence for this. In the concluding verse
of Drkkarana it is stated that the work was composed in kolambe
bahisinau, which means the Kollam year 783, which is 1608 CE.
This is mentioned in the article of Whish.

methods of astronomy. He also emphasises that he is going
to explain this in the [popular] language which he calls
as Bhasa. In practice, the Bhasa is a highly Sanskritised
version of Malayalam, called Manipravalam. A study of
Drkkarana reveals that it is actually a Tantra type of text
which gives all the algorithms associated with the tradi-
tional topics in a typical Indian text in more than 400 verses
spread over 10 chapters. These include the computations of
the mean longitudes, true longitudes, triprasna problems
related to time and shadow, corrections associated with
the terrestrial longitude and latitude of a location, detailed
discussions of lunar and solar eclipses, vyatipata, heliacal
rising and setting of planets, computations of the ascendant
(lagna) at a given time, dimensions of the orbits of the Sun,
Moon and planets, Vakya system and so on (Venketeswara
& Sriram, 2019).

In particular, the seventh chapter is dedicated to the algo-
rithms pertaining to the vyatipata and vaidhyta. This chapter
gives the details of the computation related to vyatipata.
These include the expressions for the declination of the
Moon including its latitude, for the ‘middle’ of the vyatipata,
the procedure for finding the sparsakala (beginning of the
vyatipata) and the moksakala (end of the vyatipata), and the
special case when the Sun and the Moon are close to their
ayanasankramas. Verses 1 and 2 in this chapter are as fol-
lows [DK1, DK2]:

AUY®1a0®o NEM1BBAM (@JHO0BBUD aloanm1Sdo |

@MI000aN105) ) VoY@l aias ayoyem I

@RQEIWIWI@3 216ER1g AMLEICmIMMOAEBEIOM I
@eljo 2A@MIeIemmog aimmlgo mogleendsnsmo |12l

SeraTe. o SREEl
T FDRER |

IR SS AT 19|

QC'Q‘I ‘d*&il"il(‘l?ilg gﬁ § : i;g E; [1RI|

vyatipatam ganikkunna prakarannal parafniniitam |
ayanamsamiratticcu samskkaricculla saryan ||1||

arurasiyil vannittu mandalattinnumaniine |
tulyam candranitinnotu vannitum nalilorkkanam |2||

The methods for computing the vyatipata are being
told. [The longitude of] the Sun which has been cor-
rected by the twice the ayanamsa has to be subtracted
from the six rasis or twelve rasis (mandala). Then,
it becomes equal to the [longitude of the] Moon.
The day [on which this occurs] is to be noted down
(orkkanam).
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The author states that different methods for computing
vyatipata or vaidhrta would be told. Now, at the vyatipata
or vaidhrta, the declinations of the Sun and the Moon should
be equal and their rates of change should be opposite. Now,
for a celestial object on the ecliptic,

siné = sine sin A,

where 4 is the tropical or the sayana longitude of the object.
Hence, if the latitude of the Moon is ignored (to begin with),
then the equality of the magnitudes of the declinations of the
Sun and the Moon implies that

sin/,, =sin4,,

where 4, and 4, are the s@yana longitudes of the Moon and
the Sun. This implies that

A, = 180° — A,
if the Sun and the Moon have opposite ayanas, or
A, =360° — A,

when they have the same ayana. Now, 4,, = (4,,), + a and
A, = (44), + a, where (4,,),, and (4,), are the nirayana longi-
tude,’ of the Moon and the Sun respectively. Hence, for the
computation of vyatipata or vaidhrta, first find the instant
at which

(A)n =180° = ((4), + 2a)
or (A)p =360° = ((4,), + 2a),

respectively, as stated in the verses.
2.2 Latavaidhrtadosas

£10500QUYDERIAUGBBUY AQN2IMBD al alo® Mo |
1M 2fISVMICUIOE TMVoVG@]2)6ER HAlseeMo |13l

2IBOBHOMINO OIS (HOANIERYIAUEBE HHOBBH: I

FEIYdarTge Jad=l o 9ra |
) AR .
HEBREG 9 |3

C A [enN [N =
dxlesHIR Gilﬂg 9h||"d0<4ll°1§: hldgeh |

latavaidhrtadosannalravicandrau ca patanum |
ganiccittayanamsatte samskkariccannu vekkanam ||3||

2 In Indian astronomy texts, the sine or cosine of any variable refers
to its magnitude only. In this paper also, we adhere to this meaning
throughout.

3 This is with respect to the mésadi which is a fixed point on the
ecliptic.

@ Springer

candrarkkanmare veccittu krantijyavannu kolluka |
[For obtaining the lata and vaidhrta-dosas], place
[the longitudes of] the Sun, the Moon and the node
(pata) which have been computed and corrected by
the ayandms’a.4 Then, find the Rsine of declination cor-
responding to the Sun and the Moon.

