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Abstract
Mādhava’s Lagnaprakaraṇa is an important astronomical text which discusses numerous innovative techniques of precisely
determining the udayalagna or the ascendant. In previous papers, we have detailed the various methods of determining the
ascendant described in the second and third chapters of this text. In this paper, we discuss a technique described in the fifth
chapter, which makes use of two quantities known as the viṣuvannara and the ayanāntaśaṅku.

Keywords Ascendant ⋅ Ayanāntaśaṅku ⋅ Dṛkkṣepakoṭikā ⋅ Dṛggati ⋅ Lagna ⋅ Lagnaprakaraṇa ⋅ Mādhava ⋅ Śaṅku ⋅
Viṣuvannara

1 Introduction

In a series of earlier papers, we have discussed the various
contributions of Mādhava to astronomy by way of devel-
oping ingenious computational techniques in the focused
treatise Lagnaprakaraṇa. The first three papers presented
techniques of determining astronomical quantities known as
prāṇakalāntara, cara and kālalagna,1 that are employed in
determining the ascendant. These techniques are described
in the first thirty verses of this text, corresponding to its first
chapter. Three subsequent papers discussed the various tech-
niques of precisely determining the udayalagna or the as-
cendant, described in verses 31–61 of the Lagnaprakaraṇa,
corresponding to its second and third chapters.2 In this pa-
per, we discuss further methods of determining the ascendant
described in verses 80–87, corresponding to the fifth chapter
of this text.3

The following verses, belonging to the fifth chapter of
the Lagnaprakaraṇa, first describe the techniques to de-
termine the gnomons—viṣuvannara and ayanāntaśaṅku—
corresponding to the equinoctial and solstitial ecliptic points,
and then show how to determine the ascendant therefrom.
As the equinoctial and solstitial ecliptic points are ninety de-
grees apart, the verses in this chapter can be considered as
addressing a special case of the procedures laid out in our
previous paper.4
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In order to have a better appreciation and full compre-
hension of the contents of this paper, it should be read in
conjunction with our earlier papers, as various physical and
mathematical quantities described therein are employed here
as well. In this regards, it may be reiterated that we employ
the symbols 𝜆, 𝛼, 𝛿, and 𝑧 to respectively refer to the lon-
gitude, right ascension, declination, and zenith distance of a
celestial object. The kālalagna, the latitude of the observer,
and the obliquity of the ecliptic are denoted by the symbols
𝛼𝑒, 𝜙, and 𝜖 respectively. It may also be mentioned that all
the figures in this paper depict the celestial sphere for an ob-
server having a northerly latitude 𝜙. In these figures, 𝑁 , 𝑆, 𝐸,
and 𝑊 denote the cardinal directions north, south, east, and
west, while 𝑃 and 𝐾 denote the poles of the celestial equator
and the ecliptic respectively.

लݼाहता कालࣆवलҔदोԷЂ
ासाधर्भнाߢ रंڦवषुवࣆ ात्ࡆ ।

अ٦ۅजुीवाहतकाललҔ-
कोटीगुणा٦त् म्ܒवर्काࣆत्रभमौࣆ ॥८०॥

तݼ޾घातं पलमौࣆवर्काۅ-
क्राۅोवर्धे कࣅकॳ मृगाࣅदकؘात् ।

1See Kolachana et al. (2018b, 2018a; 2019a) respectively.
2 See Kolachana et al. (2019b; 2020a, 2020b).
3 We intend to bring out the contents of the fourth chapter of the
Lagnaprakaraṇa, corresponding to verses 62–79, in a later paper.
4 See Kolachana et al. (2020b).
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णϴࡈ च कृؘा त्रगुणेनࣆ हृؘा
लंݎ तु शӀुम्ڢव٦ादयनाࣆ ॥८१॥

े޷ࡈ घातेݼटजलࣅदдोࣅवࣆ
कцЂࣅदकؘं च भवेदमुࠔ ।

lambāhatā kālavilagnadorjyā
vyāsārdhabhaktā viṣuvannaraṃ syāt |

antyadyujīvāhatakālalagna-
koṭīguṇādyat tribhamaurvikāptam ||80||

tallambaghātaṃ palamaurvikāntya-
krāntyorvadhe karkimṛgādikatvāt |

svarṇaṃ ca kṛtvā triguṇena hṛtvā
labdhaṃ tu vidyādayanāntaśaṅkum ||81||

svalpe vidikkoṭijalambaghāte
karkyādikatvaṃ ca bhavedamuṣya |

The Rsine of the kālalagna multiplied by the Rco-
sine of the latitude (lamba) and divided by the semi-
diameter (vyāsārdha) would be the gnomon of the
equinoctial ecliptic point (viṣuvannara). One should
know that product of the Rcosine of the latitude (lamba)
and that which is obtained by dividing the product of
the last day-radius (antyadyujīvā) and the Rcosine of
the kālalagna by the radius (tribhamaurvikā), applied
positively or negatively to the product of the Rsine
of the latitude (palamaurvikā) and [the Rsine of] the
last declination (antyakrānti)—depending on [if the
kālalagna is in the six signs] Cancer (karki) etc., or
Capricorn (mṛga) etc.,—and [the result] divided by
the radius (triguṇa), to be the gnomon of the solstitial
ecliptic point (ayanāntaśaṅku).
[When the kālalagna is in Capricorn etc.,] if the prod-
uct of the vidikkoṭija and the Rcosine of the latitude
(lamba) is smaller [than the product of the Rsines of the
latitude and the maximum declination], this [ayanānta-
śaṅku] would be in Cancer (karki) etc.

