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Predicting the compressive strength 
of self-compacting concrete using artificial 
intelligence techniques: a review
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Abstract 

Concrete is one of the most common construction materials used all over the world. Estimating the strength prop-
erties of concrete traditionally demands extensive laboratory experimentation. However, researchers have increas-
ingly turned to predictive models to streamline this process. This review focuses on predicting the compressive 
strength of self-compacting concrete using artificial intelligence (AI) techniques. Self-compacting concrete repre-
sents an advanced construction material particularly suited for scenarios where traditional vibrational methods face 
limitations due to intricate formwork or reinforcement complexities. This review evaluates various AI techniques 
through a comparative performance analysis. The findings highlight that employing Deep Neural Network models 
with multiple hidden layers significantly enhances predictive accuracy. Specifically, artificial neural network (ANN) 
models exhibit robustness, consistently achieving  R2 values exceeding 0.7 across reviewed studies, thereby demon-
strating their efficacy in predicting concrete compressive strength. The integration of ANN models is recommended 
for formulating various civil engineering properties requiring predictive capabilities. Notably, the adoption of AI mod-
els reduces both time and resource expenditures by obviating the need for extensive experimental testing, which can 
otherwise delay construction activities.
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1 Introduction
Historically, concrete has been the most prevalent build-
ing material globally (Rob & Noel, 2003). Its extensive 
application in construction projects around the world 
has cemented its status as a reliable and essential compo-
nent of human infrastructure. Since the era of the Roman 
Empire, concrete has played a crucial role in the develop-
ment and enhancement of various cultures. The "magic" 
of concrete lies not only in its transformative properties 
from a fluid to a solid state but also in its affordability, 

wide availability, malleability, plasticity, adaptability, high 
compressive strength, stiffness, and durability (Falliano 
et al., 2018; Rahmat & Mousavi, 2012; Rob & Noel, 2003; 
Seung-Chang 2003). Researchers continue to explore 
this specialized field of concrete engineering with enthu-
siasm, revealing promising prospects for innovative 
materials such as reactive powder concrete. The com-
pressive strength of concrete typically ranges from 200 to 
800 MPa (Falliano et al., 2018; Rahmat & Mousavi, 2012; 
Seung-Chang 2003), underscoring its versatility and 
potential for future advancements.

It is standard practice to obtain a sufficiently large sample 
of a concrete mixture to infer conclusions about the entire 
batch. According to references (Gagg, 2014; Rana et  al., 
2022; Shi et al., 2015), concrete testing at day 7 is crucial 
for assessing early-age strength, although concrete reaches 
its full strength at 28 days, necessitating a similar duration 
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for sample examination. The 28-day test results serve as 
a basis for predicting the compressive strength of con-
crete over time. These procedures align with established 
design standards, yet these design standards may prove 
inadequate when dealing with concrete compositions that 
extend beyond conventional cement, aggregate, and water. 
The complexity of calculating the compressive strength of a 
concrete mix increases when alternative components such 
as pozzolans and admixtures are introduced, especially in 
high-strength concrete formulations (Ashish & Verma, 
2019; Danish & Ganesh, 2021; EFNARC, 2002; Esmaeilkha-
nian et al., 2014; Surya et al., 2020). Factors like the influ-
ence of admixtures and temperature can significantly 
impact compressive strength outcomes. In such cases, 
empirical relationships suggested by standards often fail to 
capture the full complexity, necessitating the development 
of reliable models to promptly assess concrete strength at 
various ages, crucial for meeting urgent project deadlines 
that cannot wait for traditional 28-day test results. The time 
saved from waiting for test outcomes translates into tangi-
ble economic benefits, given the productivity-driven nature 
of construction processes. Therefore, exploring alternative 
approaches becomes imperative. There remains consider-
able scope for debate and exploration regarding the efficacy 
of these non-traditional methodologies.