For obtaining the declination of the Sun, it is sufficient
to know its sayana longitude, that is the nirayana longitude
corrected by the ayanamsa. As the Moon’s orbit is inclined
to the ecliptic, it is necessary to find its latitude also, to
obtain its declination. For this, it is necessary to obtain its
node (pata) as well. The procedure to obtain the declination
of the Moon, taking into account its latitude is described
elsewhere in the text.

3 Use of the derivative of the sine function
in Karanottama and Drkkarana

For finding the instant of vyatipata or vaidhrta, the law of
propotions and an iterative procedure was prescribed in
the earlier texts such as Brahmasphuta-siddhanta (BSS,
1966, vol. 3, chapter 14, verses 3940, pp. 1023-1025),
Karanaratna of Devacarya [KR (1979), chapter 1, verses
54-57, pp. 37-38], Sisyadhivrddhida of Lalla (SVT, 1981,
part 1, chapter 12, verses 6-9, pp. 171-173), and also later
texts. This method has also been discussed in some recent
articles (Plofker, 2014, pp. 1-11; Venketeswara Pai et al.,
2015, pp. 69-89).

The same procedure is described in the Patadhikara of
the Grahaganita part of Siddhantasiromani. We summarise
this procedure which is described elsewhere in detail (Ven-
keteswara Pai et al., 2015).

Let ¢, be a suitable instant at which the declinations of
the Sun and the Moon are 6, and §,, respectively (includ-
ing the sign). Now, finding their difference, we have
A, =6, —6,,. Now, again find the difference in declina-
tions, A, = 6, — 6,,, at some other instant #,. Then, the
instant of vyatipata is found by the law of proportion. If
the difference in the declinations of the Sun and the moon
changes by an amount equal to A; — A, in the time inter-
val, t, — t;, what is the instant 7, when it has changed by
an amount A, making the declinations equal, that is, when
A(T) = 0. This is given by

4 In the verse, the phrase “ayanamsatte samskkariccaniu” is to be
understood as “ayanamsatte kontu samskkariccannu” which means
“corrected by the ayanamsa”. Here, the word “kontu” is implicit. If
we do not consider the “kontu”, then the meaning would be “correct
the ayanamsa” which is incorrect in the present context.
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T—t =-—2—1—
A =4y
This formula is in terms of As including the sign.

Now, at instant 7, 6, and 6,, are found again. In general, they
would not be equal. Hence, 6, — 6, is computed at 7, and some
other nearby instant, and the process is iterated, till an ‘invari-
able’ quantity is obtained, when the values of the instants of
vyatipdta in the successive stages of iteration are equal.

In the texts Karanottama and Drkkarana, a different strat-
egy is used for finding the instant of vyatipata implicitly,
using the derivative of the declination.

Karanottama is an important karana text composed by
Acyuta Pisarati (1550-1621 CE). The author himself has
written a commentary on the work. It consists of 119 verses
divided into five chapters, which deal with the standard topic
in a Siddhanta text. This includes the computations related
to vyatipata/vaidhrta in the fifth chapter.

Both Karanottama and Drkkarana describe the proce-
dure for obtaining the longitudes of the Sun and the Moon
at the middle of the vyatipata. The algorithms given in both
the texts are similar and an intermediate term referred to as
krantigati/gatikranti (translated as rate of motion of the dec-
lination) is used by the authors to arrive at the true longi-
tudes at the middle of the vyatipata. In the expressions for
krantigatis, we find the application of the differential calculus.
In the following subsections, we would explain the procedure
for krantigatis as described in the texts Karanottama [KTM
(1964), p. 41] and Drkkarana [DK1, DK2] respectively.

3.1 The krantigati of the Sun in Karanottama
[KTM (1964), p. 41]

TR ShlT-c AT THIE -

tatrarkasya krantigatyayanamaha—

There, the procedure for obtaining the rate of motion of
Sun’s declination is being told.

Hifeshr=d JATETeaTRazreny g aTfa: 11411

kotikrante raverdigghnyastrisailesu hrta gatih ||5||
The kotikranti of the Sun when multiplied by 10 (dik)
and divided by 573 (¢ri-Saila-isu), the gati is obtained.

ehiTesamET: HIf~aq=IT df <28 IMTET gl
JETIHAIART ||

ravikotijyayah krantimaniya tam dasabhirhatva
gosamena hrtva suryasyapakramagatiriti ||

Having obtained the declination from the Rcosine of the
longitude of the Sun and multiplying that by 10 (dasa)
and divided by 573 (gasama), the gati of the declination
[of the Sun is obtained].

Let 6,(¢) be the declination of the Sun at any instant ¢, then
the kranti-gati (g,) of the Sun is given as

g, =kotikranti of the Sun X ﬂ
573
10 (1

=Rsinecos A, X —,
573

where A, is the longitude of the Sun.

