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Karaṇapaddhati by Putumana Somayājī is a treatise on 
the vākya system of astronomy, that forms the basis of the 
ephemerides most commonly used today among Tamils, 
in India or abroad: the vākkiya pañcāṅgam or “ephemeri-
des [based on] phrases”. In this system, very accurate con-
stants are encoded in the form of sequences of letters with 
a numerical value, chosen to make meaningful phrases,1 
for ease of memorization. These constants have been con-
stantly improved in the light of new observations and theo-
ries. The authors stress two aspects of Karaṇapaddhati: it 
fully explains the construction of the elements of the vākya 
system, and contains mathematical results not found earlier 
elsewhere, particularly on rational approximation. They sug-
gest the time frame 1532–1566 as most likely, for reasons 
spelled out in their introduction. Karaṇapaddhati is “not a 
manual prescribing computations; rather it enunciates the 
rationale behind such manuals” (xxx).2 It also has a wider 
scope: “[a]ll the topics necessary to make the [ephemeris] 
are not treated [in it], whereas several other items not per-
taining to manuals are dealt with” (ibid.).

This volume provides the text with an English translation 
and a modern mathematical commentary based on earlier 
work, including the edition by Sāmbaśiva Śāstrī in 1937, 
and the one by P. K. Koru, published in 1953 with detailed 
notes in Malayalam, as well as other texts in manuscript 
form, in addition to the sizeable secondary literature. It is 
a welcome complement to the recent publication of two 

important works of the same school and period, namely 
Tantrasaṅgraha by Nīlakaṇṭha Somayājī (1444–1545),3 
and Yuktibhāṣā (c. 1530) by Jyeṣṭhadeva.4 As is now well-
known, both works document important innovations, namely 
power series for the arctangent, sine and cosine functions, as 
well as decisive steps towards heliocentrism. While there is 
significant overlap between Karaṇapaddhati and these two 
works, its relation to them seems complex: “the question 
as to whether Putumana Somayājī was indeed aware of and 
followed the modified planetary model of Nīlakaṇṭha is still 
an open question” (216).

1  Structure of Karaṇapaddhati of Putumana 
Somayājī

Roddam Narasimha’s foreword sets the stage by recalling 
that the vākya system was noticed by historians as early as 
the late eighteenth century (xxv–xxvi). This work is among 
the first primary sources of the history of ancient Indian 
science, and one of the last to be translated. After some 
information about the authors5 (xxvii), the Introduction 
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(xxix–xlviii) describes source materials, discusses the date 
of the text and summarizes its contents. The ten chapters 
of Karaṇapaddhati contain 214 Sanskrit verses in various 
meters, given here both in Nagari script and in translitera-
tion, with translation and commentary (1–317); this material 
is supplemented by eight appendices (A to H) (319–407), 
a glossary (409–424), a bibliography (425–432), an index 
(433–444), and an index of half-verses (445–450). The 
(standard) transliteration scheme and a conversion table for 
kaṭapayādi numerals are found on pages v and 3 respec-
tively. The many constants that occur in the text are collected 
in convenient tables of which a list is found pp. xix–xxiii, 
after the contents (vii–xiii) and the list of figures (xv–xvii). 
In particular, the main constants, for each celestial body, are 
given in Appendices C and D, with worked-out examples of 
calculations. Appendices G and H show that it is very likely 
that the constants listed without derivation in two other texts 
were generated by the methods of Karaṇapaddhati or closely 
related ones. The concepts and technical terms of Indian 
astronomy are used throughout, with approximate modern 
equivalents often provided as well. Background information 
on the models underlying the determination of true longi-
tudes in Chapter 7, and on the vākya system, is provided 
in Appendices B and D respectively, with references. The 
reader unfamiliar with Indian astronomy may also want to 
refer to the references in n. 5 on page xxx, and to the recent 
translation and analysis of Tantrasaṅgraha (Ramasubrama-
nian and Sriram, op. cit., esp. its App. F). The vākyas for the 
Moon, both in Vararuci’s and Mādhava’s versions, are pre-
sented in App. E; the latter “give the true longitudes correct 
to a second” (365), as opposed to a minute for the former. 
Note the corrections to vākyas 25, 174, 181, 234 and 242 
(and of a misprint in vākya 98 found in earlier editions); the 
process of correction is worked out in each case.