These verses, in the indravajrā metre, give the follow-
ing relation for the gnomon corresponding to the equinoctial
point of the ecliptic:

viṣuvannara = kālavilagnadorjyā × lambajyā
vyāsārdha

= 𝑅 sin 𝛼𝑒 × 𝑅 cos 𝜙
𝑅 . (1)

They also give the following relation for the gnomon corre-
sponding to the solstitial point of the ecliptic:

ayanāntaśaṅku = [palamaurvikā × antyakrāntijyā±
kālalagnakoṭīguṇa × antyadyujīvā

tribhamaurvikā × lambajyā]
÷ triguṇa

= |𝑅 sin 𝜙 × 𝑅 sin 𝜖 ± 𝑅 cos 𝛼𝑒×𝑅 cos 𝜖
𝑅 × 𝑅 cos 𝜙|

𝑅 . (2)

The above relations can be simply derived by employing
(1) of Kolachana et al. (2020b) to determine the śaṅku of the
Sun when it is at these positions.

When the Sun is at either equinoctial point, its declination
(𝛿) and ascensional difference (Δ𝛼𝑠) are zero, while its right
ascension (𝛼) can be 0 or 180 degrees. Substituting these
values in (1) of Kolachana et al. (2020b) yields (1) of this
paper.

This relation can also be derived geometrically as shown
in Fig. 1. In this figure, Γ is the vernal equinoctial point,
and 𝑌 is its projection on the horizon. The planar right-
angled triangle Γ𝑋𝑌 lies in a plane perpendicular to the
horizon and parallel to the prime meridian. Its side Γ𝑌 repre-
sents the viṣuvannara or the gnomon dropped from the vernal
equinoctial point. Its hypotenuse Γ𝑋 is equal to the Rsine of
the arc Γ𝐸, which is nothing but the kālalagna (𝛼𝑒). Finally,
the angle Γ ̂𝑋𝑌 represents the angle between the planes of the
equator and the horizon. Thus,

Γ𝑌 = viṣuvannara, Γ𝑋 = 𝑅 sin 𝛼𝑒, Γ ̂𝑋𝑌 = 𝜙′ = 90 − 𝜙.

The planar right-angled triangle 𝑇𝑂𝑇 ′ lies in the plane
of the prime meridian, which is perpendicular to the hori-
zon. Here, 𝑇 represents the intersection of the equator and
the prime meridian, and 𝑇 ′ is its projection on the horizon.
Thus, the side 𝑇𝑇 ′ is perpendicular to the horizon, the hy-
potenuse 𝑂𝑇 is equal to the radius of the celestial sphere, and
the angle 𝑇𝑂𝑇 ′ represents the angle between the planes of
the equator and the horizon. Therefore, we have

𝑇𝑇 ′ = 𝑅 cos 𝜙, 𝑂𝑇 = 𝑅, and 𝑇 ̂𝑂𝑇 ′ = 𝜙′ = 90 − 𝜙.

It can be clearly seen that the two right-angled triangles
Γ𝑋𝑌 and 𝑇𝑂𝑇 ′ are similar. Applying the rule of proportion-
ality to the sides of these two triangles, we have

viṣuvannara = 𝑅 cos 𝜙
𝑅 × 𝑅 sin 𝛼𝑒,

which is the required relation.5 It may be noted that the same
relation can be obtained in a similar manner when the autum-
nal equinoctial point is above the horizon.

5 This result could have been obtained directly from the right-angled
triangle Γ𝑋𝑌 by employing the relation Γ𝑌 = Γ𝑋 × sin(90−𝜙). The
given method only serves to illustrate the procedure of trairāśika, or
the rule of three, which was generally the preferred method for deriving
relations in the Indian mathematical and astronomical tradition.
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Fig. 1 Determining the viṣuvannara

When the Sun is at the solstitial points, its declination
is ± 𝜖, and its right ascension is 90 or 270 degrees. Its ‘in-
stantaneous’ ascensional difference, calculated using (16) of
Kolachana (2018a), would be

𝑅 sin Δ𝛼𝑠 = 𝑅 × 𝑅 sin 𝜙 × 𝑅 sin 𝜖
𝑅 cos 𝜙 × 𝑅 cos 𝜖 .

It can be seen that substituting these values in (1) of Ko-
lachana et al. (2020b) yields (2) of this paper.

The geometric derivation for the ayanāntaśaṅku is some-
what involved, but very interesting. This derivation can

be carried out for three different scenarios where (i) the
kālalagna is in the range of 90 to 270 degrees (i.e. Cancer
etc.) and the summer solstitial point is above the horizon, (ii)
the kālalagna is in the range of 270 to 270 + Δ𝛼𝑚 degrees,6
or 90 − Δ𝛼𝑚 to 90 degrees, and the summer solstitial point
is above the horizon, and (iii) the kālalagna is in the range
of 270 + Δ𝛼𝑚 to 90 − Δ𝛼𝑚 degrees and the winter solstitial
point is above the horizon. The latter two cases together con-
stitute the mṛgādi (Capricorn etc.) period of the kālalagna.

6 Where Δ𝛼𝑚 is the maximum ascensional difference at a given lati-
tude.
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Fig. 2 Determining the ayanāntaśaṅku when the kālalagna is karkyādi

The construction required for determining the
ayanāntaśaṅku when the kālalagna is in the range of 90 to
270 degrees is shown in Fig. 2. In this figure, 𝑆1 is the sum-
mer solstitial point, and 𝑉 is its projection on the horizon.
Thus, 𝑆1𝑉 corresponds to the ayanāntaśaṅku. The equato-
rial point 𝑆′

1 corresponds to the right ascension of 𝑆1, and
𝑈 is its projection on the horizon. Here, 𝑂𝑆1 and 𝑂𝑆′

1 are
the radii of the celestial sphere, and 𝑆1𝐵 is the perpendicular
from 𝑆1 dropped on 𝑂𝑆′

1. This perpendicular corresponds to
the Rsine of the arc 𝑆1𝑆′

1, which is nothing but the declina-
tion (𝜖) of 𝑆1. Thus, we have

𝑆1𝐵 = 𝑅 sin 𝜖, 𝑂𝐵 = 𝑅 cos 𝜖, and 𝐵𝑆′
1 = 𝑅 versin 𝜖.