The rationale for the expression (1) can be understood
as follows:

Let the declination of the Sun be 6,(¢) at any instant ¢, then
the krantigati of the Sun (g,) can be expressed as

_ d(Rsin 6,(¢)) _ d(Rsin e sin A,)
&= dt h dt

dis
dt (2)
o[

dt

=Rsinecos A, X

Here, the term R sin € cos A, is referred to as the kotikranti
in the text. Also, R4 is the longitude of the Sun in minutes and

d(RA,)
2 ~60'/d
m /day
Therefore,

. d| &)
d(Rsiné,(1)) Rsi i x R
———— =Rsinecos 4,

dt s dr

=Rsinecos A, X 60
R (3)
60
=R Ag X ——
sin € cos 3438
=Rsine cos A, X &
573°

which is the same as the expression (1).

3.2 The ‘krantigati’ of the Moon in Karanottama
[KTM (1964), p. 41]

T NTATITATE -

indorgatyayanamaha —

[Now, the procedure for] obtaining the rate of motion of
Moon’s declination is being told.

ifeshIf~: JareRa<TdRiaT Ffedif=T |
IR edT I XA ahamrar: 1&gl
W@T‘{mmﬂﬁ |

kotikrantih prthaksthendorvargita sahitonita |
krantiyutyantaraghnya svadohkrantyadhikya
karsyayoh ||6]|

tatpadadhya prthaksthesu hatagnyabdhihrta gatih |

@ Springer



162

Indian Journal of History of Science (2023) 58:157-170

Having kept the kotikranti of the Moon separately, the
product of the sum and difference of [the Rsines of] the
declinations of the Sun and the Moon has to be added to
or subtracted from the square of that [Rcosine of the dec-
lination of the Moon] depending upon whether the Rsine
of the declination of the Moon is larger or smaller respec-
tively. The square-root of this [result] is to be added to
the quantity kept separately and that has to be multiplied
by 5 (isu) and divided by 43 (agnyabdhi). [The result
obtained] would be the gati [of the kranti of the Moon].

T ﬁ%mﬁrqwﬁw SHICIIRILE R ST
ARIPTARE R Gt | AR =
?:lﬁrqlcwd | 3o ﬁ'ﬂﬁ'ﬁ%ﬁ I Wﬁw

Hifeshiiaa= q"i(*) drﬂ\q fo=ramat sifessrl

TIsT df ggfuear BeanREdET I wieia:

indoh kotikrantim prthak vinyasya vargikrtyasyamarken
dubhujakrantyoryogantarahatim samskuryat |
tatprakarastu indukranteradhikye sati yojayet | alpatve
viyojayediti | evam samskrtasya kotikrantivargasya
yanmitlam tatpirvam vinyastayam kotikrantau samyojya
tam parncabhirhatva tricatvarimsatapta candrasya
krantigatih | ... ... [l

Having kept the kotikranti of the Moon separately and
squaring it, that [square] has to be corrected by the
product of the sum and difference of [the Rsines of] the
declinations of the Sun and the Moon. The nature of cor-
rection is indeed additive if the [Rsine of the] declination
of the Moon is larger. If it is smaller, then the subtraction
has to be performed [as the correction]. Like this, having
found the square-root of the corrected kotikrantivarga, it
has to be added to the Rcosine of the declination which
has been kept separately before. The obtained quantity
has to be multiplied by 5 (parica) and divided by 43
(tricatvarimsat). [The result obtained] would be the
krantigati of the Moon.

The verse 6 and half of the verse 7 of the Karanottama give
the procedure to obtain the krantigati of the Moon. Let 6,(¢)
and 6,,(¢) are the declinations of the Sun and the Moon at
any instant ¢ respectively, then the algorithm for finding the
krantigati is as follows:

e The kétikranti of the Moon (R sin € cos 4,,) has to be kept
at two places separately. Here, 4,, is the longitude of the
Moon respectively. That is,

Place (A) Place (B)
¢ ¢
Rsinecos 4, Rsinecos 4,

e Find the square of Rsinecos 4,,. That is, find R? sin®
€ cos? A, and at Place (A), we have

@ Springer

Place (A) Place (B)
¢ ¢
Rsinecos 4, Rsinecos 4,
l 1

R?sin’ e cos? A,
Find the Sum (S) and difference (D) of the Rsines of the
declinations of the Sun and the Moon. That is, we have

Rsinecos 4,

S =|Rsin s, + Rsins,,|

and D =|Rsiné, — Rsing,,|.

Here, R sin 6, and R sin 6,, are understood to be the mag-
nitudes of the Rsines of §, and §,,. Also, the product of
this sum and difference is given as

Product (S,D) =SxD
= (Rsing,, + Rsiné,) X (Rsing,, — Rsiné)
= (R*sin’ 6,, — R?sin® §;) (if 6, > &)
and Product (S, D) =SxD
= (Rsind, + Rsin3,,) X (Rsind; — Rsin4,,)
= (R*sin’ 6, — R?sin® §,,) (if &, > 6,,).
Apply the product of the above Sum and the difference
to the square of the kotikranti of the Moon. That is, we
have
R?sin* e cos® A,, + Product (S, D)
= R%sin® ecos® A, + Sx D (if 8, > &,)
= R?sin* e cos® A,, + (R? sin® §,, — R? sin” §,)
= R%sin’ e cos® 4,, + R* sin* §,, — R* sin” §,
= R? — R*sin’ §,
= R?sin* e cos® A,
where 4, is the longitude of the Sun. Similary,

R? sin? € cos? A, — Product (S, D)

= R*sin’ ecos’ A, —Sx D (if 6, <8,)
— (R*sin* 8, — R*sin® 5,
— R*sin 6, + R*sin’ 8,

= R*sin® e cos’ A,
= R*sin® ecos® A,
= R* — R%sin® §,
= R*sin’ e cos’ A,.
Therefore,

Product of the Sum
2

R?sin? € cos® 4, +

and the difference = R? sin® € cos? A,.

