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Abstract
In this paper, we explore the Boros integral with three parameters containing the incomplete ℵ - functions and Srivastava 
polynomial (genaral class of polynomial). We build the Boros integral for the product of Srivastava polynomials and the 
incomplete ℵ-function. Also, We mentioned numerous specific instances of our main finding. For extending our given result 
one can generalize these formulas by using the classes of multivariable polynomials.

Keywords  Incomplete Gamma function · Mellin-Barnes integrals contour · Incomplete ℵ-function · Class of polynomials · 
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Introduction

A wide range of Mathematical functions have been intro-
duced and investigated by numerous writers (see, for 
instance, the gamma function, beta function, ML func-
tion, Bessel function, Fox’s H-function and hypergeomet-
ric function). They have also conducted a comprehensive 
research of these functions and provided applicability of 
these functions in engineering, applied sciences, and so 
on. Equations on a sphere have been the subject of recent 
research and have numerous significant applications in 
physics, phenomena, and oceanography. Phong and Long 
(2022) investigated the Caputo-Fabrizio derivative in rela-
tion to the parabolic issue with non-local conditions. Li 
et al. (2023) used fractional calculus and the Adomian 
decomposition method to analyze and provide approximate 
and analytical solutions to the Schrodinger problem. For 
the conformable space-time nonlinear Schrodinger equa-
tion (CSTNLSE) with Kerr law nonlinearity, Asjad et al. 
(2022) found several types of solitons solutions. We used 
two suggested approaches-the novel extended hyperbolic 
function method and the Sardar-subequation method-to 
look for such answers. Using Banach’s fixed point theorem 
and Babenko’s method, Using Banach’s fixed point theo-
rem and Babenko’s method, Li et al. (2023) constructed 
a necessary condition for the uniqueness of solutions to 
a novel boundary value issue of the fractional nonlinear 
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partial integro-differential equation. According to Abdul-
lah et al. (2022), the Atangana-Baleanu derivative in the 
sense of Caputo (ABC) with �p-Laplacian operator may 
solve a system of fractional differential equations (FDEs) 
and ensure its uniqueness (EU) and stability.

The Aleph function was first developed and explored 
in the 19th century by Südland et al. (1998, 2001), sub-
sequent to that, a various authors established fascinating 
outcomes and outlined feasible applications in Physics, 
Applied Mathematics, and Engineering., for example, see 
Purohit et al. (2020), Südland et al. (2019), etc.

Srivastava (1972) has advocated the use of class of 
polynomials SM

N
(x) given by

where A[N, K] is an arbitrary constant (real or complex) and 
M is any positive integer. We shall note that

For some particular values of the coefficients A[N, K], SM
N
[.] 

reduces to a variety of well-known polynomials, including 
the Hermite, Jacobi, Laguerre, bessel, and other polynomi-
als; see Srivastava and Singh (1983).

The incomplete hypergeometric function and incom-
plete Gamma-function were recently introduced by 
Srivastava et al. (2012). The incomplete H and H̄-func-
tion, which is modified version of Fox’s H-function (see 
Baleanu et al. (2016), Daiya et al. (2016) and Gupta et al. 
(2016)), were first introduced and investigated by Srivas-
tava et al. (2018) in more recent years. Several authors, 
Bansal et al. (2019, 2020), and Bansal and Kumar (2020) 
presented and investigated the incomplete I and ℵ-function 
and integrals calculations for the incomplete H-function 
respectively. Recently, Kumar et al. (2022) and Bhatter 
et al. (2023a) have researched and examined the Boros 
integral with three parameters involving generalized multi-
index Mittag-Leffler function and the incomplete I-func-
tions. Also, for further study reader can refer recent work 
(Bhatter et al. 2023b; c; Parmar and Saxena 2017; Purohit 
et al. 2024; Srivastava 2013; Srivastava and Cho 2012). 
In this paper, we introduce and investigate the incomplete 
ℵ-function and incomplete Gamma-functions. We cal-
culated the Boros integral concerning the product of the 
incomplete ℵ-function. The ℵ-function is extended by the 
incomplete ℵ-function.