Karaṇapaddhati opens with a brief but pregnant 
maṅgalācaraṇa, the first half of which is a “signature verse” 
often used to identify works by this author (xxxiii). “This 
is perhaps a unique case of a famous Indian astronomer 
whose actual [personal] name is not found mentioned any-
where either in his works or in the commentaries” (xxxiii). 
Putumana is the name of his illam “house” and Somayājī 
suggests that he performed a Soma ritual. The work’s con-
cluding verses (10.11–12) mention Viṣṇu as being also 
kālarūpa “of the form of time”, and refer to the author as 
“someone” (ko’pi) hailing from Śivapura6 and who is a 
yajvā, deliberately withholding his name. By contrast, the 
opening only pays respects to the navagrahas and to the guru 
who is cidānandamaya, arising in the author’s hṛdākāśa 
“space within the heart”, without direct reference to Viṣṇu 
or Gaṇapati as might be expected. Perhaps both could be 

reconciled if we take the signature verse as a reference to 
the daharavidyā.7 The author would then mean that Brah-
man, that is classically saccidānanda, identified with the 
inner guru, resides in a minute space (dahara) within his 
heart. Referring to the author of his work as ko’pi would 
then carry the suggestion that, for him, all results should 
be attributed to the inner guru who is not different from the 
Brahman.8 This would mean that Putumana Somayājī had 
strong philosophical leanings.

The opening verse is followed by a discussion of mean 
motions and the calculation of the ahargaṇa group of days” 
or number of civil days from the beginning of a convenient 
epoch. Since the ahargaṇa from the beginning of Kaliyuga 
has typically seven digits, and the multipliers and divi-
sors required to compute mean or true motions are even 
larger, the vākya system introduces reduced epochs, called 
khaṇḍa-s “portions”, at the beginning of which the planetary 
positions are simple to obtain; thus, for the Moon, a khanḍa 
is “a day close to the ahargaṇa when the anomaly is close 
to zero at the mean sunrise” (78). Mean longitudes at the 
end of a khaṇḍa are called dhruvas9 “fixed”. Chapters 3 to 5 
proceed to determine these khaṇḍas and dhruvas for various 
bodies and to generate a sequence of finer and finer rational 
approximations to the various periods involved in the cor-
rection processes prescribed by the relevant astronomical 
model. The mathematics of the process is an outgrowth of 
the technique of vallyupasaṃhāra “reduction of the creeper” 
familiar in the solution of simultaneous congruence prob-
lems. Recall that the kuṭṭākāra method for solving congru-
ences is based on the list of quotients in mutual division of 
the two moduli involved, arranged vertically, forming a vallī 
“creeper”, hence the name of the method.

Chapter 6 of Karaṇapaddhati starts a second line of 
thought centered around the sine and arctangent functions 
and series. Many passages are reminiscent of earlier work: 
the generation of sines by halving arcs (154–162) is similar 
to Brahmagupta’s procedure in chapter  21 of his 
Brāhmaspuṭasiddhānta, and the iterative method of Sect. 6.9 
(166–166) seems to be a rationale for Āryabhaṭa’s list of 
sines.10 The exact series expansions for the sine and 

6 Presumably Covvaram and not Trichur (xxxii–xxxiii).

7 Chāndogya Upaniṣad, VIII, 1, VIII, 3.3; Taittīriya Upaniṣad, I, 6.1.
8 Recall that ko’pi = kaḥ + api, literally “someone”, but that kaḥ is 
also a name of Brahman. For the early history of the identification 
of Kaḥ, Prajāpati and Brahman, starting from the interpretations of 
Ṛgveda X.121, see J. Gonda, Prajāpati’s relations with Brahman, 
Bṛhaspati and Brahmā, North-Holland, Amsterdam, 1989, especially 
pp. 61–62 and note 14 on p. 52.
9 Short for khaṇḍāntyadhruva.
10 Aryabhaṭīya I.10. See also Brāhmasphuṭasiddḥānta II.2–9, 
and Mādhava’s improved list of 24 sines given by R.C. Gupta 
(Gaṇitānanda, edited by K. Ramasubramanian, Springer, 2018, p. 
383).
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arctangent are also familiar since the publication of 
Yuktibhāṣā. However, the authors stress that the combination 
of consecutive terms of series (6.10) (Prop. 6.4) for the cir-
cumference, to obtain a series with non-negative terms of 
order 1∕n4 , see Eq. (6.12), does not seem to be found in other 
sources. The way the author indicates its derivation is note-
worthy and typical of Indian discursive strategies: Prop. 6.1 
gives Mādhava’s (slowly convergent) series for the circum-
ference of a circle in terms of its diameter. Prop. 6.2 gives 
the result of the transformation of the series by acceleration 
of convergence, and Prop. 6.4 describes the series (6.12) in 
which terms have been grouped in pairs. In-between, we find 
the seemingly anticlimactic Prop. 6.3 that simply explains 
how to reduce expressions of the form d