The above term is referred to as samskrta-kranti-
kotivarga. The square-root of this is R sin € cos 4, which
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is the kotikranti of the Sun. It is not clear why this is
stated in such a round-about manner.

e This (Rsinecos 4,) has to be added to Rsinecos 4,
which has been kept separately (at Place (B)). This sum
has to be multiplied by 5 and divided by 43 to obtain the
krantigati of the Moon (denoted as g,,). Therefore,

&m =(Rsin€cos/1m+Rsinecos/lS) X % €))
Therefore,
Place (A) Place (B)
o ¢
Rsinecos 4, Rsinecos 4,
1 1
R?sin® e cos® 4, Rsinecos 4,
) )
R? sin® € cos? A, Rsinecos 4,
\ \
Rsinecos A, Rsinecos 4,
1 )
- 5 5 4+ e
1
(R sine cos A; + Rsin e cos Am)
\
(Rsinecos 4, + Rsine cos 4,,) X %
¥

krantigati of the Moon

The rationale for the expression (4) could be understood
as follows: The krantigati (g,,) of the Moon is obtained by
finding the derivative of Rsin é’ , where &/ is the longitude
of a point on the ecliptic which has the same longitude as
the Moon (essentially the declination of the Moon ignoring
its latitude). Therefore,

d(Rsin &' (1))

g = D )
B d(Rsinesin 4,,)
B dt
=Rsi A a4,
=IKSIMeECoS 4, X T (6)
2]
=Rsinecos 4, X —R,
dt

where RA,, is the longitude of the Moon in minutes and

d(RA
(R4,,) ~ 800’ /day ,

which is the rate of change of Moon’s longitude in minutes.
Therefore,

d(Rsin &/ (1)) 1 d(RA,)
—————— =Rsinecos 4, X = X
dr R dr
=Rsinecos 4,, X 800
R
=Rsinecos 4, X —— 800
3438 (7)
=Rsinecos 4, X S
4.2975
A Rsinecos 4,, X %
. 10
=Rsinecos 4, X VER
Now, near vyatipata, |cos 4,,| ~
A, ~ 180° — 4, = 360° — A
at vyatipata. Therefore,
Rsinecos 4, =% (2Rsinecos 4,,)
1 ®)
E(Rsmecosﬂ + Rsine cos Ay).
Applying (8) in (7), we have
d(Rsin &’ (1))
—_—r —l(R sine cos A,, + Rsine cos 4;) X 10
=(Rsine cos A, + Rsine cos 4;) X 45—3,

which is the same as the expression (4) for the krantigati of

the Moon given in the text Karanottama.
800 10 _

Noting that = >< X 3557 and = 3438, the sum of

the krantigatis (gsum) of the Sun and the Moon can be
expressed as

d(Rsiné’ (1))  d(Rsiné (¢
g.m (Karanottama) = m ( 5(1) (10)
dr dr
:%(R sin e cos 4,, + Rsine cos ;) X %
60
R A X ——
+ Rsine cos 3938
:%stme[;cosﬂ +%cosﬂ + cos A x%]
800 1 L, 6
5 )
T sine 2COS/I + cos A 200
_800 [leinecosAm+Rsin€cosﬁv<l+ﬂ)]
kL2 \2 7 800
(11)
Now,
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1 + 60 1 (1 + 60 > kattittayorantarattal perukkissamskkarikkanam |
2 800 2 400 (12) candrakranti kurannitil kalavi kiittukanyatha ||16||
1 23
T2 X 20° atu mitliccu kuttittu kétijakrantiliptayét |

Aoplvine (12) in (11 h arkkasya kotijakrantim garaghnam narabhdjitam ||17||

pplying (12) in (11), we have phalavum kiattiyarddhiccal gatikrantiyatayvarum |

_ 800 1, . 1 23 . )
Baum = T~ X |3 Rsinecos 4, + (5 X %)R sine cos 4| Having kept the kotijakranti of the Moon separately, find
(13)  the square of it. To this [square of the kotijakranti, apply the

We shall see later that this sum (g,,,,) is used to obtain
the longitudes of the Sun and the Moon at the middle of the
vyatipata.

3.3 The gatikranti (krantigati) in Drkkarana [DK1,
DK2]

The author of Drkkarana uses the term gatikranti for
the rate of change of declination instead of krantigati, as
in Karanottama. This intermediate term is used to obtain
the correction term by applying which one can obtain the
longitude of the Sun and the Moon at the middle of the
vyatipata. Now, we shall explain the algorithm to obtain
the gatikranti as described in Drkkarana in verses 15-—
17.5 in chapter 7.