Now, let 𝐵𝐹 and 𝐵𝐶 be the perpendiculars dropped from
𝐵 onto 𝑆1𝑉 and 𝑆′

1𝑈 respectively, which makes them parallel
to the horizon. Then, it can be seen from the figure that the
measure of the gnomon 𝑆1𝑉 is given by

𝑆1𝑉 = 𝑆1𝐹 + 𝑆′
1𝑈 − 𝑆′

1𝐶. (3)

The derivation of each of the quantities in the right hand side
of the above expression is discussed below.
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2.3 Obtaining S F

𝑆1𝐹 can be obtained by considering Fig. 3a. This figure de-
picts an instant when the kālalagna is exactly 90 degrees.
Thus, the vernal equinoctial point (Γ) is on the prime merid-
ian, and 𝑆1 and 𝑆′

1 are located on the six o’ clock circle, the
latter coinciding with the east cardinal point (𝐸). In this case,
the radius 𝑂𝑆′

1 is located on the horizon, and the perpendic-
ular 𝑆1𝐵 dropped from 𝑆1 onto 𝑂𝑆′

1 (in the plane of the six
o’ clock circle) is equal to the Rsine of the arc 𝑆1𝑆′

1, whose
measure is 𝜖. That is, 𝑆1𝐵 = 𝑅 sin 𝜖. As 𝐵 lies on the hori-
zon, the perpendicular 𝐵𝐹 from 𝐵 meets the gnomon of 𝑆1
at its foot. Thus, 𝐹 is the projection of 𝑆1 on the horizon.

Now, it can be seen that the planar right-angled triangle
𝑆1𝐵𝐹 is perpendicular to the horizon, and parallel to the
plane of the prime meridian. In this triangle, the angle 𝑆1𝐵̂𝐹
is equal to the angle between the planes of the six o’ clock
circle and the horizon, which is equal to the latitude (𝜙) of
the observer. Therefore, we have

𝑆1𝐹 = 𝑆1𝐵 × sin 𝜙 = 𝑅 sin 𝜖 sin 𝜙. (4)

As the relative positions of 𝑆1 and 𝑆′
1 are fixed, the measure

of 𝑆1𝐹 is also fixed, irrespective of the location of 𝑆1 on the
celestial sphere. Thus, 𝑆1𝐹 will have the same measure in
Fig. 2 as well.

2.4 Obtaining S′ U

𝑆′
1𝑈 can be determined from Fig. 3b. The celestial sphere

depicted here is the same as that depicted in Fig. 2. In this fig-
ure, the planar right-angled triangle 𝑆′

1𝑈𝐻 is perpendicular
to the horizon, and parallel to the plane of the prime merid-
ian. Its hypotenuse 𝑆′

1𝐻 is equal to the Rsine of the arc 𝑆′
1𝐸.

As Γ𝑆′
1 = 90, and Γ𝐸 = 𝛼𝑒, we have 𝑆′

1𝐸 = 𝛼𝑒 − 90. Thus,
𝑆′

1𝐻 = 𝑅 cos 𝛼𝑒. The angle 𝑆′
1𝐻̂𝑈 = 𝜙′ = 90 − 𝜙 gives the

measure of the angle between the planes of the equator and
the horizon. Therefore, we have

𝑆′
1𝑈 = 𝑆′

1𝐻 × sin(90 − 𝜙) = 𝑅 cos 𝛼𝑒 cos 𝜙. (5)

2.5 Obtaining S′ C

𝑆′
1𝐶 can be obtained by considering the similar triangles

𝑆′
1𝐶𝐵 and 𝑆′

1𝑈𝑂 in Fig. 2. In the right-angled triangle 𝑆′
1𝐶𝐵,

we have

𝐵𝑆′
1 = 𝑅 versin 𝜖, 𝐵 ̂𝑆′

1𝐶 = 𝜃′ = 90 − 𝜃,

and thus,

𝑆′
1𝐶 = 𝑅 versin 𝜖 sin 𝜃.

However, from the right-angled triangle 𝑆′
1𝑈𝑂, we have

sin 𝜃 = cos 𝛼𝑒 cos 𝜙. Therefore,

𝑆′
1𝐶 = 𝑅 cos 𝛼𝑒 cos 𝜙 versin 𝜖. (6)

Substituting (4), (5), and (6) in (3), we obtain the relation
for the gnomon corresponding to the summer solstitial point
when the kālalagna is in the range of 90 to 270 degrees:

𝑆1𝑉 = 𝑅 sin 𝜖 sin 𝜙 + 𝑅 cos 𝛼𝑒 cos 𝜖 cos 𝜙. (7)

For an observer in the northern hemisphere, the summer
solstitial point does not set immediately when the kālalagna
goes beyond 270 degrees, but continues to be above the
horizon for a time period corresponding to the maximum as-
censional difference (Δ𝛼𝑚) at that latitude. Similarly, the
summer solstitial point rises earlier by a time interval of Δ𝛼𝑚
before the kālalagna reaches 90 degrees. The former case,
when the kālalagna is in the range 270 to 270+Δ𝛼𝑚 degrees,
is shown in Fig. 4a. The latter case, when the kālalagna is
in the range of 90 − Δ𝛼𝑚 to 90 degrees, is shown in Fig. 4b.
In both these cases, 𝑆1 is above the horizon, but 𝑆′