h1
±

d

h2
 to the same 

denominator – a result known for over a millennium in India. 
We suggest that this proposition expresses that Prop. 6.4 is 
obtained by applying Prop. 6.3 to the result of Prop. 6.2 
– which is consistent with the derivation proposed by the 
editors in Eq. (6.14). This is an example of what may be 
called an apodictic discourse11 (a motivated and conclusive 
discourse that is a proof in itself).

The following chapters give numerous applications of 
trigonometric relations to astronomical models. Chapter 7 
shows how to obtain planetary longitudes and the associated 
vākyas. Chapter 8 contains a detailed study of gnomonic 
shadow and its application to the determination of quanti-
ties such as latitude (§ 8.5–7), the declination of the Sun (§ 
8.9) and Moon (§ 8.13), the apparent dimensions of celestial 
bodies (§ 8.19–20), to name a few. Chapter 9 is devoted 
to several methods for finding the madhyāhnakālalagna 
“which is the time interval between the rise of the [vernal 
point] and the instant when a star with a non-zero latitude 
is on the meridian. Algorithms [for its determination] have 
no equivalents in Tantrasaṅgraha. These algorithms [pp. 
291–303] involve very careful analysis of the properties of 
spherical triangles” (285). While modern methods are freely 
used by the authors,12 derivations closer to the conceptual 
framework of the text have been proposed more recently by 
two of them.13 Chapter 10 determines the right ascension 
(natakāla or vāyukāla) and the longitude from it, or from 
the madhyāhnakālalagna.

The concluding lines of the work (10.12–13) have already 
been discussed earlier in this review.

Regarding methods, the basic relations on rational 
approximations in the text, that the authors rightfully stress 
as significant, are proved by them using continued fractions 
(Appendix A). They state that Putumana Somayājī’s method 
“is essentially the same as the technique of computing the 
convergents of a continued fraction” (66), implying (cor-
rectly) that continued fractions appear nowhere in the text 
and indeed, in no work of the Āryabhaṭa school. We show 
that the text suggests a different derivation, so that continued 
fractions may be eschewed altogether.

2  Did Putumana Somyājī work 
with continued fractions?

This is a moot point since continued fractions do not 
seem to be attested in India or elsewhere before 1613.14 
Brahmagupta gives, in his Brāhmasphuṭasiddhānta from 
628 a classification of compound fractional expressions, and 
their reductions to the multiplier-over-divisor form, that does 
not include continued fractions (Prop. 12.8–9); similar lists 
occur in later works. If continued fractions were a necessary 
tool for his solution of the congruence problem, he would 
have included them in his classification. Actually, C.-O. 
Selenius observed that the Indian solution of congruences 
and of the varga-prakṛti problem cannot be reproduced 
exactly using any known variant of the continued fraction 
process; he proposed a new variant that would mimic it,15 
but did not suggest that Indian authors used his method, only 
that their results are optimal.

The tool that is used systematically by Indian authors 
since Āryabhaṭa (499) is division with remainder and more 
precisely, (iterated) mutual division. Starting from two quan-
tities a and b, one divides a by b, keeping aside the quo-
tient q, and replaces a by the remainder r = a – bq. One then 
applies the same process to the divisor b and the remainder 
r. And this procedure is iterated. This method of mutual divi-
sion – which treats division as a symmetric operation! – does 
not seem to be attested outside India16; it is sometimes 

11 S. Kichenassamy, “Brahmagupta’s apodictic discourse”, Gaṇita 
Bhāratī, 41:1 (2019) 93–113.
12 This is not anachronistic so long as one does not assume that Putu-
mana Somayājī used these methods – which the authors do not claim.
13 Venketeswara Pai R. and M.S. Sriram, “Madhyāhnakālalagna 
in Karaṇapaddhati of Putumana Somayājī”, Gaṇita Bhāratī, 33:1, 
(2017) 55–74.

