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Abstract
It is well known that the concept of derivative was used in finding the rates of motion of planets in Indian astronomy 
texts beginning with Laghumānasa (c. 932 CE). In his Vāsanābhāṣya of his own work, Siddhāntaśiromaṇi (c.1150 CE), 
Bhāskarācārya explains the necessity of using the concept of tātkālikagati (instantaneous rates of motion) of planets, which 
involves using the derivative of the sine function, and discusses the retrograde motion of planets also, using the concept. 
Later, Kerala texts like Tantrasaṅgraha also discuss this concept. In two Kerala texts, Karaṇottama of Acyuta Piṣāraṭi (late 
sixteenth century) and Dṛkkaraṇa (1608 CE), the use of the concept of derivative is used in a very different context, namely, 
computations pertaining to vyatīpāta. In this paper, we describe the algorithms involving the ‘krāntigati’ or the rate of change 
of the declinations of the Sun and the Moon involving the derivative conept, in these two texts.
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1 Introduction

Calculus related concepts are to be found in Indian 
Siddhāntic texts, from Laghumānasa of Muñjāla (932 
CE) onwards (Datta et al., 1984; Sriram, 2014; LM, 1944; 
Ramasubramanian & Srinivas, 2010). They are in the con-
text of the rates of motion of the planets. Due to the eccen-
tricity of the orbit of a planet, an ‘equation of centre’ correc-
tion should be apllied to the mean planet, �

0
 (which moves 

uniformly with time) to obtain the ‘true’ planet, �
t
 . In many 

texts, the expression for the true planet, �
t
 is of the form

as such, or in an approximation. Here, M = �
0
− �

A
 is the 

manda-kendra (anomaly), where �
A
 is the ‘apogee’. Here, 

r
0

R

 is the ratio of the radius of the manda-epicycle and the 
radius of the mean planet’s orbit. Also, f (M ) ≈ 1 is a func-
tion of M. The second term in the above equation is the 
mandaphala or the ‘equation of centre’.

In earlier texts, the rate of motion of the planet was found 
by just computing the true planet, �

t
 at the mean sunrise on two 

successive days. The difference between them was considered 
the true rate of motion through out the intervening day.

It is in Laghumānasa that the rate of motion is 
treated very differently. In this text, �

t
 has the form (LM, 

1944, pp. 38–49; Shukla, 1990, pp. 125–127)

and the true rate of motion is given as

where the first term in the RHS is the madhyamagati or the 
‘mean rate of motion’ and the second term is the gatiphala 
(result of correction to the mean rate of motion). This is the 
rate of motion at any instant or ‘instantaneous velocity’, 
though it is not stated explicitly in the text Laghumānasa. 
Here, it is clear that Δ sinM

Δt
 is taken as cosM ×

ΔM

Δt
 , and the 

variation due to the factor 1

1+
r
0

2R

cosM

 is not taken into account. 

Clearly it is recognised that the derivative of sinM  is cosM  , (
Δ sinM

Δt
=

Δ sinM

ΔM
×

ΔM

Δt
= cosM ×

ΔM

Δt

)
 , though not stated 

as such.

�
t
= �

0
−

r
0

R

f (M ) sinM

�
t
= �

0
−

r
0

R

×
sinM

1 +
r
0

2R

cosM

,

Δ�
t

Δt
=

Δ�
0

Δt
−

r
0

R

×
cosM

1 +
r
0

2R

cosM

×
ΔM

Δt
,
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In the Mahāsiddhānta of Āryabhaṭa-II (tenth century CE) 
(MS, 1910, p. 58), the manda-sphuṭa-graha is given by

and the rate of motion is given as

Here also, the derivative of sine is recognised as the cosine.
In the Grahagaṇitādhyāya part of Siddhāntaśiromaṇi, 

in the chapter on Spaṣṭādhikāra (SS, 2005, chapter 2, 
verse 30, p. 50), Bhāskara’s expression for �

t
 is

Then, the rate of motion would be:

which is the same as in Mahāsiddhānta. It is stated in verse 
37 of this chapter (SS, 2005, chapter 2, p. 52), as follows:

कोटिफलघ्नी मृदुकेन्द्रभुक्तिस्त्रिज्ोद्तृा करककि मृगाटिकेन्द्रे ।
तया युतोना ग्रहमध्यभुक्ति तात्ाललकी मन्दपरिसु्िा स्ात् ।।

koṭiphalaghnī mṛdukendrabhukti-
strijyoddhṛtā karkimṛgādikendre ।
tayā yutonā grahamadhyabhukti 
tātkālikī mandaparisphuṭā syāt ।।

The daily motion of the mandakendra (mean anom-
aly) being multiplied by the koṭiphala and divided by 
the radius, and the result being added to or subtracted 
from the mean motion depending upon whether the 
anomaly is in karkyādi or mṛgādi gives the true 
instantaneous [rate of motion] of manda-sphuṭa.

In the next verse, Bhāskara stresses the need for using 
the instantaneous rate of motion in the case of the Moon 
whose rate of motion of anomaly is large:

समनीपततथ्यन्तसमनीपचालनं टिधोस्ु तत्ालजयैि युज्ते ।

samīpatithyantasamīpacālanaṃ vidhostu tatkālajayaiva  
yujyate |

In the case of the Moon, the ending moment or the begin-
ning time of a tithi which is near at hand is to be computed 
using the instantaneous (tatkāla) rate of motion only.

This is explained in far greater detail in the vāsanā for the 
verses. Here, it is pointed out that the earlier computation of 
the rate of motion (by just finding the difference between the 
true longitudes at successive sunrises) is only approximate, 
and a more precise instantaneous rate of motion has to be 
computed.

�
t
= �

0
−

r
0

R

× sinM ,

Δ�
t

Δt
=

Δ�
0

Δt
−

r
0

R

× cosM ×
ΔM

Δt
.

�
t
= �

0
−
(
r
0

R

× sinM

)
.

Δ�
t

Δt
=

Δ�
0

Δt
−

r
0

R

× cosM ×
ΔM

Δt
,

The actual planets, Mars, Mercury, Jupiter, Venus and Sat-
urn have one more correction, namely, Śīghra. Finding their 
exact rates of motion is challenging and Bhāskara solves this 
by adopting a novel approach, in which only the derivative 
of the sine function is involved (SS, 2005, pp. 54–58).

In Tantrasaṅgraha of Nīlakaṇṭha Somayājī [Ramsubrama-
nian & Sriram (2011), chapter 2, p. 76, p. 90 and pp. 114–116], 
the manda-correction (mandaphala) for the mean planet 
to obtain the true planet is of the form − sin

−1(
r
0

R

sinM ) . 
Nīlakaṇṭha gives the exact expression for the correction to the 
rate of motion of the planet due to this mandaphala as

So, the derivative of the inverse sine function is calculated 
correctly in this text.

In his Sphuṭanirṇayatantra (late sixteenth century) (SNT, 
1974, chapter 3, verses 17–18 p. 20), Acyuta Piṣāraṭi essen-
tially considers a mandaphala of the form:

also, as in Laghumānasa. Acyuta gives the correct expres-
sion for the correction to the rate of motion due to this man-
daphala which is a ratio of two functions, − r

0

R

sinM  and 
(1 +

r
0

R

cosM ) , as

(SNT, 1974, chapter 3, verses 19–20, pp. 20–21; Ramasu-
bramanian & Srinivas, 2010, pp. 279–280).