1 is below
it. In either scenario, employing a similar construction as
shown in Fig. 2, the gnomon of the summer solstitial point
can be shown to be equal to

𝑆1𝑉 = 𝑆1𝐹 − 𝑆′
1𝑈 + 𝑆′

1𝐶
= 𝑅 sin 𝜖 sin 𝜙 − 𝑅 cos 𝛼𝑒 cos 𝜖 cos 𝜙. (8)

Finally, when the kālalagna is in the range of 270 + Δ𝛼𝑚
to 90 −Δ𝛼𝑚 degrees, the winter solstitial point (𝑆2) is above
the horizon, as shown in Fig. 5. Employing a similar con-
struction as shown in Fig. 2, the gnomon corresponding to
𝑆2 can be shown to be equal to

𝑆2𝑉 ′ = 𝑅 cos 𝛼𝑒 cos 𝜖 cos 𝜙 − 𝑅 sin 𝜖 sin 𝜙. (9)

Taken together, (7), (8), and (9) yield (2), and also satisfy
the conditions for addition and subtraction of the constituent
terms as stated in the verse.

2.6 Distinguishing between the summer and winter
solstitial points when the

We have seen that either the summer or winter solstitial
points can be above the horizon when the kālalagna is in the
range of 270 to 90 degrees. Their corresponding gnomons
are given by the relations (8) and (9) respectively. To ob-
tain positive values for these gnomons, it can be seen that
the expression 𝑅 cos 𝛼𝑒 cos 𝜖 cos 𝜙 has to be smaller than
𝑅 sin 𝜖 sin 𝜙 in the former instance, and greater in the latter
instance. Therefore, depending upon the relative magnitudes
of these two expressions, one can determine which solstitial
point is above the horizon. The first half of verse 82 thus
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Fig. 3 Obtaining 𝑆1𝐹 and 𝑆′
1𝑈 for determining the ayanāntaśaṅku
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Fig. 4 Instances of the summer solstitial point above the horizon when the kālalagna is mṛgādi

Fig. 5 Instance of the winter solstitial point above the horizon when the kālalagna is mṛgādi

states that, when the kālalagna is mṛgādi, the gnomon cal-
culated using (2) would correspond to the summer solstitial
point (karki or the solstitial point at a longitude of 90 de-
grees) when the quantity7

7 The author uses the phrase vidikkoṭijalambdaghāta to refer to this
quantity in the verse. As lamba refers to 𝑅 cos 𝜙, the term vidikkoṭija
is to be understood as the quantity 𝑅 cos 𝛼𝑒×𝑅 cos 𝜖

𝑅 . The etymology of
this term is unclear.

𝑅 cos 𝛼𝑒 × 𝑅 cos 𝜖
𝑅 × 𝑅 cos 𝜙

in the numerator is smaller than the product 𝑅 sin 𝜙×𝑅 sin 𝜖.

शӝो࠼योरत्र तु वगर्योगात्
मूलं च दृёेपगुणࡆ कोࣅटः ॥८२॥
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śaṅkvostayoratra tu vargayogāt
mūlaṃ ca dṛkkṣepaguṇasya koṭiḥ ||82||

The square root of the sum of the squares of those two
gnomons [described in the previous verse] is the Rco-
sine of the dṛkkṣepa.

This half-verse, in the indravajrā metre, gives the following
relation:

dṛkkṣepakoṭikā =
√(viṣuvannara)2 + (ayanāntaśaṅku)2. (10)

The above relation is a special case of (7) in Kolachana
et al. (2020b), where the viṣuvannara and the ayanāntaśaṅku
(which are gnomons dropped from points ninety degrees
apart on the ecliptic) replace the śaṅku and dṛggati (which
too are gnomons dropped from points ninety degrees apart
on the ecliptic). That is, if the śaṅku is measured at either of
the equinoctial points, then the dṛggati will be measured at
the corresponding solstitial points and vice-versa. Therefore,
the above relation is just a special case of (7) in Kolachana
et al. (2020b).

4 Determining the udayalagna from the

नҷात्ࣄासाधर्ߢ रा٦त्ڦवषुवࣆ
दृёेपको֌ाܒफलࡆ चापम् ।

तदवे तत्रोदयलҔमाहुः
आ٦े पदे कालࣆवलҔकࡆ ॥८३॥

तࡆ ٥तीयेࣉ तु पदे धनु࠼त्
चक्राधर्तः शु٠मुशڢ࣎ लҔम् ।

चक्राधर्युнं च पदे तृतीये
संशोࣉधतं मןलत߱तुथϸ ॥८४॥

vyāsārdhanighnāt viṣuvannarādyat
dṛkkṣepakoṭyāptaphalasya cāpam |

tadeva tatrodayalagnamāhuḥ
ādye pade kālavilagnakasya ||83||

tasya dvitīye tu pade dhanustat
cakrārdhataḥ śuddhamuśanti lagnam |

cakrārdhayuktaṃ ca pade tṛtīye
saṃśodhitaṃ maṇḍalataścaturthe ||84||

That arc, which is of the quotient obtained from the
division of the semi-diameter (vyāsārdha) multiplied
viṣuvannara by the Rcosine of the dṛkkṣepa
(dṛkkṣepakoṭi), itself is stated to be the rising eclip-
tic point (udayalagna) there, in the first quadrant
of the kālalagna. Indeed in the second, third, and
fourth quadrants of that (kālalagna), that arc [re-
spectively] subtracted from a semi-circle (cakrārdha),

added by a semi-circle, and subtracted from the full cir-
cle (maṇḍala), is stated to be the [rising] ecliptic point
(lagna).