The study and development of the incomplete Gamma 
type functions, such as �(�, x) and Γ(�, x) presented in (3) 
and (4), respectively, has recently attracted a lot of research 
attention. Incomplete Gamma functions are important 

(1)SM
N

[
y
]
=

[N∕M]∑

K=0

(−N)MK

K!
A[N,K],

(1)AN,K =
(−N)MK

K!
A[N,K].

special functions and their closely related functions are 
extensively used in physics and engineering; therefore, 
they are of interest to physicists, engineers, statisticians, 
and mathematicians. The theory of the incomplete Gamma 
functions, as a part of the theory of confluent hypergeo-
metric functions, has received its first efficient exposition 
by Tricomi (1950).

The familiar incomplete Gamma functions �(�, x) and 
Γ(�, x) are defined, respectively, by

and

The decomposition formula shown below is valid:

Recently, The subsequent two classes of extended incom-
plete hypergeometric functions were recently introduced and 
investigated in well manner by Srivastava et al. (2012):

and

where the incomplete Pochhammer symbols (�;s)
�
 and [�;s]

�
 

(�;� ∈ ℂ; s ≧ 0) are defined as follows:

and

Incomplete Pochhammer symbols (�;s)
�
 & [�;s]

�
 fulfill the 

aforementioned decomposition connection, which is obvi-
ously true.

The shifted factorial, often known as the Pochhammer sym-
bol, is defined by

(1)𝛾(𝛼, x) = �
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u𝛼−1e−udu, (x ⩾ 0, ℜ(𝛼) > 0 when x = 0).
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The definitions of (6) and (7) easily produce an alternate 
decomposition relation for the generalized hypergeometric 
function pFq (Slater 1966), according to Srivastava et al. 
(2012):

The incomplete ℵ-functions (Γ)ℵm,n
pi,qi,𝜏i,r

(z) and (𝛾)ℵm,n
pi,qi,r

(z) 
defined by Bansal et al. (2020) are expressed as follows:

and

The incomplete ℵ-functions (Γ)ℵm,n
pi,qi,𝜏i,r

(z) and (𝛾)ℵm,n
pi,qi,r

(z) in 
(13) and (14) exists for x ≥ 0 based on a specific set of 
requirements.

The contour L in the s-plane extends from � − i∞ to � + i∞ 
where � if is a real number constructing a loop. It is essential 
to guarantee that the poles of Γ(1 − aj − Ajs), j = 2,… , n 
lie to the right of the contour L and the poles of 
Γ(gj + Gjs), j = 1,… ,m lie to the left of the contour L. 
The parameters �i,m, n, pi, qi are positive numbers satisfying 
0 ≤ n ≤ pi , 0 ≤ m ≤ qi and aj, gj, aji, gji are complex numbers. 
It is presumed that these poles are simple. We have subsequent 
conditions:

where
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=
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(15)Ωi > 0, |arg(z)| < 𝜋

2
Ωi, i = 1,… , r
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,

and

As a result, the relationship is as follows:

ℵ
m,n
pi,qi,𝜏i,r

(z) is the ℵ-function introduced by Südland et al. 
(1998) which is the generalization of I-function (Saxena 
2008).

For �i = 1 , the incomplete ℵ-functions (Γ)ℵm,n
pi,qi,𝜏i,r

(z) and 
(𝛾)
ℵ
m,n
pi,qi,r

(z) reduce to incomplete I-functions (Γ)Im,n
pi,qi,r

(z) and 
(�)Im,n

pi,qi,r
(z) respectively (see, Kumar et al. 2022), we have

and

Now, if we set r = 1 , then the incomplete I-functions 
(Γ)Im,n

pi,qi,r
(z) and (�)Im,n

pi,qi,r
(z) reduce to incomplete H-functions 

(Γ)Hm,n
p,q

(z) and (�)Hm,n
p,q

(z) respectively (see, Bansal et  al. 
2019),

and

under the same conditions verified by the incomplete I-func-
tions with r = 1.

By using the relation (5), we have
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the function Im,n
pi,qi,r

(z) being the function introduced by Sax-
ena (2008) and

Boros integral

Well-known Boros integral representation is given by

where b > 0, a > −1,ℜ(p) > −
1

2
,B(., .) is the beta function.