All these are in the context of the rates of motion of 
planets. However, a recent study of two Kerala texts, 
namely Karaṇottama (KTM, 1964) of Acyuta Piṣāraṭi, and 
Dṛkkaraṇa [DK1, DK2, Venketeswara and Sriram (2019)] 
by us has revealed that the calculus concepts (essentially the 
derivative of the sine function) are used in another context. 
This is in the context of finding the instant of vyatīpāta or 
vaidhṛta, when the magnitudes of the declinations of the 
Sun and the Moon are equal, whereas their rates of change 
are opposite (with one increasing and the other, decreas-
ing). The computation involves the rates of change of the 
declinations of the Sun and the Moon, wherein use is made 
of d

dt

sin � = cos �
Δ�

Δt
 , where � is the longitude of the Sun or 

the Moon. In this paper, we elaborate the use of the deriva-
tive concept in finding the instant of vyatīpāta or vaidhṛta 
in the two texts.

−

r
0

R

cosM ×
ΔM

Δt√(
1 −

r
2

0

R
2

sin
2

M

) .

−
r
0

R

sinM

(1 +
r
0

R

cosM )

−

[
r
0

R

cosM +

(
r
0

R

sinM

)
2

(
1+

r
0

R

cosM

)
]

(
1 +

r
0

R

cosM

) ΔM

Δt
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2  Phenomena of vyatīpāta and  vaidhṛta

Vyatīpāta or lāṭa and vaidhṛta occur when the magnitudes 
of the declinations of the Sun and the Moon are equal, and 
their rates of change are opposite, that is, one of them is 
increasing, while the other is decreasing.

For lāṭ a or vyatīpāta, the ayanas of the Sun and the 
Moon should be different, that is, one is moving north-
wards, whereas the other is moving southwards. In the case 
of vaidhṛta, the ayanas of both are the same.

These are illustrated in Fig. 1. When the Sun is at S
1
 or S

2
 

it is lāṭa when the Moon is at M
1
 and M

2
 respectively, where 

|�
s
| = |�

m
| , but the two objects have different ayanas. For 

the same two positions of the Sun, it is vaidhṛta when the 
Moon is at M ′

1
 and M ′

2
 respectively, where |�

s
| = |�

m
| , but 

the two objects have the same ayanas. Similarly, one can 
consider lāṭa and vaidhṛta, when the Sun is in the third or 
fourth quadrants.

2.1  Computation of vyatīpāta and vaidhṛta

To be specific, we consider the text Dṛkkaraṇa first. The 
text Dṛkkaraṇa1 (c. 1608 CE) is a comprehensive text on 
astronomy which was composed based on observational data 
[DK1, DK2, (Venketeswara & Sriram, 2019)].

The author declares right at the beginning of the text that 
he is going to expound a karaṇa based on observations, 
to enable young students to understand the mathematical 

methods of astronomy. He also emphasises that he is going 
to explain this in the [popular] language which he calls 
as Bhāṣā. In practice, the Bhāṣā is a highly Sanskritised 
version of Malayāḷaṃ, called Maṇipravāḷaṃ. A study of 
Dṛkkaraṇa reveals that it is actually a Tantra type of text 
which gives all the algorithms associated with the tradi-
tional topics in a typical Indian text in more than 400 verses 
spread over 10 chapters. These include the computations of 
the mean longitudes, true longitudes, tripraśna problems 
related to time and shadow, corrections associated with 
the terrestrial longitude and latitude of a location, detailed 
discussions of lunar and solar eclipses, vyatīpāta, heliacal 
rising and setting of planets, computations of the ascendant 
(lagna) at a given time, dimensions of the orbits of the Sun, 
Moon and planets, Vākya system and so on (Venketeswara 
& Sriram, 2019).

In particular, the seventh chapter is dedicated to the algo-
rithms pertaining to the vyatīpāta and vaidhṛta. This chapter 
gives the details of the computation related to vyatīpāta. 
These include the expressions for the declination of the 
Moon including its latitude, for the ‘middle’ of the vyatīpāta, 
the procedure for finding the sparśakāla (beginning of the 
vyatīpāta) and the mōkṣakāla (end of the vyatīpāta), and the 
special case when the Sun and the Moon are close to their 
ayanasaṅkramas. Verses 1 and 2 in this chapter are as fol-
lows [DK1, DK2]:

व्यतनीपातं गणिकु्न्न प्रकािङ्ङळ् पऱञ्ञििां |
अयनांशतमिक्टिचु् संस्क्रिचु्ळळ सूय्यनॆ ||१||

आऱिुाणशतयल् िाङ्ङङीटुि मण्डलत्तिन्नमुतङ्ङनॆ |
तुल्ं चन्द्रटनततन्नोिु िन्ननीिुं नालळलोक्कि िं ||२||

vyatīpātaṃ gaṇikkunna prakāraṅṅaḷ paṟaññiṭāṃ |
ayanāṃśamiraṭṭiccu saṃskkariccuḷḷa sūryan ||1||

āṟurāśiyil vāṅṅīṭṭu maṇḍalattinnumaṅṅine |
tulyaṃ candranitinnōṭu vannīṭuṃ nāḷilōrkkaṇaṃ ||2||

The methods for computing the vyatīpāta are being 
told. [The longitude of] the Sun which has been cor-
rected by the twice the ayanāṃśa has to be subtracted 
from the six rāśis or twelve rāśis (maṇḍala). Then, 
it becomes equal to the [longitude of the] Moon. 
The day [on which this occurs] is to be noted down 
(ōrkkaṇaṃ).

M2

ecliptic

equator Γ

Γ’

P

S1

M1 S2

M’1
M’2

Moon’s orbit

Fig. 1  Vyatīpāta and vaidhṛta 

1 This has been attributed to Jyesṭ hadeva, who is the author of 
Ganitayuktibhāṣā by both Whish (1834) and Sarma (1972). However, 
there is no indisputable evidence for this. In the concluding verse 
of Dṛkkaraṇa it is stated that the work was composed in kōḷaṃbe 
bahisūnau, which means the Kollam year 783, which is 1608 CE. 
This is mentioned in the article of Whish.
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The author states that different methods for computing 
vyatīpāta or vaidhṛta would be told. Now, at the vyatīpāta 
or vaidhṛta, the declinations of the Sun and the Moon should 
be equal and their rates of change should be opposite. Now, 
for a celestial object on the ecliptic,

where � is the tropical or the sāyana longitude of the object. 
Hence, if the latitude of the Moon is ignored (to begin with), 
then the equality of the magnitudes of the declinations of the 
Sun and the Moon implies that2

 where �
m
 and �

s
 are the sāyana longitudes of the Moon and 

the Sun. This implies that

if the Sun and the Moon have opposite ayanas, or

when they have the same ayana. Now, �
m
= (�

m
)
n
+ a and 

�
s
= (�

s
)
n
+ a , where (�

m
)
n
 and (�

s
)
n
 are the nirayaṇa longi-

tude,3 of the Moon and the Sun respectively. Hence, for the 
computation of vyatīpāta or vaidhṛta, first find the instant 
at which

respectively, as stated in the verses.