These two verses, in the upajāti and indravajrā metres re-
spectively, give the following procedure to determine the
udayalagna using the viṣuvannara and the dṛkkṣepakoṭi,
which have been defined earlier in this chapter:

udayalagna = cāpa (viṣuvannara × vyāsārdha
dṛkkṣepakoṭi )

[kālalagnasya ādye pade]
udayalagna = cakrārdha

− cāpa (viṣuvannara × vyāsārdha
dṛkkṣepakoṭi )

[kālalagnasya dvitīye pade]
udayalagna = cakrārdha

+ cāpa (viṣuvannara × vyāsārdha
dṛkkṣepakoṭi )

[kālalagnasya tṛtīye pade]
udayalagna = maṇḍala

− cāpa (viṣuvannara × vyāsārdha
dṛkkṣepakoṭi ).

[kālalagnasya caturthe pade]

Taking 𝜆𝑙 as the longitude of the udayalagna, and denoting
the dṛkkṣepakoṭi as 𝑅 cos 𝑧𝑑 , the above relations can be ex-
pressed in mathematical notation as follows:

𝜆𝑙 = 𝑅 sin−1 (viṣuvannara × 𝑅
𝑅 cos 𝑧𝑑

) (11)

[kālalagna in the first quadrant]

𝜆𝑙 = 180 − 𝑅 sin−1 (viṣuvannara × 𝑅
𝑅 cos 𝑧𝑑

) (12)

[kālalagna in the second quadrant]

𝜆𝑙 = 180 + 𝑅 sin−1 (viṣuvannara × 𝑅
𝑅 cos 𝑧𝑑

) (13)

[kālalagna in the third quadrant]

𝜆𝑙 = 360 − 𝑅 sin−1 (viṣuvannara × 𝑅
𝑅 cos 𝑧𝑑

) . (14)

[kālalagna in the fourth quadrant]

Here, the viṣuvannara is obtained using (1).
The viṣuvannara is the gnomon corresponding to the

equinoctial points. Verses 58–608 detail the general proce-
dure for obtaining the udayalagna given the position of the

8 See Kolachana et al. (2020b).
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Fig. 6 Determining the udayalagna from the viṣuvannara and the ayanāntaśaṅku

Sun, and the measure of its gnomon (śaṅku). Therefore, the
relations for udayalagna given in these two verses can be
obtained by considering the Sun to be at either equinoctial
point, taking the śaṅku to be equal to the viṣuvannara, and
applying (12)–(15) of Kolachana et al. (2020b). However, to
demonstrate the physical significance of the relations given
in these two verses, here we derive (11)–(14) of this paper
with the help of Figs. 6a–6d, which show the kālalagna in
different quadrants.

4.1 Obtaining the ecliptic arc from the equinoctial
point to the horizon

As the longitudes of the equinoctial points, as well as the
separation of the rising and setting ecliptic points are known,
the udayalagna can be determined by obtaining the arcs Γ𝐿,
𝐿′Γ, Ω𝐿, and 𝐿′Ω in each of the Figs. 6a–6d respectively.
We have shown that (16) of Kolachana et al. (2020b) gives

the measure of the arc from the Sun to the rising ecliptic
point (𝑆𝐿) when the Sun is in the eastern hemisphere, and
the measure of the arc from the setting ecliptic point to the
Sun (𝐿′𝑆) when it is in the western hemisphere. Thus, the
arcs Γ𝐿 or 𝐿′Γ can be obtained by simply considering the
Sun to be present at the vernal equinoctial point (Γ), and
employing (16) of Kolachana et al. (2020b). If the Sun were
at the vernal equinoctial point, its śaṅku would be equal to
the viṣuvannara, given by (1), and thus (16) of Kolachana
et al. (2020b) would reduce to

Γ𝐿 or 𝐿′Γ = 𝑅 sin−1 (viṣuvannara × 𝑅
𝑅 cos 𝑧𝑑

) . (15)

Similarly, the arcs Ω𝐿 and 𝐿′Ω can be obtained by consid-
ering the Sun to be present at the autumnal equinoctial point.
In this case too, the śaṅku of the Sun would be equal to the
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viṣuvannara, given by (1),9 and (16) of Kolachana et al.
(2020b) would reduce to

Ω𝐿 or 𝐿′Ω = 𝑅 sin−1 (viṣuvannara × 𝑅
𝑅 cos 𝑧𝑑

) . (16)

4.2 Obtaining the udayalagna

When the kālalagna is in the first quadrant, as shown in
Fig. 6a, the vernal equinoctial point is above the horizon and
in the eastern hemisphere. Here, the longitude of the udaya-
lagna is given by the arc Γ𝐿 which is directly obtained from
(15). This is the result stated in (11).

When the kālalagna is in the second quadrant, the ver-
nal equinoctial point is above the horizon and in the western
hemisphere, as shown in Fig. 6b. Here, the longitude of the
udayalagna is given by the arc Γ𝐿 = 𝐿′𝐿−𝐿′Γ, where 𝐿′𝐿 =
180, and 𝐿′Γ is obtained using (15). Thus, we get (12).

When the kālalagna is in the third quadrant, the autum-
nal equinoctial point is above the horizon and in the eastern
hemisphere, as shown in Fig. 6c. Here, the longitude of the
udayalagna is given by the arc Γ𝐿 = ΓΩ+Ω𝐿, where ΓΩ =
180, and Ω𝐿 is obtained using (16). Thus, we obtain (13).