14 C. Brezinski, History of continued fractions and Padé approxim-
ants, Springer, Berlin, 1991. Apparently, a symbolism for continued 
fractions first appears in a work by Cataldi published in 1613 (see p. 
65).
15 “Rationale of the Chakravala Process of Jayadeva and Bhaskara 
II”, Historia Mathematica 2 (1975) 167–184. It is conceivable that 
the theory of continued fractions was eventually an outgrowth of the 
kuṭṭākāra, but that is a different issue. It is futile to speculate about 
transmission before the conceptual background of major texts has 
been ascertained by internal analysis. And so far, this task has only be 
accomplished for a few propositions.
16 It could be an outgrowth of the calculus on cords with variable 
unit, or heterometry, that we have shown to be necessary in order to 
account for Baudhāyana’s results (S. Kichenassamy, “Baudhāyana’s 
rule for the quadrature of the circle”, Historia Mathematica, 33:2 
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identified with the Euclidean algorithm from the beginning 
of Book VII of the Elements, but this is a misnomer: Euclid’s 
algorithm is a mutual subtraction algorithm, for finding the 
“common measure” of two lines, in which the quotients of 
division are never introduced. There is no evidence that it 
was the source of the mutual division method. Continued 
fractions seem to have been developed first in Renaissance 
Italy in connection with methods of square root extraction 
similar to those in the Bakhshālī manuscript. It appears that 
Indian mathematicians did not introduce continued fractions 
because they had at hand a mathematical tool that made 
them unnecessary.

It has recently been shown that Brahmagupta provided at 
the end of the twelfth chapter of Brāhmasphuṭasiddhānta a 
derivation of the kuṭṭākāra method based solely on mutual 
division.17 This suggests that Putumana Somayājī’s main 
result on the reduction of the creeper also is a natural modi-
fication of the mutual division technique, and that he inti-
mated this point through the discursive structure of his expo-
sition.18 Let us show that this is the case.

First, recall that the “creeper”, or list of quotients, is con-
structed from the mutual division of a by b by arranging 
the quotients one under the other19 in a vertical column, 
followed (typically20) by 1. The standard operation called 
vallyupasaṃhāra enables one to modify and shorten the list 
of quotients to produce the numerators and denominators 
of fractions closely related to a/b, including convergents in 
the sense of the theory of continued fractions, by replacing 
iteratively the last three terms, say u; v; w, by the two terms 
uv + w; v. This reduction step may be viewed as a reverse 
of the division process: if 0 ≤ w < v , then u is the quotient 
of the division of uv + w by v , and w is the remainder. The 
creeper is shortened by one term at each step of reduction, 
and the process terminates when only two quantities are 
left in the creeper. One can show that this operation, car-
ried to the end, enables one to recover the denominator and 

numerator b and a if the fraction is in lowest terms; if the 
division process is stopped at some intermediate stage, and 
the remainder in the last division that has been performed 
is neglected, one obtains in this way an approximation of 
the fraction.

Now, Putumana Somayājī, after describing this stand-
ard procedure in Prop. 2.5, observes in Prop. 2.6 (see 
Sects. 2.5.1–2) that it is possible to obtain the same denom-
inator by putting 1 before the list of quotients rather than 
after, and performing the reduction of the creeper from the 
top rather than from the bottom. He adds that the numerator 
is obtained from a similar list in which the first quotient is 
omitted. Thus, in this case, two creepers are needed. It is the 
truncation of this inverted form of the creeper that yields the 
sequence of simplified fractions that plays a central role in 
his work. His main theorem expresses that the reduction of 
a creeper generates the same final number as the reduction 
of the inverted creeper with the same quotients, this num-
ber being the denominator or numerator of the desired frac-
tion according to the creeper in question. Thus, Putumana 
Somayājī showed by the mere sequence of his propositions 
that the main new point in his discourse was the inversion 
of the order of quotients, implying that everything else fol-
lows from it.

Let us show that Putumana Somayājī’s theorem is cor-
rect and implies the recursion relations (A.11–12) that, as 
is shown in Appendix A, immediately imply all of his other 
results. Consider the reduction of a vallī  q1; q2; q3;… ; qn;1 
(reduced from the right). The procedure terminates when 
only two terms, say Qn; Q

′
n
 , remain. Similarly, the reduc-

tion of 1; q1; q2; q3;… ; qn (starting from the left), leads to 
two terms that we call P′

n;Pn . Equivalently, the reduction 
of qn; qn−1; qn−2;… ; q1;1 (reduced from the right) leads to 
Pn; P

′
n
 . Putumana Somayājī’s result is that Pn = Qn . In other 

words, Qn remains unaltered when the order of the quotients 
is reversed.