2.2  Lāṭ avaidhṛtadoṣas

लाििैधृतिोषङ्ङळ् िटिचन्द्र्रौ च पातनुं |
गणिच्च्टियनांशतिॆ संस्क्रिच्ङु्ङ िॆक्िं ||३||

चन्द्राक्कि न्ािॆ िॆच्च्टुि क्ान्न्तज्ािङु्ङ कॊळळुक |

lāṭavaidhṛtadōṣaṅṅaḷravicandrau ca pātanuṃ |
gaṇicciṭṭayanāṃśatte saṃskkariccaṅṅu vekkaṇaṃ ||3||

sin � = sin � sin �,

sin �
m
= sin �

s
,

�
m
= 180

◦ − �
s

�
m
= 360

◦ − �
s

(�
m
)
n
=180◦ −

(
(�

s
)
n
+ 2a

)

or (�
m
)
n
=360◦ −

(
(�

s
)
n
+ 2a

)
,

candrārkkanmāre vecciṭṭu krāntijyāvaṅṅu koḷḷuka |
[For obtaining the lāṭ a and vaidhṛta-doṣas], place 
[the longitudes of] the Sun, the Moon and the node 
(pāta) which have been computed and corrected by 
the ayanāṃśa.4 Then, find the Rsine of declination cor-
responding to the Sun and the Moon.

For obtaining the declination of the Sun, it is sufficient 
to know its sāyana longitude, that is the nirayaṇa longitude 
corrected by the ayanāṃśa. As the Moon’s orbit is inclined 
to the ecliptic, it is necessary to find its latitude also, to 
obtain its declination. For this, it is necessary to obtain its 
node (pāta) as well. The procedure to obtain the declination 
of the Moon, taking into account its latitude is described 
elsewhere in the text.

3  Use of the derivative of the sine function 
in Karaṇottama and Dṛkkaraṇa

For finding the instant of vyatīpāta or vaidhṛta, the law of 
propotions and an iterative procedure was prescribed in 
the earlier texts such as Brāhmasphuṭa-siddhānta (BSS, 
1966, vol. 3, chapter 14, verses 39–40, pp. 1023–1025), 
Karaṇaratna of Devācārya [KR (1979), chapter 1, verses 
54–57, pp. 37–38], Śiṣyadhīvṛddhida of Lalla (SVT, 1981, 
part 1, chapter 12, verses 6–9, pp. 171–173), and also later 
texts. This method has also been discussed in some recent 
articles (Plofker, 2014, pp. 1–11; Venketeswara Pai et al., 
2015, pp. 69–89).

The same procedure is described in the Pātādhikāra of 
the Grahagaṇita part of Siddhāntaśiromaṇi. We summarise 
this procedure which is described elsewhere in detail (Ven-
keteswara Pai et al., 2015).

Let t
1
 be a suitable instant at which the declinations of 

the Sun and the Moon are �
s
 and �

m
 respectively (includ-

ing the sign). Now, finding their difference, we have 
Δ

1
= �

s
− �

m
 . Now, again find the difference in declina-

tions, Δ
1
= �

s
− �

m
 , at some other instant t

2
 . Then, the 

instant of vyatīpata is found by the law of proportion. If 
the difference in the declinations of the Sun and the moon 
changes by an amount equal to Δ

1
− Δ

2
 in the time inter-

val, t
2
− t

1
 , what is the instant T, when it has changed by 

an amount Δ
1
 , making the declinations equal, that is, when 

Δ(T ) = 0 . This is given by

2 In Indian astronomy texts, the sine or cosine of any variable refers 
to its magnitude only. In this paper also, we adhere to this meaning 
throughout.
3 This is with respect to the mēṣādi which is a fixed point on the 
ecliptic.

4 In the verse, the phrase “ayanāṃśatte saṃskkariccaṅṅu” is to be 
understood as “ayanāṃśatte koṇtu saṃskkariccaṅṅu” which means 
“corrected by the ayanāṃśa”. Here, the word “koṇtu” is implicit. If 
we do not consider the “koṇtu”, then the meaning would be “correct 
the ayanāṃśa” which is incorrect in the present context.
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This formula is in terms of Δ s including the sign.
Now, at instant T, �

s
 and �

m
 are found again. In general, they 

would not be equal. Hence, �
s
− �

m
 is computed at T, and some 

other nearby instant, and the process is iterated, till an ‘invari-
able’ quantity is obtained, when the values of the instants of 
vyatīpāta in the successive stages of iteration are equal.

In the texts Karaṇottama and Dṛkkaraṇa, a different strat-
egy is used for finding the instant of vyatīpāta implicitly, 
using the derivative of the declination.

Karaṇottama is an important karaṇa text composed by 
Acyuta Piṣāraṭi (1550–1621 CE). The author himself has 
written a commentary on the work. It consists of 119 verses 
divided into five chapters, which deal with the standard topic 
in a Siddhānta text. This includes the computations related 
to vyatīpāta/vaidhṛta in the fifth chapter.

Both Karaṇottama and Dṛkkaraṇa describe the proce-
dure for obtaining the longitudes of the Sun and the Moon 
at the middle of the vyatīpāta. The algorithms given in both 
the texts are similar and an intermediate term referred to as 
krāntigati/gatikrānti (translated as rate of motion of the dec-
lination) is used by the authors to arrive at the true longi-
tudes at the middle of the vyatīpāta. In the expressions for 
krāntigatis, we find the application of the differential calculus. 
In the following subsections, we would explain the procedure 
for krāntigatis as described in the texts Karaṇottama [KTM 
(1964), p. 41] and Dṛkkaraṇa [DK1, DK2] respectively.

3.1  The krāntigati of the Sun in Karaṇottama 
[KTM (1964), p. 41]

तत्ाककि स् क्ान्न्तगत्ायनमाह–
tatrārkasya krāntigatyāyanamāha–
There, the procedure for obtaining the rate of motion of 
Sun’s declination is being told.

कोटिक्ान्ते ििेटि्यग्घ्नास्त्रिशैलेषु हृता गततः ।।५।।
kōṭikrānte raverdigghnyāstriśaileṣu hṛtā gatiḥ ||5||
The kōṭikrānti of the Sun when multiplied by 10 (dik) 
and divided by 573 (tri-śaila-iṣu), the gati is obtained.

िटिकोटिज्ायाः क्ान्न्तमाननीय तां  िशत्भह्यत्ा गोसमेन हृत्ा 
सूय्यस्ापक्मगततरितत ।।
ravikōṭijyāyāḥ krāntimānīya tāṃ daśabhirhatvā 
gōsamena hṛtvā sūryasyāpakramagatiriti ||

Having obtained the declination from the Rcosine of the 
longitude of the Sun and multiplying that by 10 (daśa) 
and divided by 573 (gōsama), the gati of the declination 
[of the Sun is obtained].

T − t
1
=

t
2
− t

1

Δ
1
− Δ

2

× Δ
1
.

Let �
s
(t) be the declination of the Sun at any instant t, then 

the krānti-gati ( g
s
 ) of the Sun is given as

where �
s
 is the longitude of the Sun.

The rationale for the expression (1) can be understood 
as follows:

Let the declination of the Sun be �
s
(t) at any instant t, then 

the krāntigati of the Sun ( g
s
 ) can be expressed as

Here, the term R sin � cos �
s
 is referred to as the kōṭikrānti 

in the text. Also, R�
s
 is the longitude of the Sun in minutes and

Therefore,

which is the same as the expression (1).