There has been considerable interest in the applica-
tion of artificial neural networks (ANNs) for predicting 
concrete compressive strength in recent years (Bayer 
et  al., 2019; Kandiri et  al., 2020). Various studies have 
explored hybrid models such as fuzzy logic (FL), genetic 
programming (GP), and ANN to forecast the influence 
of ground granulated blast furnace slag on concrete 
strength over time (Golafshani et  al., 2015). The cas-
cade correlation type of ANN has enabled rapid learn-
ing albeit with moderate accuracy, effectively capturing 
the nonlinear patterns inherent in concrete proper-
ties (Gesoǧlu et  al., 2010; Öztaş et  al., 2006; Siddique 
et al., 2011). This capability is particularly advantageous 
for problems like compressive strength measurement, 
offering savings in time and cost. The combination of 
artificial neural networks with meta-heuristic algo-
rithms has shown promising results in addressing com-
plex challenges in structural engineering. For instance, 
hybrid multilayer perceptron (HMP) networks have 
been beneficial for determining concrete compressive 
strength in scenarios such as deep beams connected 

to shear walls (Behnood & Golafshani, 2018; Behnood 
et  al., 2017; Chakravarthy et  al., 2023; Kovačević, M., 
Lozančić, S., Nyarko, E.K., Hadzima-nyarko & M., 
2021; Siddique et  al., 2011). Artificial ANNs and evo-
lutionary search methods like genetic algorithms (GAs) 
are integrated in the context of Evolutionary Artificial 
Neural Networks (EANNs), as elucidated in references 
(Behnood et al., 2017; Chakravarthy et al., 2023). Refer-
ence (Kovačević, M., Lozančić, S., Nyarko, E.K., Had-
zima-nyarko & M., 2021) lays out the framework for 
EANNs. These networks have proven highly efficacious 
in detecting structural defects and predicting compres-
sive strength in concrete (Aiyer et al., 2014; Golafshani 
et al., 2020a; Kovačević, M., Lozančić, S., Nyarko, E.K., 
Hadzima-nyarko & M., 2021). Consequently, EANNs 
are being investigated as a potentially cost-effective 
alternative to both expensive mathematical models and 
destructive testing methods for accurately estimating 
concrete compressive strength.

2  Methodology
This review focuses on exploring machine learning mod-
els and their application to predicting the compressive 
strength of self-compacting concrete. To achieve this 
objective, a comprehensive literature review was con-
ducted utilizing various scholarly databases and journals 
such as Scholarly Journals, Elsevier, Springers, SCOPUS, 
the Web of Science, Turkish Journal of Engineering, 
IEEE, and Science Direct. These sources were selected 
based on their relevance and contribution to the research 
topic. A total of 81 relevant sources were identified and 
analyzed. Figure  1 illustrates the research methodology 
adopted in this study, outlining the systematic approach 
followed in sourcing and reviewing literature.

A total of 80 articles sourced from academic jour-
nals constituted a significant portion of the scholarly 
references analyzed in this review. In addition to these 
articles, the EFNARC guidelines and specifications for 
self-compacting concrete were also utilized, bringing 
the total number of academic sources to 81. This review 
employs modern construction technology to system-
atically evaluate the compressive strength of self-com-
pacting concrete through the application of machine 
learning models.

Review of relevant 
academic manuscripts 

Evaluation of 
manuscripts

Screening the 
manuscripts

Fig. 1 Flow chart of the approach used in obtaining relevant articles for the research
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3  Results and discussions
3.1  Predicting concrete compressive and flexural strength
There are numerous techniques for predicting compres-
sive strength as adopted by researchers across the world.

3.1.1  Empirical methods
In an effort to faithfully represent experimental pro-
cedures within a specified context, empirical method-
ologies have been developed. The significance of these 
methodologies lies in their ability to quantify the con-
tribution of each component to the final outcome. The 
established relationships must align with experimen-
tal data, necessitating comprehensive empirical analy-
sis. In the context of forecasting compressive strength, 
many empirical models endeavor to correlate strength 
with the water-cement ratio, despite its typically adverse 
impact on predicted strength. Alternatively, some mod-
els incorporate existing compressive strength data and 
employ empirically derived coefficients to establish a link 
between available and required information (Danish & 
Ganesh, 2021; Sonebi 2004).

3.1.2  Computational modelling
Complex equations in thermodynamics serve as the 
fundamental basis for finite element analysis, a compu-
tational modeling technique widely employed in engi-
neering and materials science. This approach crucially 
depends on accurate representations of concrete micro-
structures. To effectively simulate processes such as 
hydration across various particle sizes within cement 
using pixel-based computer simulations, it is imperative 
to randomly distribute cement within a unit cell space. 
Additionally, empirical encoding of these processes can 
be pursued following adjustments based on experimental 
data (Danish & Ganesh, 2021; Jovic et  al., 2019; Sonebi 
2004).