Finally, when the kālalagna is in the fourth quadrant, as
shown in Fig. 6d, the autumnal equinoctial point is above the
horizon and in the western hemisphere. Here, the longitude
of the udayalagna is given by the arc Γ𝐿 = ΓΩ−𝐿′Ω+𝐿′𝐿,
where ΓΩ = 𝐿′𝐿 = 180, and 𝐿′Ω is obtained using (16).
Thus, we obtain the result stated in (14).

शӀोःڢनҷादयनाࣄासाधर्ߢ
दृёेपको֌ाܒधनुधर्नणर्म् ।

ेڢनजायनाࣄ युगयुсदؘात्
कृؘा भवेदौदࣆयकं वलҔम्ࣆ ॥८५॥

मृगाࣅदयाते सࣆत काललҔे
त׽ोࣅटजीवाफललݼघाते10।

े޷ࡈ परक्राڢ࣎गुणाक्षघातात्
पदाڬता तࡆ च क޷नीया ॥८६॥

9 It may be noted that the gnomons corresponding to the vernal and
autumnal equinoctial points are equal.
10 त׽ोࣅटजीवापललݼघाते in the manuscripts. A likely transcribing er-
ror. This phrase has to refer to the quantity 𝑅 cos 𝛼𝑒 cos 𝜖 × 𝑅 cos 𝜙.
Such an interpretation is only possible when pala is replaced with
phala.

vyāsārdhanighnādayanāntaśaṅkoḥ
dṛkkṣepakoṭyāptadhanurdhanarṇam |

nijāyanānte yugayukpadatvāt
kṛtvā bhavedaudayikaṃ vilagnam ||85||

mṛgādiyāte sati kālalagne
tatkoṭijīvāphalalambaghāte |

svalpe parakrāntiguṇākṣaghātāt
padānyatā tasya ca kalpanīyā ||86||

The result obtained by applying the arc of the quo-
tient obtained from the division of the product of the
ayanāntaśaṅku and the semi-diameter (vyāsārdha) by
the Rcosine of the dṛkkṣepa (dṛkkṣepakoṭi) to [the
longitude of] the own solstitial point (nijāyanānta)
positively or negatively, depending on even or odd
quadrants [of the kālalagna], would be the rising eclip-
tic point (audayikaṃ vilagnam).
When the kālalagna is in Capricorn etc. (mṛgādi), if
the product of the result obtained from its Rcosine
(koṭijīvā) and the Rcosine of the latitude (lamba) is
smaller than the product of the Rsine of the maximum
declination (parakrāntiguṇa) and [the Rsine of] the lat-
itude (akṣa), the quadrant of that [kālalagna] should
be considered to be otherwise (padānyatā) [i.e., odd
as even, and even as odd, for the purpose of deciding
whether to add or subtract the obtained arc to the ni-
jāyanānta, in determining the udayalagna].

Verses 85, in the upajāti metre, describes the following pro-
cedure to determine the udayalagna using the ayanānta-
śaṅku and the dṛkkṣepakoṭi, which have been defined earlier
in this chapter:

udayalagna = nijāyanānta

+ dhanuṣ (ayanāntaśaṅku × vyāsārdha
dṛkkṣepakoṭi )

[𝑦𝑢𝑘𝑝𝑎𝑑𝑎]
udayalagna = nijāyanānta

− dhanuṣ (ayanāntaśaṅku × vyāsārdha
dṛkkṣepakoṭi ) .

[𝑎𝑦𝑢𝑘𝑝𝑎𝑑𝑎]

Taking 𝜆𝑙 as the longitude of the udayalagna, denoting
the dṛkkṣepakoṭi as 𝑅 cos 𝑧𝑑 , and noting that the longitudes
of the summer (𝑆1) and winter (𝑆2) solstitial points are 90
and 270 degrees respectively, the above relations can be ex-
pressed in mathematical notation as follows:

𝜆𝑙 = 90 − 𝑅 sin−1 (ayanāntaśaṅku × 𝑅
𝑅 cos 𝑧𝑑

) (17)

[kālalagna in the first quadrant]
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𝜆𝑙 = 90 + 𝑅 sin−1 (ayanāntaśaṅku × 𝑅
𝑅 cos 𝑧𝑑

) (18)

[kālalagna in the second quadrant]

𝜆𝑙 = 270 − 𝑅 sin−1 (ayanāntaśaṅku × 𝑅
𝑅 cos 𝑧𝑑

) (19)

[kālalagna in the third quadrant]

𝜆𝑙 = 270 + 𝑅 sin−1 (ayanāntaśaṅku × 𝑅
𝑅 cos 𝑧𝑑

) . (20)

[kālalagna in the fourth quadrant]

Here, the ayanāntaśaṅku is obtained using (2), taking care
of the quadrant of the kālalagna in which it is sought to be
applied. It may be noted that the ‘own solstitial point’ (ni-
jāyanānta) of the kālalagna refers to 𝑆1 when the kālalagna
is in the first two quadrants, and 𝑆2 when the kālalagna is in
the third and fourth quadrants. This is only used to represent
the quantities 90 and 270 degrees in the above relations, and
does not indicate which solstitial point is above the horizon
in each of these cases.

The above relations can be directly derived by consider-
ing the Sun to be present at either solstitial point, taking its
śaṅku to be the appropriate ayanāntaśaṅku, and employing
(12)–(15) of Kolachana et al. (2020b). However, to demon-
strate the physical significance of the relations given here, we
derive (17)–(20) of this paper with the help of Figs. 6a–6d,
which depict the kālalagna in different quadrants.