3.2  The ‘krāntigati’ of the Moon in Karaṇottama 
[KTM (1964), p. 41]

इन्दोग्यत्ायनमाह–
indōrgatyāyanamāha –

[Now, the procedure for] obtaining the rate of motion of 
Moon’s declination is being told.

कोटिक्ान्न्तः पृथक्सेन्दोि्यतग्यता सरहतोटनता ।
क्ान्न्तयुत्ान्तिघ्ना स ्िि ोःक ्िा न्त ्या त्धक ्यक ार््ययोः ।।६।।
तत्पिाढ्ा पृथक्सेषु हताग्न्यब्धिहृता गततः ।

koṭikrāntiḥ pṛthaksthendorvargitā sahitonitā |
krāntiyutyāntaraghnyā svadoḥkrāntyādhikya
kārśyayoḥ ||6||
tatpadāḍhyā pṛthakstheṣu hatāgnyabdhihṛtā gatiḥ |

(1)
g
s
= kōtikrānti of the Sun ×

10

573

=R sin 𝜖 cos 𝜆
s
×

10

573

,

(2)

g
s
=

d(R sin �
s
(t))

dt

=
d(R sin � sin �

s
)

dt

=R sin � cos �
s
×
d�

s

dt

=R sin � cos �
s
×
d

[
(R�

s
)

R

]

dt

.

d(R�
s
)

dt

≈ 60
�∕day .

(3)

d(R sin �
s
(t))

dt

=R sin � cos �
s
×
d

[
(R�

s
)

R

]

dt

=R sin � cos �
s
×
60

R

=R sin � cos �
s
×

60

3438

=R sin � cos �
s
×

10

573

,
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Having kept the kōṭikrānti of the Moon separately, the 
product of the sum and difference of [the Rsines of] the 
declinations of the Sun and the Moon has to be added to 
or subtracted from the square of that [Rcosine of the dec-
lination of the Moon] depending upon whether the Rsine 
of the declination of the Moon is larger or smaller respec-
tively. The square-root of this [result] is to be added to 
the quantity kept separately and that has to be multiplied 
by 5 (iṣu) and divided by 43 (agnyabdhi). [The result 
obtained] would be the gati [of the krānti of the Moon].

इन्दोः  कोटिक्ान्न्त ंपथृक् टिन्यस् िगगीकृत्ास्ामकके न्दभुुजाक्
िान्तोययोगान्तिहतत ंससुं्ययात् । तत्प्रकािस् ुइन्दकु्ान्तिेात्धक्े 
सतत योजयेत् । अल्पत्े टियोजयेटितत । एिं संसृ्तस् 
कोटिक्ान्न्तिग्यस् यन्ूलं तत्पूिवं टिन्यस्ायां कोटिक्ान्त्रौ 
सयंोज् तां पञ्चत्भह्यत्ा तत्चत्ारिंशताप्ा चन्द्रस् क्ान्न्तगततः 
। ... ...।।

indoḥ koṭikrāntiṃ pṛthak vinyasya vargīkṛtyāsyāmarken
dubhujākrāntyoryogāntarahatiṃ saṃskuryāt |
tatprakārastu indukrānterādhikye sati yojayet | alpatve 
viyojayediti | evaṃ saṃskṛtasya koṭikrāntivargasya
yanmūlaṃ tatpūrvaṃ vinyastāyāṃ koṭikrāntau saṃyojya 
tāṃ pañcabhirhatvā tricatvāriṃśatāptā candrasya 
krāntigatiḥ | ... ... ||

Having kept the kōṭikrānti of the Moon separately and 
squaring it, that [square] has to be corrected by the 
product of the sum and difference of [the Rsines of] the 
declinations of the Sun and the Moon. The nature of cor-
rection is indeed additive if the [Rsine of the] declination 
of the Moon is larger. If it is smaller, then the subtraction 
has to be performed [as the correction]. Like this, having 
found the square-root of the corrected kōṭikrāntivarga, it 
has to be added to the Rcosine of the declination which 
has been kept separately before. The obtained quantity 
has to be multiplied by 5 (pañca) and divided by 43 
(tricatvāriṃśat). [The result obtained] would be the 
krāntigati of the Moon.

The verse 6 and half of the verse 7 of the Karaṇottama give 
the procedure to obtain the krāntigati of the Moon. Let �

s
(t) 

and �
m
(t) are the declinations of the Sun and the Moon at 

any instant t respectively, then the algorithm for finding the 
krāntigati is as follows:

• The kōṭikrānti of the Moon ( R sin � cos �
m
 ) has to be kept 

at two places separately. Here, �
m
 is the longitude of the 

Moon respectively. That is, 

• Find the square of R sin � cos �
m
 . That is, find R2

sin
2

� cos2 �
m
 and at Place (A), we have 

Place (A) Place (B)

⇕ ⇕

R sin � cos �
m

R sin � cos �
m

• Find the Sum (S) and difference (D) of the Rsines of the 
declinations of the Sun and the Moon. That is, we have 

Here, R sin �
s
 and R sin �

m
 are understood to be the mag-

nitudes of the Rsines of �
s
 and �

m
 . Also, the product of 

this sum and difference is given as 

• Apply the product of the above Sum and the difference 
to the square of the koṭikrānti of the Moon. That is, we 
have 

 where �
s
 is the longitude of the Sun. Similary, 

 Therefore, 

The above term is referred to as saṃskṛta-krānti-
kōṭivarga. The square-root of this is R sin � cos �

s
 , which 

Place (A) Place (B)

⇕ ⇕

R sin � cos �
m

R sin � cos �
m

↓ ↓

R
2

sin
2

� cos2 �
m

R sin � cos �
m

S =||R sin �
s
+ R sin �

m

||
and D =||R sin �

s
− R sin �

m

||.

Product (S,D) = S × D

=
(
R sin 𝛿

m
+ R sin 𝛿

s

)
×
(
R sin 𝛿

m
− R sin 𝛿

s

)

=
(
R
2
sin

2 𝛿
m
− R

2
sin

2 𝛿
s

)
( if 𝛿

m
> 𝛿

s
)

and Product (S, D) = S × D

=
(
R sin 𝛿

s
+ R sin 𝛿

m

)
×
(
R sin 𝛿

s
− R sin 𝛿

m

)

=
(
R
2
sin

2 𝛿
s
− R

2
sin

2 𝛿
m

)
( if 𝛿

s
> 𝛿

m
).

R
2
sin

2 𝜖 cos2 𝜆
m
+ Product (S, D)

= R
2
sin

2 𝜖 cos2 𝜆
m
+ S × D ( if 𝛿

m
> 𝛿

s
)

= R
2
sin

2 𝜖 cos2 𝜆
m
+
(
R
2
sin

2 𝛿
m
− R

2
sin

2 𝛿
s

)

= R
2
sin

2 𝜖 cos2 𝜆
m
+ R

2
sin

2 𝛿
m
− R

2
sin

2 𝛿
s

= R
2 − R

2
sin

2 𝛿
s

= R
2
sin

2 𝜖 cos2 𝜆
s
,

R
2
sin

2 𝜖 cos2 𝜆
m
− Product (S, D)

= R
2
sin

2 𝜖 cos2 𝜆
m
− S × D ( if 𝛿

m
< 𝛿

s
)

= R
2
sin

2 𝜖 cos2 𝜆
m
−
(
R
2
sin

2 𝛿
s
− R

2
sin

2 𝛿
m

)

= R
2
sin

2 𝜖 cos2 𝜆
m
− R

2
sin

2 𝛿
s
+ R

2
sin

2 𝛿
m

= R
2 − R

2
sin

2 𝛿
s

= R
2
sin

2 𝜖 cos2 𝜆
s
.