21BOAF CHISIRGIN] CAIHOHWIINEBIHUD |

a8 aflsmlele aloam e0lemsIo: 2001 ®arga |15l

2510 EWORANOBNITT HaIGBSHTYTRANBHEMo |

2B B0sISITE D80y gm0 1116l
@® pells) &g1g C:OSIR@G oMl jco |

@BHOAVY EHIS1RGIMo 1NIREle Mo |17l

anelnjo &51WARUI2J0E3 VM@0 VMIW @0 |

T hifesTshl T SRATAg e |
gieiTergiad e di=aT: shifvd dgiee |[94||
FISTAR-AITATE, TTBIAVERINER |
STl BREITee Fovd FgH-2T |98
1 {5 FgIg TSI csHdd |

e hifSSTShiTwe IRY AT |[99)|
L) o C o [ L
g RIGATes Tl ISR IaTe |

candranre kotijakranti véreyonnannuvccatu |
varggiccittatilum pinne ravindvoh kranti tannalil ||15||

@ Springer

product of the sum and the difference of the declinations
of the Sun and the Moon. If the declination of the Moon is
lesser [than that of the Sun], then that [product] has to be
subtracted from [the square of the kotijakranti], otherwise
it has to be added. Then, having found the square-root of
this [quantity] and having added this [square-root] to the
kotijakranti [of the Moon], [the obtained quantity] has to
be converted into minutes. When the sum—of this> and the
result obtained by multipying the kotijakranti of the Sun by
23 (gara) and divided by 20 (nara)—is halved, then the result
obtained would be the gatikranti (krantigati).

These verses give the procedure to find the gatikranti. The
method is the same as in Karanottama, with the gatikranti
here differing by a factor compared to the ‘krantigati’ of
Karanottama. We summarise the procedure in the following.

e The kotijakranti of the Moon R sin € cos 4,, (where 4,, is
the longitude of the Moon) has to be placed at two places.
That is,

Place (A) Place (B)
¢ ¢
Rsinecos 4, Rsinecos 4,

Find the square of R cos §,,. That is, find R cos® §,, and
at Place (A), we have

Place (A) Place (B)
¢ ¢
Rsinecos 4, Rsinecos 4,
\ |
R? cos® ecos® A, R? cos® ecos’® A,

¢ Find the Sum (S) and difference (D) of the Rsines of the
declinations of the Sun and the Moon. That is, we have

S =|Rsinesin A, + Rsinesin 4, |
and D =|Rsinesin A, — Rsinesin 4.

e Apply the product of the above Sum and the difference
to the square of the kotijakranti of the Moon. There are

5 The term “this” refers to the kotijakranti of the Moon which is
equal to Rsine cos 4,,.
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two cases depending upon whether the declination of the
Moon is smaller or larger.

R?sin’ e cos® A, + S x D,

and R?sin® e cos® A,, — S x D,

for 6,, > 6,
for 6, < 6,.

In either case,
R?sin € cos® A,, £ S X D = R* sin® e cos® A,.

The square-root of this is R sin € cos A, and is referred to
as the kotijakranti of the Sun.

¢ Now, the sum of the above result (R sin e cos 4,) and the
kotijakranti of the Moon (R sin e cos 4,,) is to be found.
It is not clear whether this sum is the ‘phala’ referred
to in the half-verse following the verse 17.

e Now, the the kotijakranti of the Sun has to be multi-
plied by 23 (gara) and divided by 20 (nara). That is,
we have a new quantity

ara

Y =kotijakranti of the Sun X g
nara

=Rsinecos 4, X 2
20

e This new quantity (Y) has to be added to the phala (X).
The half of this is known as gatikranti (denoted as g
(Drkkarana)). If the ‘phala’ (X) here is interpreted as
the sum of the kotijakrantis of the Sun and the Moon,
it will not lead to anything meaningful. However, if
the ‘phala’ is interpreted as the kéotijakranti of the
Moon only, we obtain a result which is in accordance
with the procedure in Karanottama, which gives the
sum of the Rsines of the declinations of the Sum and
the Moon. Hence, we adopt the later interpretation.
Then,

g (Drkkarana) = X+v

2
. . . 23
(Rsmecos/lm + Rsine cos A4 X 5)

- 2

(Rsinecos 4,,) + 1 X % X (Rsinecos Ay).

2
(14)
Comparing the expressions for the sum of the krantigatis
of the Sun and the Moon, g, (Karanottama) as defined

in Karanottama, and the ‘gatikranti’, g (Drkkarana) as
defined in Drkkarana, we find that

N =

g (Drkkarana) = R X 8am (Karanottamay).

: ’ 800 |
It can be recollected that g, (Karanottama) is the sum
of the rates of changes of the Rsines of the declinations of
the Sun and the Moon (ignoring its latitude). In Appendix

2, the folio corresponding to the verses describing the
‘gatikranti’ in Drkkarana is presented.