As the longitudes of the solstitial points, as well as the sep-
aration of the rising and setting ecliptic points are known, the
udayalagna can be determined by obtaining the arcs 𝐿′𝑆2,
𝑆1𝐿, 𝐿′𝑆1, and 𝑆2𝐿 in each of the Figs. 6a–6d respectively.
These arcs can be obtained by considering the Sun to be
present at 𝑆1 or 𝑆2 and applying (16) of Kolachana et al.
(2020b). Here, however, we would have to replace the śaṅku
of the Sun with the respective ayanāntaśaṅkus of 𝑆1 and 𝑆2.
In our discussion of verses 80–81, we have shown that the
relation for the ayanāntaśaṅku varies depending upon the
quadrant of the kālalagna. Therefore, these different cases
are dealt separately below.

5.1 Obtaining the udayalagnawhen the kālalagna is
karkyādi

When the kālalagna is in the second and third quadrants,
the summer solstitial point is above the horizon and the
ayanāntaśaṅku is given by (7). Substituting this quantity in
(16) of Kolachana et al. (2020b), we have

𝑆1𝐿 or 𝐿′𝑆1 = 𝑅 sin−1 (ayanāntaśaṅku × 𝑅
𝑅 cos 𝑧𝑑

) . (21)

[ayanāntaśaṅku using(7)]

When the kālalagna is in the second quadrant, as shown
in Fig. 6b, the summer solstitial point lies above the hori-
zon in the eastern hemisphere. Here, the longitude of the
udayalagna is given by the arc Γ𝐿 = Γ𝑆1 + 𝑆1𝐿, where
Γ𝑆1 = 90, and 𝑆1𝐿 is given by (21). Thus, we obtain (18).

When the kālalagna is in the third quadrant, as shown
in Fig. 6c, the summer solstitial point lies above the hori-
zon in the western hemisphere. Here, the longitude of the
udayalagna is given by the arc Γ𝐿 = Γ𝑆1 − 𝐿′𝑆1 + 𝐿′𝐿,
where Γ𝑆1 = 90, 𝐿′𝐿 = 180, and 𝐿′𝑆1 is given by (21).
Thus, we have Γ𝐿 = 270 − 𝐿′𝑆1, which is the same as (19).

5.2 Obtaining the udayalagnawhen the kālalagna is
and the winter solstitial point is above the

horizon

We have shown in our discussion of verses 80–81 that when
the kālalagna is in the range of 270 + Δ𝛼𝑚 to 90 − Δ𝛼𝑚
degrees,11 the winter solstitial point is above the horizon, and
the ayanāntaśaṅku is given by (9). Substituting this quantity
in (16) of Kolachana et al. (2020b), we have

𝑆2𝐿 or 𝐿′𝑆2 = 𝑅 sin−1 (ayanāntaśaṅku × 𝑅
𝑅 cos 𝑧𝑑

) . (22)

[ayanāntaśaṅku using (9)]

Figure 6a depicts a situation where the kālalagna is in the
first quadrant, and the winter solstitial point (𝑆2) lies above
the horizon in the western hemisphere. In this case, we have
Γ𝐿 + 360 = Γ𝑆2 − 𝐿′𝑆2 + 𝐿′𝐿, where Γ𝑆2 = 270, 𝐿′𝐿 =
180, and 𝐿′𝑆2 is given by (22). Thus, the longitude of the
udayalagna is given by the arc Γ𝐿 = 90 − 𝐿′𝑆2, which is the
same as (17).

Figure 6d depicts a situation where the kālalagna is in the
fourth quadrant, and the winter solstitial point lies above the
horizon in the eastern hemisphere. In this case, the longitude
of the udayalagna is given by the arc Γ𝐿 = Γ𝑆2+𝑆2𝐿, where
Γ𝑆2 = 270, and 𝑆2𝐿 is obtained using (22). Thus, we obtain
(20).

5.3 Obtaining the udayalagnawhen the kālalagna is
and the summer solstitial point is above

the horizon

We have shown in our discussion of verses 80–81 that when
the kālalagna is in the range of 90 − Δ𝛼𝑚 to 90 or 270 to
270 + Δ𝛼𝑚 degrees, the summer solstitial point is above the
horizon, and the ayanāntaśaṅku is given by (8). Substituting
this quantity in (16) of Kolachana et al. (2020b), we have

11 Here, Δ𝛼𝑚 is the maximum ascensional difference at a given lati-
tude.
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𝑆1𝐿 or 𝐿′𝑆1 = 𝑅 sin−1 (ayanāntaśaṅku × 𝑅
𝑅 cos 𝑧𝑑

) . (23)

[ayanāntaśaṅku using (8)]

Figure 4b depicts a scenario where the kālalagna is in the
first quadrant, and the summer solstitial point is above the
horizon in the eastern hemisphere. Here, the longitude of
the udayalagna is given by the arc Γ𝐿 = Γ𝑆1 + 𝑆1𝐿, where
Γ𝑆1 = 90, and 𝑆1𝐿 is given by (23). Therefore, we have

𝜆𝑙 = 90 + 𝑅 sin−1 (ayanāntaśaṅku × 𝑅
𝑅 cos 𝑧𝑑

) . (24)

[90 − Δ𝛼𝑚 < 𝛼𝑒 < 90]

Figure 4a depicts a scenario where the kālalagna is in the
fourth quadrant, and the summer solstitial point is above the
horizon in the western hemisphere. In this case, the longi-
tude of the udayalagna is given by the arc Γ𝐿 = Γ𝑆1−𝐿′𝑆1+
𝐿′𝐿, where Γ𝑆1 = 90, 𝐿′𝐿 = 180, and 𝐿′𝑆1 is given by (23).
Thus, we obtain