R
2
sin

2 � cos2 �
m
± Product of the Sum

and the difference = R
2
sin

2 � cos2 �
s
.
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is the koṭikrānti of the Sun. It is not clear why this is 
stated in such a round-about manner.

• This ( R sin � cos �
s
 ) has to be added to R sin � cos �

m
 

which has been kept separately (at Place (B)). This sum 
has to be multiplied by 5 and divided by 43 to obtain the 
krāntigati of the Moon (denoted as g

m
 ). Therefore, 

 Therefore, 

The rationale for the expression (4) could be understood 
as follows: The krāntigati ( g

m
 ) of the Moon is obtained by 

finding the derivative of R sin �′
m
 , where �′

m
 is the longitude 

of a point on the ecliptic which has the same longitude as 
the Moon (essentially the declination of the Moon ignoring 
its latitude). Therefore,

where R�
m
 is the longitude of the Moon in minutes and

(4)g
m
=
(
R sin � cos �

m
+ R sin � cos �

s

)
×

5

43
.

Place (A) Place (B)

⇕ ⇕

R sin 𝜖 cos 𝜆
m

R sin 𝜖 cos 𝜆
m

↓ ↓

R
2
sin

2 𝜖 cos2 𝜆
m

R sin 𝜖 cos 𝜆
m

↓ ↓

R
2
sin

2
𝜖 cos2 𝜆

s
R sin 𝜖 cos 𝜆

m

↓ ↓

R sin 𝜖 cos 𝜆
s

R sin 𝜖 cos 𝜆
m

↓ ↓

→ → → + ← ← ←

↓(
R sin 𝜖 cos 𝜆

s
+ R sin 𝜖 cos 𝜆

m

)

↓

(
R sin 𝜖 cos 𝜆

s
+ R sin 𝜖 cos 𝜆

m

)
×

5

43

⇓

krāntigati of the Moon

(5)gm =
d(R sin ��

m
(t))

dt

(6)

=
d(R sin � sin �

m
)

dt

=R sin � cos �
m
×
d�

m

dt

=R sin � cos �
m
×
d

[
(R�

m
)

R

]

dt

,

which is the rate of change of Moon’s longitude in minutes. 
Therefore,

Now, near vyatīpāta, ||cos �m|| ≈ ||cos �s|| , as

at vyatīpāta. Therefore,

Applying (8) in (7), we have

which is the same as the expression (4) for the krāntigati of 
the Moon given in the text Karaṇōttama.

Noting that 5

43

×
1

2

×
800

3438

, and 10

573

=
60

3438

 , the sum of 
the krāntigatis ( g

sum
 ) of the Sun and the Moon can be 

expressed as

Now,

d(R�
m
)

dt

≈ 800
�∕day ,

(7)

d(R sin ��
m
(t))

dt
=R sin � cos �

m
×

1

R

×
d(R�

m
)

dt

=R sin � cos �
m
×
800

R

=R sin � cos �
m
×

800

3438

=R sin � cos �
m
×

1

4.2975

≈R sin � cos �
m
×

1

4.3

=R sin � cos �
m
×
10

43
.

�
m
≈ 180

◦ − �
s
≈ 360

◦ − �
s

(8)
R sin � cos �

m
=
1

2

(
2R sin � cos �

m

)

≈
1

2

(
R sin � cos �

m
+ R sin � cos �

s

)
.

(9)

d(R sin ��
m
(t))

dt

=
1

2

(
R sin � cos �

m
+ R sin � cos �

s

)
×
10

43

=
(
R sin � cos �

m
+ R sin � cos �

s

)
×

5

43

,

(10)gsum (Karan.ottama) =
d(R sin ��

m
(t))

dt
+

d(R sin �s(t))

dt

(11)

=
1

2

(
R sin � cos �

m
+ R sin � cos �

s

)
×

800

3438

+ R sin � cos �
s
×

60

3438

=
800

3438

× R sin �

[
1

2

cos �
m
+

1

2

cos �
s
+ cos �

s
×

60

800

]

=
800

R

× R sin �

[
1

2

cos �
m
+ cos �

s

(
1

2

+
60

800

)]

=
800

R

×
[
1

2

R sin � cos �
m
+ R sin � cos �

s

(
1

2

+
60

800

)]
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Applying (12) in (11), we have

We shall see later that this sum ( g
sum

 ) is used to obtain 
the longitudes of the Sun and the Moon at the middle of the 
vyatīpāta.

3.3  The gatikrānti (krāntigati) in Dṛkkaraṇa [DK1, 
DK2]

The author of  Dṛkkaraṇa  uses the term gatikrānti for 
the rate of change of declination instead of krāntigati, as 
in Karaṇottama. This intermediate term is used to obtain 
the correction term by applying which one can obtain the 
longitude of the Sun and the Moon at the middle of the 
vyatīpāta. Now, we shall explain the algorithm to obtain 
the gatikrānti as described in Dṛkkaraṇa in verses 15-−
17.5 in chapter 7.

चन्द्रनऱॆ कोटिजक्ान्न्त िेऱॆयॊन्नङु्ङिॆच्तु |
िर्ग््यच्च्टिततलं टपन्न ॆििनीन्ोः क्ान्न्त तङ्ङलळल् ||१५||

कूक्टितियोिन्तितिाल् पॆरुटक्स्ंस्क्रिक्िं |
चन्द्रक्ान्न्त कुऱञिनीटिल् कळिू कूटुिकन्यथा ||१६||

अतु मूललच्ु कूटिनीटुि कोटिजक्ान्न्तललप्येत् |
अक्कि स् कोटिजक्ान्न्तं गािघ्ं निभाणजतं ||१७||
फलिुं  कूक्टियब्द््यच्ाल् गततक्ान्न्तयताय्वरंु |

candranṟe kōṭijakrānti vēṟeyonnaṅṅuvccatu |
varggicciṭṭatiluṃ pinne ravīndvōḥ krānti taṅṅaḷil ||15||

(12)

1

2

+
60

800

=
1

2

(
1 +

60

400

)

=
1

2

×
23

20

.

(13)
g
sum

=
800

R

×
[
1

2

R sin � cos �
m
+
(
1

2

×
23

20

)
R sin � cos �

s

]
.

kūṭṭittayōrantarattāl perukkissaṃskkarikkaṇaṃ |
candrakrānti kuṟaññīṭil kaḷavū kūṭṭukanyathā ||16||

atu mūliccu kūṭṭīṭṭu kōṭijakrāntiliptayēt |
arkkasya kōṭijakrāntiṃ gāraghnaṃ narabhājitaṃ ||17||
phalavuṃ  kūṭṭiyarddhiccāl gatikrāntiyatāyvaruṃ |

Having kept the kōṭ ijakrānti of the Moon separately, find 
the square of it. To this [square of the kōṭ ijakrānti, apply the 
product of the sum and the difference of the declinations 
of the Sun and the Moon. If the declination of the Moon is 
lesser [than that of the Sun], then that [product] has to be 
subtracted from [the square of the kōṭ ijakrānti], otherwise 
it has to be added. Then, having found the square-root of 
this [quantity] and having added this [square-root] to the 
kōṭ ijakrānti [of the Moon], [the obtained quantity] has to 
be converted into minutes. When the sum–of this5 and the 
result obtained by multipying the kōṭ ijakrānti of the Sun by 
23 (gāra) and divided by 20 (nara)–is halved, then the result 
obtained would be the gatikrānti (krāntigati).