4 Instant of vyafipata/vaidhrta
and the corrections to the longitudes
of the Sun and the Moon

Let the instant corresponding to Vyatipata be T units of
time (day or nadika) after the instant when 6/ = &, (when
A, = 180° — A, 0r 360° — A,; where ¢ is taken as 0). Then,
Rsino,,(T) — Rsin6,(T)

=0 ~ Rsin 6,,(0) — R sin 6,(0)

< d[Rsiné,,(r) — Rsin ()] )
+ xT.

dr

Hence,

_ Rsiné,(0) - Rsins,,(0)
- d[R sin g, )

(15)

()—Rsins,(1)]
dr

m

Now, when the Moon has a latitude, g,
Rsiné,,(t) =Rsinesin A, cos f+ Rsinfcose

=Rsiné’ (¢) cos f + Rcos e sin §

m

~Rsiné! (1) + Rp cose,

ignoring terms of O(#?). Hence,

Rsin6,(0) — Rsin 6,,(0) =Rsin 6,(0) — R sin 5”71(0) —Rfcose

= —Rficose,
(16)
as Rsin &/ (0) = Rsin 5.(0).
Also, near Vyatipata
dRsin 6,(¢) dRsiné,,(¢)
d -
Therefore,
d(Rsin6,,(f) — Rsin 6,(1))
dr
_ dR sin 6,,(¢) N dR sin 6,()
ST ’ dt ’ ‘ dt ‘
dRsin &’ (¢) d dRsin (¢
:ile+RCOS€£ +’TV()'
A7)
Here, the 4+’ sign is applicable if dRsind 0 g negative (Sun in
KIS : . .o dRsIng(t) - .
even quadrant) and ‘-’ sign is applicable if ——— is posi-

d
tive (Sun in odd quadrant). t

Now, applying (17) and (16) in (15), we have
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_ R sin 6,(0) — Rsin 6,,(0)
~ 4[Rsin g, (1) — Rsin6,()]
dt

Rsin 8,(0) — Rsin 8, (0)

=+ .
| [dRsing) (1) dg dR'sin5.(7)
TR +Rcosea +|—dl ’
Now,
Rsin6,(0) — Rsin6,,(0) & —Rf cose = O(f),
dg

already. Hence, 5, term in the denominator, can be neglected
if T'is being computed to O(f). Hence,

Rsin8,(0) — R'sin 5,,(0)
dRsind! ()| |dRsins, ()] |
dr dr ‘

"

where the 4+’ sign is applicable when the Sun is in the even
quadrant and the ‘-’ sign, when it is in the odd quadrant. In
fact, it can be seen that

R'sin 8,(0) — Rsin 8,,(0)
dRsiné’ (| |dRsins,(0)| |
dr dr ’

~

+ ‘

where, ‘—’ sign is applicable when the object in the odd
quadrant has a greater declination which means that the
vyatipata/vaidhrta has elapsed, and ‘+’ sign is appli-
cable when the object in the odd quadrant has a lesser
declination.

Using the expression for the rate of change of the sum of
the Rsines of the declinations of the Sun and the Moon in
the expression for 7, we have

r |R sin 6,(0) — Rsin6,,(0)]
F

800 \[1p 1.2 . '
<7>[5Rs1nec05/lm+(zx%>Rsmecos/lS]

This result, as such, is not stated in the two texts. However,
the changes in the longitudes of the Sun and the Moon, dur-
ing the interval between the instants when the Rsines of the
declinations of the Sun and the Moon have a given differ-
ence and the middle of the vyatipata, when it is zero can be
readily computed from T Let these changes be A4, and A4,
respectively.

@ Springer

dA, (mins./day)
dr
+(Rsing,, ~ Rsing,) x 60

AJ, (mins.) =T (in days) X =T x60

T s00[1p. 1,23 .
n [stmecos/lm + (2 X% )Rsmecosix]

(Rsing,, ~ Rsiné,) x 3438 3
==+ X 4—0 s
Lp 1,23 .
[ERsmecos A + (5 X %>Rsmecos/ls]
(18)

and

dA,, (mins./day)

AA, (mins.) =T (in days) X o

=T x 800
+(Rsinsg,, ~ Rsind,) X 800

800 [ 1 . 123 .
—|-Rsinecos 4 - X = )Rsinecos A
R [z nt (3% % s

Rsind _~ Rsiné ) x 3438
m N

i

1p o 1Ly 2\ po '
[ER sine cos 4,, + (5 X 5>R sin € cos /IS]

19)
It is readily seen that

Al (mins.) = A4, (mins.) X i

40 (20)

The expressions for A4, and AA,, which are to be sub-
tracted from or added to the longitudes of the Sun and the
Moon respectively at the instant (with a given value of
(Rsiné,, ~ Rsind,)) to obtain the longitudes at the middle
of the vyatipata/vaidhrta. We have already noted that ‘-’
sign is applicable when the object in the odd quadrant has
a greater declination, and ‘+’ sign is applicable when the
object in the odd quadrant has a lesser declination. These
are explicitly stated in both the texts, Karanottama [KTM
(1964), pp. 41-42] and Drkkarana [DK1, DK2]. The verses
with the translations are presented in Appendix 1. The folio
describing the changes in longitudes of the Sun and the
Moon in Drkkarana is presented in Appendix 3.