𝜆𝑙 = 270 − 𝑅 sin−1 (ayanāntaśaṅku × 𝑅
𝑅 cos 𝑧𝑑

) . (25)

[270 < 𝛼𝑒 < 270 + Δ𝛼𝑚]

Comparing (24) with (17), it is seen that the arc has to be
added in the former case, and subtracted in the latter, though
both relations pertain to the first quadrant of the kālalagna.
Similarly, comparing (25) and (20), it is seen that the arc has
to be subtracted in the former case, and added in the latter,
though both relations pertain to the fourth quadrant of the
kālalagna. Thus, we find that (24) and (25) are an exception
to the rule given in verse 85, which states that the appropri-
ate arc is to be added to or subtracted from the nijāyanānta
in the even and odd quadrants respectively. This exception is
addressed in verse 86 (in the upajāti metre), which states that
the even quadrant of the kālalagna has to be considered as
odd, and the odd as even, for the purpose of determining be-
tween the addition or subtraction of the arc to the nijāyanānta
in these two cases.12 This is equivalent to stating that the ap-
propriate arc has to be added to the nijāyanānta in the odd

12 It may be noted that verse 86 cleverly alludes to these two cases by
giving the relative magnitude of the expressions

𝑅 cos 𝛼𝑒 × 𝑅 cos 𝜖
𝑅 × 𝑅 cos 𝜙

and 𝑅 sin 𝜙×𝑅 sin 𝜖 in the numerator of (2). As we have already shown
in our discussion of verses 80–81, the former is smaller than the latter
when the kālalagna is mṛgādi and the summer solstitial point is above
the horizon. It may also be noted that the compound expression tatkoṭi-
jīvāphala in this verse refers to the ‘result’ obtained from the Rcosine
of the kālalagna, or the quantity 𝑅 cos 𝛼𝑒×𝑅 cos 𝜖

𝑅 in the numerator of (2).
The same quantity has also been referred to as the vidikkoṭija in the first
quadrant of verse 82.

quadrant, and subtracted from it in the even quadrant, when
the kālalagna is mṛgādi and the summer solstitial point is
above the horizon. As can be seen, this exception to the rule
satisfies both (24) and (25).

6 Determining the

लݼाܒो लҔकणर्ः ात्ࡆ त्रԷापरनराहतेःࣆ ।
तेन वा लҔमानेयं टीकरणवؕर्नाࡂु ॥८७॥
lambāpto lagnakarṇaḥ syāt

trijyāparanarāhateḥ |
tena vā lagnamāneyaṃ

sphuṭīkaraṇavartmanā ||87||

The lagnakarṇa would be the quotient obtained from
the division of the product of the radius (trijyā) and
the paranara (i.e. paraśaṅku) by the Rcosine of the
latitude (lamba). The rising ecliptic point (lagna) can
also be computed from it by means of the sphuṭīkaraṇa
process.

This verse, in the anuṣṭubh metre, defines a quantity
known as the lagnakarṇa in terms of the paranara or the
paraśaṅku (𝑅 cos 𝑧𝑑), and the lambajyā (𝑅 cos 𝜙) as follows:

lagnakarṇa = 𝑝𝑎𝑟𝑎𝑛𝑎𝑟𝑎 × trijyā
lambajyā

= 𝑅 cos 𝑧𝑑 × 𝑅
𝑅 cos 𝜙 . (26)

The verse further states that the udayalagna can be com-
puted from this quantity by means of a process known
as sphuṭīkaraṇa. This process is described later in the
Lagnaprakaraṇa. We only present this verse here for the
sake of completeness, and intend to discuss this procedure
in detail in a forthcoming paper.

7 Discussion

In our previous paper,13 we disc ussed the procedure of
determining the ascendant described in verses 53–61, con-
stituting the third chapter of the Lagnaprakaraṇa. There,
the author presents two quantities, known as śaṅku and dṛg-
gati, which are the gnomons corresponding to the Sun and an
ecliptic point ninety degrees behind the Sun. In that paper,
we have shown how these two quantities, along with a third
quantity known as dṛkkṣepakoṭi, have been manipulated to
precisely calculate the ascendant.

Similarly, in the verses discussed in this paper, the au-
thor defines two gnomons corresponding respectively to the

13 See Kolachana et al. (2020b).
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equinoctial and solstitial ecliptic points, and together with
the dṛkkṣepakoṭi, again precisely determines the ascendant.
The relations for the gnomons in terms of the kālalagna,
just as in the case of the śaṅku and dṛggati, are quite in-
novative, and capture the variation in these two quantities
accurately. While the variation in the viṣuvannara is fairly
straightforward, the variation of the ayanāntaśaṅku is more
complex, having different relations in different quadrants of
the kālalagna. The text captures the variation in the mea-
sure of the ayanāntaśaṅku in different scenarios particularly
well, revealing a deep study and strong comprehension of
this topic by the author. Later verses discuss the means to
precisely determine the ascendant using the viṣuvannara and
the ayanāntaśaṅku, based on various possible values of the
kālalagna. Exceptions to the stated rules are made abun-
dantly clear, showing that the author has carefully considered
all possible scenarios. Thus, Mādhava once again lives up to
the epithet of “golavid”, bestowed upon him by later schol-
ars.

8 Conclusion

In this paper, we discussed the fifth chapter of
Lagnaprakaraṇa, which describes yet another sophisticated
technique to precisely determine the ascendant. The chap-
ter ends with a tantalising verse, describing a quantity
known as lagnakarṇa, and hinting at a process known as
sphuṭīkaraṇa for determining the ascendant. We intend to
discuss this fascinating procedure and other contributions of
the Lagnaprakaraṇa in forthcoming papers.
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