Proof  Concerning the proof, see Qureshi et al. (2013) and 
Boros and Moll (1998). Let

	�  ◻

Main integrals

In this section, the Boros integral with three parameters includ-
ing the incomplete ℵ function is evaluated.

Theorem 1  We have the proceeding integral

(25)(Γ)Hm,n
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(z) = Hm,n
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∞
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and

Proof  Replacing the class of polynomials and the incom-
plete ℵ-function (Γ)ℵm,n

pi,qi,𝜏i,r
(z) by (1) and (13) respectively, 

we get

interchanging the order of finite sum and integral (feasible 
due to the absolute convergence of integrals), we arrive at

evaluating the integral with the help of (26), we get

substituting (31) in (30), after algebraic manipulations we 
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Illustrating (32) by means of Mellin-Barnes integral contour 
to get (28). 	�  ◻

Theorem 2  We have the proceeding integral

under the conditions as that in Theorem 1.

Proof  On similar steps of Theorems 1 and 2 will follow. 	
� ◻

Special cases

For �i = 1 , the incomplete ℵ-function reduce to incomplete 
I-functions, we have

Corollary 1  The following integral hold true
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considering the identical circumstances as those in Theo-
rem 1 for �i = 1.

Corollary 2  The following integral hold true
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considering the identical circumstances as those in Theo-
rem 2 for �i = 1.

For r = 1 , the incomplete I-function reduces to incom-
plete H-function, we have

Corollary 3  The following integral hold true

considering the identical circumstances as those in Theo-
rem 1 for r = �i = 1.

Corollary 4  The following integral hold true

considering the identical circumstances as those in Theo-
rem 2 for r = �i = 1.

Now, we consider several special cases concerning the 
class of polynomials.

Definition 4.1  Hermite polynomials: In 1810, Pierre-Simon 
Laplace defined Hermite polynomials and these polynomials 
were studied in the expanded form by Pafnuty Chebyshev in 
1859.Chebyshev’s research was disregarded, and the poly-
nomials were eventually called after Charles Hermite, who 
wrote about them in 1864 and claimed they were novel. A 
traditional sequence of orthogonal polynomials is the Her-
mite polynomials. The Hermite polynomials are defined by

they satisfy the orthogonality condition

Definition 4.2  Jacobi polynomials: A category of conven-
tional orthogonal polynomials called Jacobi polynomials 
P(�,�)
n

(z) are also referred to as hypergeometric polynomials. 
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The Jacobi polynomials are provided by the formula for 
𝛼, 𝛽 > −1.

They are normalized (standardized) by

and satisfy the orthogonality condition

Definition 4.3  Laguerre polynomials: The solutions to 
Laguerre’s equation are known as Laguerre polynomials, 
after Edmond Laguerre (1834–1866):
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which is a linear differential equation of second order. Only 
when n is an integer that is not negative does this equation 
have nonsingular solutions. The definition of the modified 
Laguerre polynomials is

They satisfy the orthogonality relation

Next, by setting M = 2,A[N,K] = (−1)K  , we have 
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Corollary 5  The following integral hold true
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considering the identical circumstances as in Theorem 1.

Setting M = 1,A[N,K] =

(
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)
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 , we have 
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Corollary 6  The following integral hold true

considering the identical circumstances as Theorem 1.

Further, by setting M = 1,A[N,K] =
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N
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Corollary 7  The following integral hold true

considering the identical circumstances as Theorem 1.

Conclusions and future work

In the current study, we have investigated the Boros inte-
gral with three parameters, which contains the Srivastava 
polynomials and incomplete ℵ-functions.Numerous other 
known results come as special cases of our main conclu-
sions because the functions in the provided outcomes are 
unified and general in nature. We have also given some par-
ticular cases in terms of incomplete I and H-function. We 
further explored Boros integral involving the incomplete ℵ
-functions and pointed out many leading cases concerning 
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the class of polynomials (Hermite, Jacobi, Lagueree 
polynomials).

For extending this work one can generalize these formu-
las by using the classes of multivariable polynomials defined 
by Srivastava (1985) and Srivastava and Garg (1987). We 
can generalize these formulas by using the class of multi-
variable polynomials described through Srivastava (1985) 
and Srivastava and Garg (1987).
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