These verses give the procedure to find the gatikrānti. The 
method is the same as in Karaṇottama, with the gatikrānti 
here differing by a factor compared to the ‘krāntigati’ of 
Karaṇottama. We summarise the procedure in the following.

• The kōṭijakrānti of the Moon R sin � cos �
m
 (where �

m
 is 

the longitude of the Moon) has to be placed at two places. 
That is, 

• Find the square of R cos �
m
 . That is, find R2

cos
2 �

m
 and 

at Place (A), we have 

• Find the Sum (S) and difference (D) of the Rsines of the 
declinations of the Sun and the Moon. That is, we have 

• Apply the product of the above Sum and the difference 
to the square of the kōṭijakrānti of the Moon. There are 

Place (A) Place (B)

⇕ ⇕

R sin � cos �
m

R sin � cos �
m

Place (A) Place (B)

⇕ ⇕

R sin � cos �
m

R sin � cos �
m

↓ ↓

R
2

cos
2 � cos2 �

m
R
2

cos
2 � cos2 �

m

S = ||R sin � sin �
s
+ R sin � sin �

m

||
and D = ||R sin � sin �

s
− R sin � sin �

s

||.

5 The term “this” refers to the kōṭijakrānti of the Moon which is 
equal to R sin � cos �

m
.
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two cases depending upon whether the declination of the 
Moon is smaller or larger. 

 In either case, 

 The square-root of this is R sin � cos �
s
 and is referred to 

as the kōṭijakrānti of the Sun.
• Now, the sum of the above result ( R sin � cos �

s
 ) and the 

kōṭijakrānti of the Moon ( R sin � cos �
m
 ) is to be found. 

It is not clear whether this sum is the ‘phala’ referred 
to in the half-verse following the verse 17.

• Now, the the kōṭijakrānti of the Sun has to be multi-
plied by 23 (gāra) and divided by 20 (nara). That is, 
we have a new quantity 

• This new quantity (Y) has to be added to the phala (X). 
The half of this is known as gatikrānti (denoted as g 
(Dṛkkaraṇa)). If the ‘phala’ (X) here is interpreted as 
the sum of the kōṭijakrāntis of the Sun and the Moon, 
it will not lead to anything meaningful. However, if 
the ‘phala’ is interpreted as the kōṭijakrānti of the 
Moon only, we obtain a result which is in accordance 
with the procedure in Karaṇottama, which gives the 
sum of the Rsines of the declinations of the Sum and 
the Moon. Hence, we adopt the later interpretation. 
Then, 

Comparing the expressions for the sum of the krāntigatis 
of the Sun and the Moon, g

sum
 (Karaṇottama) as defined 

in Karaṇottama, and the ‘gatikrānti’, g (Dṛkkaraṇa) as 
defined in Dṛkkaraṇa, we find that 

 It can be recollected that g
sum

 (Karaṇottama) is the sum 
of the rates of changes of the Rsines of the declinations of 
the Sun and the Moon (ignoring its latitude). In Appendix 

R
2

sin
2

𝜖 cos2 𝜆
m
+ S × D, for 𝛿

m
> 𝛿

s

and R
2

sin
2

𝜖 cos2 𝜆
m
− S × D, for 𝛿

m
< 𝛿

s
.

R
2

sin
2

� cos2 �
m
± S × D = R

2

sin
2

� cos2 �
s
.

Y = kōtijakrānti of the Sun ×
gāra

nara

=R sin 𝜖 cos 𝜆
s
×
23

20

.

(14)

g (Dr. kkaran.a) =
X + Y

2

=

(
R sin � cos �m + R sin � cos �s ×

23

20

)

2

=
1

2

(
R sin � cos �m

)
+

1

2
×

23

20
×
(
R sin � cos �s

)
.

g (Dr.kkaran.a) =
R

800
× gsum (Karan.ottama).

2, the folio corresponding to the verses describing the 
‘gatikrānti’ in Dṛkkaraṇa is presented.

4  Instant of vyatīpāta/vaidhṛta 
and the corrections to the longitudes 
of the Sun and the Moon

Let the instant corresponding to Vyatīpāta be T units of 
time (day or nāḍikā) after the instant when ��

m
= �

s
 (when 

�
m
= 180

◦ − �
s
 or 360◦ − �

s
 ; where t is taken as 0). Then,

Hence,

Now, when the Moon has a latitude, �,

ignoring terms of O(�2) . Hence,

as R sin ��
m
(0) = R sin �

s
(0).

Also, near Vyatīpāta

Therefore,

 Here, the ‘+’ sign is applicable if dR sin �
s
(t)

dt

 is negative (Sun in 
even quadrant) and ‘-’ sign is applicable if dR sin �

s
(t)

dt

 is posi-
tive (Sun in odd quadrant).

Now, applying (17) and (16) in (15), we have

R sin �
m
(T) − R sin �

s
(T)

= 0 ≈ R sin �
m
(0) − R sin �

s
(0)

+

(
d
[
R sin �

m
(t) − R sin �

s
(t)
]

dt

)
× T .

(15)T =
R sin �

s
(0) − R sin �

m
(0)

d[R sin �
m
(t)−R sin �

s
(t)]

dt

.

R sin �
m
(t) =R sin � sin �

m
cos � + R sin � cos �

=R sin ��
m
(t) cos � + R cos � sin �

≈R sin ��
m
(t) + R� cos �,

(16)

R sin �
s
(0) − R sin �

m
(0) =R sin �

s
(0) − R sin ��

m
(0) − R� cos �

= − R� cos �,

dR sin �
s
(t)

dt

≈ −
dR sin �

m
(t)

dt

.

(17)

d(R sin �
m
(t) − R sin �

s
(t))

dt

= ±

[||||
dR sin �

m
(t)

dt

|||| +
||||
dR sin �

s
(t)

dt

||||
]

= ±

[|||||
dR sin ��

m
(t)

dt
+ R cos �

d�

dt

|||||

]
+
||||
dR sin �

s
(t)

dt

||||.
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Now,

already. Hence, d�
dt

 term in the denominator, can be neglected 
if T is being computed to O(�) . Hence,

where the ‘ + ’ sign is applicable when the Sun is in the even 
quadrant and the ‘−’ sign, when it is in the odd quadrant. In 
fact, it can be seen that

where, ‘−’ sign is applicable when the object in the odd 
quadrant has a greater declination which means that the 
vyatīpāta/vaidhṛta has elapsed, and ‘ + ’ sign is appli-
cable when the object in the odd quadrant has a lesser 
declination.

Using the expression for the rate of change of the sum of 
the Rsines of the declinations of the Sun and the Moon in 
the expression for T, we have

This result, as such, is not stated in the two texts. However, 
the changes in the longitudes of the Sun and the Moon, dur-
ing the interval between the instants when the Rsines of the 
declinations of the Sun and the Moon have a given differ-
ence and the middle of the vyatīpāta, when it is zero can be 
readily computed from T. Let these changes be Δ�

s
 and Δ�

m
 

respectively.