5 Concluding remarks

It is well known that the derivative of the sine function is
used for computing the instantaneous velocity (tatkalikagati)
of planets in Indian astronomical texts from Laghumanasa
onwards. In this paper, we have reported the use of the
derivative for finding the rates of change of the declinations
of the Sun and the Moon in two Kerala texts of the late six-
teenth and early seventeenth century, namely Karanottama
of Acyuta Pisarati in Sanskrit, and a Malayalam text,
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Dkkarana. This is used for the computation of the instant of
vyatipata/vaidhrta implicitly, which used to be computed
using proportionality arguments earlier. It would be interest-
ing to investigate whether the concept of derivative is used
in other contexts also, in later Kerala texts.

Appendix 1

We present the algorithms, given in karanottama and
drkkarana, for finding the longitudes of the Sun and the
Moon at the middle of the vyatipata.

Obtaining the longitudes of the Sun and the Moon
at the middle of the vyatipata as per karnaottama

TESTd hIaaRTd ST W@ arfedrd |
ST ATHTHT: ¥ ShATGh2RgAT: |

o~ C o :
FCATGISTITShIT~aH gl 2ot aar: 11|l

dvisthat krantyantarat sastya khakhanagaisca taditat |
gatiyutyaptaliptah svam kramddarkasasankayoh |
alpacedojagakrantirmahati cedrnam tayoh ||7||

The difference in [Rsines of] the declinations [of the
Sun and the Moon] which have been kept separately at
two places have to be multiplied by 60 (sasti) and 800
(khakhanaga) respectively and divided by the sum of
the gatis of their declinations (sum of the gatikrantis
of the Sun and the Moon). The obtained results, in
minutes, have to be added to the longitude of the Sun
and the Moon respectively when the declination of
the object (Sun/Moon) situated at the odd-quadrant
is lesser than that of the other one. If the declination
is larger, then those [results] have to be subtracted.

LIgHERY Fa: WA g g
TATSHA T dTedd | I Taran fassie | aF
TIH s [HHTeTSRAS Jehrd | fode wd I
TR | TRBRIBRIG, Tharied T SIS

HIRedT =g 9« Fadl et | ... ...

suryendukrantyorantaram dvayoh sthanayornidhayaikam
sastyanyam satastakena ca tadayet | krantigatyoryogena
vibhajecca | tatra prathamam phalam liptalpakamarke
samskaryam | dvitiyam phalamcandre samskaryam |
samskaraprakarastu arkendvormadhye ya ojapadagatas-
tasya krantiralpa ced dhanam mahatt cedrpamiti | ... ...

Having kept the difference in [Rsines of] the declina-
tions of the Sun and the Moon at two places, multipy

[the term at] the first place by 60 (sasti) and [the term
at] the other (second) place by 800 (satastaka). Also,
divide [both the quantities] by the sum of the rates
of motion (krantigatiyogal/(gatikrantiyoga)) [of the
Sun and the Moon]. There, the first result in the form
of minutes has to be applied to [the longitude of] the
Sun. The second result has to be applied to the Moon.
The nature of correction is like this. Among the
Sun and the Moon, if the declination of the one
which is situated at the odd quadrant is smaller [than
that of the other one], then addition is to be per-
formed. If it is larger, then the subtraction [is to be
performed].

Verse 7 of Karanottama gives an algorithm to obtain
the longitudes of the Sun and the Moon at the middle of
the vyatipata. This is as follows:

e Place the difference in Rsines of the declinations of the
Sun and the Moon at two places. That is, we have

Place (A) Place (B)
¢ ¢
Rsiné,, ~ Rsin g, Rsiné,, ~ Rsin g,

e Multiply by 60 at one place and by 800 at the second
place. That is,

Place (A) Place (B)
¢ ¢
Rsiné,, ~ Rsiné; Rsiné,, ~ Rsiné;
¢ ¢
(Rsiné, ~ Rsins,) x 60 (Rsing,, ~ Rsiné,) X 800

¢ Divide both the results by the sum of the rates of motion
(gatikrantiyoga) of the Sun and the Moon. These are the
corrections to be applied to the longitudes of the Sun and
the Moon respectively. Therefore, correction to the Sun’s
longitude is given by

(Rsiné,, ~ Rsinéd,) X 60
gatikrantiyoga
(Rsiné,, ~ Rsind,) X 60
_RCOS(SS X % + (Rcosém +Rcosés) X %
(Rsiné,, ~ Rsins,) x 60 21)

= 10 5
Rcosé X — + (Rcosém +Rcos§s) X3

(Rsiné,, ~ Rsind,) x 60

AV IES

s

10

T
7t (Rcoslm +RcosAS) X 4—3]