This result may be proved by observing that the Qn are 
formed by a rule which is not altered when the order of the 
quotients qk is reversed. Indeed, examination of creepers 
with 2, 3, 4 and 5 terms21 suggests that Qn may be obtained 
by the following rule:

First form the product q1q2 … qn. Then divide through 
by the products of pairs of adjacent terms qkqk+1 , one pair at 
a time. Iterate the process as long as there are two or more 
factors left. Finally, add all the terms thus obtained (which 
include 1 if n is even), counting each term once.

21 One finds, for n = 2, 3, 4, and 5 , Q2 = q
1
q2 + 1 , Q3 = q

1
q2q3 + q1

+q3 , Q4 = q
1
q2q3q4 + q1q2 + q1q4 + q3q4 + 1 and Q5 = q

1
q2q3q4q5

+q3q4q5 + q1q4q5 + q1q2q5 + q1q2q3 + q1+q3 + q5 . Although we do 
not develop this point here for expediency, it is very likely that the 
result was suggested by the inspection of a number of special cases 
such as these.

Footnote 16 (continued)
(2006), 149–183, http:// doi. org/ 10. 1016/j. hm. 2005. 05. 001). Indeed, 
relations between two ideal cords (without width) already come up 
in a symmetric fashion: typically, one cord is divided into b parts, of 
which a make up the other; therefore, it is immediate that the second 
may be divided into a parts, of which b make up the first.
17 S. Kichenassamy (2019), op. cit. n. 12. Brahmagupta’s remarkable 
argument does not seem to have any modern equivalent.
18 This is a general feature of Indian mathematical exposition, but 
is also common elsewhere and in fact, seems quite common among 
innovative works (S. Kichenassamy, “Translating Sanskrit Mathemat-
ics”, Aestimatio, N.S. 1, (2020), 183–204 https:// ircps. org/ aesti matio/ 
aesti matio- ns- volum es/ ns-1/ 183- 204/).
19 The standard phrase is adho’dho sthāpyam. The name vallī does 
not seem to occur in the earliest treatments, but is is not needed, since 
the construction of the creeper and its reduction are fully described 
by this and other phrases.
20 It would take too long to explain the various ways in which the list 
of quotients has been used in the Indian literature.

http://doi.org/10.1016/j.hm.2005.05.001
https://ircps.org/aestimatio/aestimatio-ns-volumes/ns-1/183-204/
https://ircps.org/aestimatio/aestimatio-ns-volumes/ns-1/183-204/
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All that remains is to prove that Qn is indeed given by 
this rule. We work out the argument by induction. First, one 
checks by inspection22 that the rule holds for n = 2,… , 5. 
Let us call Qn = (q1;… ; qn) the result of the reduction 
from the left, of a creeper with n quotients, putting 1 after 
the quotients. Assume 

(

q1;… ; qk
)

 is given by the indi-
cated rule for any set of k quotients with k < n . From the 
procedure for the reduction of the creeper, it follows that 
(q1;… ; qn) is obtained by reducing the three-term creeper 
q1;

(

q2;… ; qn
)

; (q3;… ; qn) . Therefore,

Now, start from the product q1q2 … qn , and delete terms of 
the form qkqk+1 , in all possible ways, as many times as possi-
ble. In this process, the only way q1 could be deleted is when 
the product q1q2 is. Now, either we delete q1q2 at some point 
of the process, or we never do. In the first case, none of the 
other deletions may involve q1 or q2 (if q2q3 is deleted, the 
product q1q2 is not present anymore, and therefore, cannot 
be removed at a later stage). All the other deletions are thus 
precisely those that would be performed by applying the 
rule to q3q4 … qn . In this first case, we therefore recover all 
the terms in (q3; … ; qn) since, by the induction hypothesis, 
the result is assumed to be valid for n − 2 quotients. In the 
second case, we never delete q1q2 , so that the deleted pairs 
never involve q1 . They are therefore are precisely those that 
are deleted in the calculation of q1

(

q2;… ; qn
)

 , using now 
the induction hypothesis for n − 1 quotients. Putting these 
two together, the result follows.

Finally, the recurrence relations (A.11–12) are obtained by 
applying the recurrence relation (*) to the list of quotients in 
the reverse order, namely qn; qn−1; qn−2;… ; q1 , which yields

On can derive all the other results from this (Appendix A). 
Therefore, Putmana Somayājī’s discourse does not require 
the introduction of continued fractions, and indeed, his argu-
ment is more natural if we do not.