T =
R sin �

s
(0) − R sin �

m
(0)

d

�
R sin �

m
(t) − R sin �

s
(t)

�

dt

= ±

⎡⎢⎢⎢⎢⎣

R sin �
s
(0) − R sin �

m
(0)

�����
dR sin ��

m
(t)

dt
+ R cos �

d�

dt

�����
+
���
dR sin �

s
(t)

dt

���

⎤⎥⎥⎥⎥⎦
.

R sin �
s
(0) − R sin �

m
(0) ≈ −R� cos � = O(�),

T ≈ ±

⎡
⎢⎢⎢⎢⎣

R sin �
s
(0) − R sin �

m
(0)

�����
dR sin ��

m
(t)

dt

�����
+
����
dR sin �

s
(t)

dt

����

⎤
⎥⎥⎥⎥⎦
,

T ≈ ±

⎡
⎢⎢⎢⎢⎣

R sin �
s
(0) − R sin �

m
(0)

�����
dR sin ��

m
(t)

dt

�����
+
����
dR sin �

s
(t)

dt

����

⎤
⎥⎥⎥⎥⎦
,

T ≈ ±

⎡⎢⎢⎢⎣

��R sin �
s
(0) − R sin �

m
(0)���

800

R

��
1

2

R sin � cos �
m
+
�

1

2

×
23

20

�
R sin � cos �

s

�
⎤⎥⎥⎥⎦
.

 and

 It is readily seen that

The expressions for Δ�
s
 and Δ�

m
 which are to be sub-

tracted from or added to the longitudes of the Sun and the 
Moon respectively at the instant (with a given value of 
( R sin �

m
∼ R sin �

s
 )) to obtain the longitudes at the middle 

of the vyatīpāta/vaidhṛta. We have already noted that ‘−’ 
sign is applicable when the object in the odd quadrant has 
a greater declination, and ‘ + ’ sign is applicable when the 
object in the odd quadrant has a lesser declination. These 
are explicitly stated in both the texts, Karaṇottama [KTM 
(1964), pp. 41–42] and Dṛkkaraṇa [DK1, DK2]. The verses 
with the translations are presented in Appendix 1. The folio 
describing the changes in longitudes of the Sun and the 
Moon in Dṛkkaraṇa is presented in Appendix 3.

5  Concluding remarks

It is well known that the derivative of the sine function is 
used for computing the instantaneous velocity (tātkālikagati) 
of planets in Indian astronomical texts from Laghumānasa 
onwards. In this paper, we have reported the use of the 
derivative for finding the rates of change of the declinations 
of the Sun and the Moon in two Kerala texts of the late six-
teenth and early seventeenth century, namely Karaṇottama 
of Acyuta Piṣāraṭi in Sanskrit, and a Malayāḷam text, 

(18)

Δ�
s
(mins.) =T (in days) ×

d�
s
(mins./day)

dt
= T × 60

=
±
�
R sin �

m
∼ R sin �

s

�
× 60

800

R

�
1

2
R sin � cos �

m
+
�

1

2
×

23

20

�
R sin � cos �

s

�

= ±

⎡
⎢⎢⎢⎣

�
R sin �

m
∼ R sin �

s

�
× 3438�

1

2
R sin � cos �

m
+
�

1

2
×

23

20

�
R sin � cos �

s

� ×
3

40

⎤
⎥⎥⎥⎦
,

(19)

Δ�
m
(mins.) =T (in days) ×

d�
m
(mins./day)

dt

=T × 800

=
±
�
R sin �

m
∼ R sin �

s

�
× 800

800

R

�
1

2
R sin � cos �

m
+
�

1

2
×

23

20

�
R sin � cos �

s

�

= ±

⎡⎢⎢⎢⎣

�
R sin �

m
∼ R sin �

s

�
× 3438�

1

2
R sin � cos �

m
+
�

1

2
×

23

20

�
R sin � cos �

s

�
⎤⎥⎥⎥⎦
.

(20)Δ�
s
(mins.) = Δ�

m
(mins.) ×

3

40
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Dḳkaraṇa. This is used for the computation of the instant of 
vyatīpāta/vaidhṛta implicitly, which used to be computed 
using proportionality arguments earlier. It would be interest-
ing to investigate whether the concept of derivative is used 
in other contexts also, in later Kerala texts.

Appendix 1

We present the algorithms, given in karaṇottama and 
dṛkkaraṇa, for finding the longitudes of the Sun and the 
Moon at the middle of the vyatīpāta.

Obtaining the longitudes of the Sun and the Moon 
at the middle of the vyatīpāta as per karṇaōttama

त्विष्ात् क्ान्तन्तिात् षष्टा खखनागैश्च ताटितात् ।
गततयुत्ाप्ललप्ाः स्ं क्मािककि शशाङ्कयोः ।
अल्पाचेिोजगाक्ान्न्तम्यहतनी चेदृिं तयोः ।।७।।

dviṣṭhāt krāntyantarāt ṣaṣṭyā khakhanāgaiśca tāḍitāt |
gatiyutyāptaliptāḥ svaṃ kramādarkaśaśāṅkayoḥ |
alpācedojagākrāntirmahatī cedṛṇaṃ tayoḥ ||7||

The difference in [Rsines of] the declinations [of the 
Sun and the Moon] which have been kept separately at 
two places have to be multiplied by 60 (ṣaṣṭi) and 800 
(khakhanāga) respectively and divided by the sum of 
the gatis of their declinations (sum of the gatikrāntis 
of the Sun and the Moon). The obtained results, in 
minutes, have to be added to the longitude of the Sun 
and the Moon respectively when the declination of 
the object (Sun/Moon) situated at the odd-quadrant 
is lesser than that of the other one. If the declination 
is larger, then those [results] have to be subtracted.

सूयकेन्दुक्ान्तोिन्तिं वियोः स्ानयोटन्यधायैकं षष्टान्य ं
शताष्टकेन च ताियेत् । क्ान्न्तगत्ोययोगेन टिभजेच् । तत् 
प्रथमं फलं ललप्ाल्पकमकके  संस्ाय्यम् । त्वितनीयं फलं  चन्द्र े
ससं्ाय्यम् । ससं्ािप्रकािस् ुअककेन्ोम्यध्य ेय ओजपिगतस्स् 
क्ान्न्तिल्पा चदे् धन ंमहतनी चदेृितमतत । ... ...

sūryendukrāntyorantaraṃ dvayoḥ sthānayornidhāyaikaṃ 
ṣaṣṭyānyaṃ śatāṣṭakena ca tāḍayet | krāntigatyoryogena 
vibhajecca | tatra prathamaṃ phalaṃ liptālpakamarke 
saṃskāryam | dvitīyaṃ phalaṃcandre saṃskāryam | 
saṃskāraprakārastu arkendvormadhye ya ojapadagatas-
tasya krāntiralpā ced dhanaṃ mahatī cedṛṇamiti | ... ...

Having kept the difference in [Rsines of] the declina-
tions of the Sun and the Moon at two places, multipy 

[the term at] the first place by 60 (ṣaṣṭi) and [the term 
at] the other (second) place by 800 (śatāṣṭaka). Also, 
divide [both the quantities] by the sum of the rates 
of motion (krāntigatiyōga/(gatikrāntiyōga)) [of the 
Sun and the Moon]. There, the first result in the form 
of minutes has to be applied to [the longitude of] the 
Sun. The second result has to be applied to the Moon. 
The nature of correction is like this. Among the  
Sun and the Moon, if the declination of the one 
which is situated at the odd quadrant is smaller [than 
that of the other one], then addition is to be per-
formed. If it is larger, then the subtraction [is to be 
performed].