Rsine[R cos 4, X

e Similarly, the correction to the Moon’s longitude is given
by
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(Rsins,, ~ Rsiné,) x 800
gatikrantiyoga
(Rsiné,, ~ Rsiné,) x 800

A4, =

m

= 10 5
Rcosé, X o= + (Rcos 5, + Rcos ;) X -

(Rsins,, ~ Rsing,) x 800

- 10 5
Rcos b X == + (Rcosém +Rcos§S) X3
(R siné,, ~Rsin5s) x 800

e 10 5]
Rsme[Rcos/lsxﬁ+(Rcosﬂm+Rcos/15)XE]
(22)

e Now, corrections given by the expressions (21) and
(22) have to be applied to the longitudes of the Sun and
the Moon respectively. Therefore,

A(T) =A,(0) + A4,
and A, (T) =4,,(0) + A4,

where ‘4 has to be used if the declination of the object
which is situated at the odd quadrant is smaller than that
of the other one. Otherwise, ‘— sign has to be used.

Obtaining the longitudes of the Sun and the Moon
at the middle of the vyatipata in Drkkarana [DK1,
DK2]

@O0 RILIGRINOW: Hal@dRg a0BlaseMo |13l

DDA abelo AUMMIGE 2I@BMIG MoMNE@1HHEMo I

@D GAIPOIID HAlafl§ VIMo OBIMNG Dal®ee1@oad I 19l

MIE1OBI6NG 0@ 21g68B3HHOM £ilo @3 @30 |

$302R0103YWa00m1OM &2001cwoI@ d:gsm]g [120]

GH0BHIT &3] HAICHNIMAAINNS (00N B06NZSA3 |
GHHal0jo MoYElaflg @0V AUIGEDS: 121l
ShIa S Teeare el |9

TSI thes T, T~ TRERINERTT |

3 =1 AfRrg I Hivg Taieane (|93
q‘l‘fﬁ?ﬁ'ﬂg E LEW

SISTITEIER, SIS Hea g [Ro|
PRI} g THRUTHITE Shif-aehlvge |
g TveBREg shif-erae ot |29

krantyantaram jalabhogaih perukkittu harikkanam ||18||

gatikrantyd phalam vannal candranil samskkarikkanam |
atu véronnu veccittu ganam kontu perukkiyal ||19||
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nabhikontu hariccittannarkkanre liptayil tada |
ojapadagrahattinre krantiyeril kalafiriti ||20||

kurakil kiitti vekkénamavite krantikontutan |
ksepavum samskkariccittu krantisamyam varuttuka ||21|

Now, having multiplied the difference in declinations
(krantyantara) by 3438 (jalabhoga), divide it by the
gatikranti; the result obtained is to be applied to [the
longitude of the] the Moon. Having kept this aside,
multiply this by 03 (gana) and divide by 40 (nabhi).
Both these results in minutes have to be subtracted from
[their respective longitudes] if the declination of the
odd-quadrant-planet is larger, if it is smaller they have
to be added. Thereby the equality in declinations is to
be obtained by correcting this by the latitude as well.

Multiply the difference in Rsines of the declinations of
the Sun and the Moon by 3438 (jalabhoga) and divided
by the gatikranti. The result is the correction (A4,,)
applied to the Moon’s longitude. Therefore,

Ad =kr&nlyantara X jalabhoga

" gatikranti

(Rsiné,, ~ Rsiné,) x 3438

_%(Rsinecosllm) + % X % X (Rsinecosﬂs).
(23)

The correction (A4,) applied to the longitude of the Sun
is obtained by multiplying A4, by 03 (gana) and divided
by 40 (nabhi). That is,
- 3
Ay =A4, X 20
(Rsiné, ~ Rsins,) x 3438 3 (24

(Rsinecos 4,,) + % X % X (Rsinecos A,) 0

T

2

Now the longitudes of the Sun and the Moon at the
instant of the middle of the vyatipata are given by

A(T) =2,(0) + A4,
and A (T) =A,,0) + A4,

where ‘+ has to be used if the declination of the object
which is situated at the odd quadrant is smaller than that
of the other one. Otherwise, ‘—’ sign has to be used.
From A,(T) and 4,,(T), the declinations of the Sun and
the Moon can be obtained respectively.

The true declination of the Moon can be found by apply-
ing the correction due to the latitude. The true declination
of the Moon is expressed as

Rsiné,,(T) ~ Rcos fsiné! (T) + Rp cose,

taking the latitude of the Moon into account.
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Appendix 2

See Fig. 2.

Fig. 2 Folio corresponding to gatikranti in Drkkarana, Trav. c. 7c., Kerala University Oriental Research Institute and Manuscript Library,

Trivandrum

Appendix 3

See Fig. 3.

Fig. 3 Folio corresponding to the longitudes of the Sun and the moon at the middle of the vyatipata, Trav. c. 7c., Kerala University Oriental

Research Institute and Manuscript Library, Trivandrum
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