The existence of such a procedure to generate a hierarchy 
of approximations from more refined ones has implications 
for the articulation of calculation and measurement: the 
approximation of the “true rate of motion of the anomaly 
[of the Moon] by ratios of smaller numbers such as 9/248, 
110/3031, 449/12372, 6845/188611, etc.” (p. xli) does not 
imply that observations were carried out over 248, 3031, 
let alone 188,611 days. A much smaller set of observations 
would suffice. This is consistent with Nilakantha Sastri’s 
words about Parameśvara who, “from his direct personal 

(*)
(

q1;… ; qn
)

= q1
(

q2;… ; qn
)

+
(

q3;… ; qn
)

(

qn;… ; q1
)

= qn
(

qn−1;… ; q1
)

+
(

qn−2;… ; q1
)

.

observation of the movements of the sun and the moon 
invented the system of driggaṇita23 in 1431, a correction 
of [Haridatta’s] Parahita system”.24 It follows that the data 
for the revised system were obtained in a single generation, 
confirming the hypothesis suggested by Karaṇapaddhati.

To sum up, the publication of Karaṇapaddhati is a signifi-
cant event for our understanding of the History and Mathe-
matics and Astronomy. It not only closes the sequence opened 
by the accounts of the Karaṇapaddhati and related texts by 
Warren (1825),25 Whish (1834)26 or Hoisington (1848),27 it 
opens a new phase of analysis that gives us the hope of a 
better understanding of the evolution of astronomy in India 
as driven by a keen sense of reality, an awareness of the inter-
dependence of measurement,28 theory, and the subject who 
deals with both. It seems that the conviction that “reality alone 
triumphs” was taken quite literally by our authors.

22 We omit this straightforward, but lengthy verification.

23 The term dṛggaṇitaikya is already found in Brāhmasphuṭasiddhānta 
11.61.
24 K.A. Nilakantha Sastri, A History of South India, fourth ed., Oxford 
Univ. Press, 1976, p. 363. He also stresses the existence of other poles 
of excellence in Kerala: “[t]here were families in Kerala which special-
ized for generations in particular subjects, like the Thaikkāṭṭu illam in 
architecture. […] In Āyurveda (medicine) the eight great families […] 
are well-known” (op. cit., p. 362), and mentions grammarians on pages 
363–4. There are stray references to architecture in Yuktibhāṣā.
25 John Warren (1825), Kala Sankalita: A Collection of Memoirs on 
the Various Modes according to which the Nations of the Southern 
Parts of India divide Time: to which are added Three General Tables, 
wherein may be found by mere inspection the beginning, character, 
and roots of the Tamul, Tellinga, and Mohammedan Civil Years, con-
curring, viz. the two former with the European Years of the XVIIth, 
XVIIlth and XIXth Centuries, and the latter with those from A. D. 622 
(A. H. 1) to 1900, Madras, dated Feb. 18, 1825. We omit the details 
of earlier accounts, from the late eighteenth century.
26 Charles M. Whish (1834), “On the Hindú Quadrature of the Cir-
cle, and the infinite Series of the proportion of the circumference to 
the diameter exhibited in the four S’ástras, The Tantra Sangraham, 
Yucti Bhásá, Carana Padhati and Sadratnamála”, Transactions of the 
Royal Asiatic Society of Great Britain and Ireland, 3(3), 509–523 
(read  15th of December, 1832). The passages from Karaṇapaddhati 
that he quotes (6.5, 6.7) or paraphrases (6.4) are given and discussed 
in the volume under review on pages 150–154.
27 H.R. Hoisington, : The Oriental Astrono-
mer, being a Complete System of Hindu Astronomy, accompa-
nied with a translation and numerous notes, with an Appen-
dix. American Mission Press, Jaffna, 1848, in two volumes. It 
seems to be closely related to the earliest known fully devel-
oped form of the system, the Vākyakaraṇa, probably composed 
in Tamil Nadu between 1282 and 1316. I gather the first and 
third author plan to edit this work. We mention a different set of 
vākyas, also in Tamil, in 

 and sons, 
Chennai, 1939), pages 261–264.
28 For recent progress on measurement, see for instance R. Ven-
keteswara Pai and B.S. Shylaja, “Measurement of coordinates of 
Nakṣatras in Indian astronomy”, Current Science, 111(9) (10 Nov. 
2016), 1551–1558.
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