Verse 7 of Karaṇōttama gives an algorithm to obtain 
the longitudes of the Sun and the Moon at the middle of 
the vyatīpāta. This is as follows:

• Place the difference in Rsines of the declinations of the 
Sun and the Moon at two places. That is, we have 

• Multiply by 60 at one place and by 800 at the second 
place. That is, 

• Divide both the results by the sum of the rates of motion 
(gatikrāntiyōga) of the Sun and the Moon. These are the 
corrections to be applied to the longitudes of the Sun and 
the Moon respectively. Therefore, correction to the Sun’s 
longitude is given by 

• Similarly, the correction to the Moon’s longitude is given 
by 

Place (A) Place (B)

⇕ ⇕

R sin �
m
∼ R sin �

s
R sin �

m
∼ R sin �

s

Place (A) Place (B)

⇕ ⇕

R sin �
m
∼ R sin �

s
R sin �

m
∼ R sin �

s

⇕ ⇕(
R sin �

m
∼ R sin �

s

)
× 60

(
R sin �

m
∼ R sin �

s

)
× 800

(21)

Δ𝜆s =

(
R sin 𝛿m ∼ R sin 𝛿s

)
× 60

gatikrāntiyōga

=

(
R sin 𝛿m ∼ R sin 𝛿s

)
× 60

R cos 𝛿s ×
10

573
+
(
R cos 𝛿m + R cos 𝛿s

)
×

5

43

=

(
R sin 𝛿m ∼ R sin 𝛿s

)
× 60

R cos 𝛿s ×
10

573
+
(
R cos 𝛿m + R cos 𝛿s

)
×

5

43

=

(
R sin 𝛿m ∼ R sin 𝛿s

)
× 60

R sin 𝜖

[
R cos 𝜆s ×

10

573
+
(
R cos 𝜆m + R cos 𝜆s

)
×

5

43

] .
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• Now, corrections given by the expressions (21) and 
(22) have to be applied to the longitudes of the Sun and 
the Moon respectively. Therefore, 

where ‘ +’has to be used if the declination of the object 
which is situated at the odd quadrant is smaller than that 
of the other one. Otherwise, ‘−’ sign has to be used.

Obtaining the longitudes of the Sun and the Moon 
at the middle of the vyatīpāta in Dṛkkaraṇa [DK1, 
DK2]

क्ान्तन्तिं  जालभोगैः पॆरुक्ीटुि हरिक्िं ||१८||
गततक्ान्ता फलं िन्नाल् चन्द्रटनल् संस्क्रिक्िं |

अतु िेऱॊन्न ुिॆच्च्टुि गानं कॊणु् पॆरुटक्याल् ||१९||
नात्भकॊणु् हरिच्च्टिङ्ङक्कि नऱॆ ललप्तयल् तिा |

ओजपािग्रहत्तिनऱॆ क्ान्न्तयेरऱल् कळञ्ञििू ||२०||
कुऱरकल् कूक्टि िॆके्िमटििॆ क्ान्न्तकॊणु्िन् |
क्ेपिुं संस्क्रिच्च्टुि क्ान्न्तसाम्ं िरुतिुक ||२१||

krāntyantaraṃ  jālabhōgaiḥ perukkīṭṭu harikkaṇaṃ ||18||

gatikrāntyā phalaṃ vannāl candranil saṃskkarikkaṇaṃ |
atu vēṟonnu vecciṭṭu gānaṃ koṇṭu perukkiyāl ||19||

(22)

Δ𝜆m =

(
R sin 𝛿m ∼ R sin 𝛿s

)
× 800

gatikrāntiyōga

=

(
R sin 𝛿m ∼ R sin 𝛿s

)
× 800

R cos 𝛿s ×
10

573
+
(
R cos 𝛿m + R cos 𝛿s

)
×

5

43

=

(
R sin 𝛿m ∼ R sin 𝛿s

)
× 800

R cos 𝛿s ×
10

573
+
(
R cos 𝛿m + R cos 𝛿s

)
×

5

43

=

(
R sin 𝛿m ∼ R sin 𝛿s

)
× 800

R sin 𝜖

[
R cos 𝜆s ×

10

573
+
(
R cos 𝜆m + R cos 𝜆s

)
×

5

43

] .

�
s
(T ) =�

s
(0) ± Δ�

s

and �
m
(T ) =�

m
(0) ± Δ�

m
,

nābhikoṇṭu haricciṭṭaṅṅarkkanṟe liptayil tadā |
ōjapādagrahattinṟe krāntiyēṟil kaḷaññiṭū ||20||

kuṟakil kūṭṭi vekkēṇamaviṭe krāntikoṇṭuṭan |
kṣēpavuṃ saṃskkaricciṭṭu krāntisāmyaṃ varuttuka ||21||

Now, having multiplied the difference in declinations 
(krāntyantara) by 3438 (jālabhōga), divide it by the 
gatikrānti; the result obtained is to be applied to [the 
longitude of the] the Moon. Having kept this aside, 
multiply this by 03 (gāna) and divide by 40 (nābhi). 
Both these results in minutes have to be subtracted from 
[their respective longitudes] if the declination of the 
odd-quadrant-planet is larger, if it is smaller they have 
to be added. Thereby the equality in declinations is to 
be obtained by correcting this by the latitude as well.

• Multiply the difference in Rsines of the declinations of 
the Sun and the Moon by 3438 (jālabhōga) and divided 
by the gatikrānti. The result is the correction ( Δ�

m
 ) 

applied to the Moon’s longitude. Therefore, 

• The correction ( Δ�
s
 ) applied to the longitude of the Sun 

is obtained by multiplying Δ�
m
 by 03 (gāna) and divided 

by 40 (nābhi). That is, 

• Now the longitudes of the Sun and the Moon at the 
instant of the middle of the vyatīpāta are given by 

where ‘ + ’ has to be used if the declination of the object 
which is situated at the odd quadrant is smaller than that 
of the other one. Otherwise, ‘−’ sign has to be used.

• From �
s
(T ) and �

m
(T ) , the declinations of the Sun and 

the Moon can be obtained respectively.
• The true declination of the Moon can be found by apply-

ing the correction due to the latitude. The true declination 
of the Moon is expressed as 

 taking the latitude of the Moon into account.

(23)

Δ𝜆
m
=
krāntyantara × jālabhōga

gatikrānti

=

(
R sin 𝛿

m
∼ R sin 𝛿

s

)
× 3438

1

2

(
R sin 𝜖 cos 𝜆

m

)
+

1

2

×
23

20

×
(
R sin 𝜖 cos 𝜆

s

) .

(24)
Δ�

s
=Δ�

m
×

3

40

=

(
R sin �

m
∼ R sin �

s

)
× 3438

1

2

(
R sin � cos �

m

)
+

1

2
×

23

20
×
(
R sin � cos �

s

) ×
3

40
.

�
s
(T ) =�

s
(0) ± Δ�

s

and �
m
(T ) =�

m
(0) ± Δ�

m
,

R sin �
m
(T ) ≈ R cos � sin ��

m
(T ) + R� cos �,



169Indian Journal of History of Science (2023) 58:157–170 

1 3

Appendix 2

See Fig. 2. 

Appendix 3

See Fig. 3. 
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