3.1.3  Mechanical modeling
In mechanical models, parameters are commonly con-
ceptualized using a spring-and-dashpot structure. In this 
analogy, the cement matrix corresponds to the spring, 
while the temporal factor (age at the time of testing) 
represents the dashpot. This theoretical framework is 
applied to predict the compression strength of concrete. 
However, when this model is tested against experimen-
tal data, its predictive accuracy declines. Specifically, 
the dashpot component notably influences compressive 
strength, particularly at early ages (Danish & Ganesh, 
2021; Jovic et al., 2019; Sonebi 2004).

3.1.4  Statistical methods
To ensure precise delineation of interrelationships among 
variables, statistical methodologies leverage empirical 

data and employ mathematical formulations. In the 
realm of statistics, multilinear regression is by far the 
most used approach. Although statistical approaches 
are intuitive and simple to implement, their data-heavy 
nature might be a hindrance in some situations. Also, 
their effectiveness varies with the mathematical func-
tion used to fit the data, making them less reliable than 
alternative approaches (Danish & Ganesh, 2021; Günal & 
Mehdi, 2023; Jovic et al., 2019; Sonebi 2004).

3.1.5  Regression analysis
Regression analysis is widely acknowledged as an essen-
tial component of robust statistical modeling strate-
gies. Despite its utility in computing coefficients that 
quantify efficiency gains (Behnood & Golafshani, 2020; 
Madani et  al., 2020; Zhou et  al., 2016), the approach is 
often intricate and challenging to follow (Behnood & 
Golafshani, 2020; Madani et al., 2020; Zhou et al., 2016). 
Notwithstanding these complexities, establishing con-
fidence intervals for predictions necessitates rigorous 
mathematical underpinnings. Correlation analysis fur-
ther elucidates how key variables influence the final out-
come.  R2, sometimes termed the correlation coefficient, 
is a metric used to compare the effectiveness of different 
regression equations.  R2 measures how well a model can 
make predictions. It’s a metric for assessing the model’s 
ability to account for differences in output that result 
from differences in input values. A value of 0 indicates 
that the regression model fails to interpret any variance 
in Y, whereas a value of 1 indicates that all points are on 
the regression line. Moreover, some findings from slump 
tests and concrete density were presented to complement 
the mix proportions of constituent materials, aiding in 
the estimation of compressive strength in high-perfor-
mance concrete  (Behnood & Golafshani, 2020; Madani 
et al., 2020; Zhou et al., 2016).

The review aimed to enhance the accuracy of test 
results across different age groups to better reflect the 
progression from weakness to strength. The final multi-
variable power equation was refined by incorporating 
additional independent variables, achieving a correla-
tion coefficient of 99.99%. Furthermore, significant cor-
relations between predicted compressive strength and 
experimental data were identified, as documented in the 
literature (Chiew et al., 2017). Standardization of model 
inputs using a fixed matrix formula was implemented to 
optimize the formulation of concrete mixtures. Regres-
sion methods have traditionally been favored due to their 
simplicity and efficiency in modeling, particularly in sce-
narios where non-linear relationships between reactants 
and products are minimal, such as in concrete applica-
tions. This effectiveness is highlighted in previous stud-
ies (Sergio & Mauro, 1997; Seung-Chang, 2003), which 
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compared regression methods with artificial neural net-
works and concluded that the former offer superior pre-
dictive capabilities.

3.1.6  Artificial intelligence
According to Webster’s New World College Diction-
ary, artificial intelligence (AI) is defined as "the ability of 
machines or programs to function in ways that simulate 
human intelligence in tasks such as reasoning and learn-
ing." This definition prompts an inquiry into the types 
of problems that might necessitate a computational 
approach that emulates human cognitive processes. 
Examples of such problems include knowledge-based 
inference with partial or unclear data, various forms of 
perception and learning, as well as tasks involving con-
trol, prediction, classification, and optimization (Erzin, 
2007; Syed et  al., 2023). These challenges provide con-
texts in civil engineering where AI techniques can be 
employed to replicate phenomena whose underlying 
processes are not fully understood. Neural networks and 
genetic algorithms represent two distinct yet conceptu-
ally similar AI techniques. Neural networks are designed 
to mimic the brain’s cognitive processes, whereas genetic 
algorithms are inspired by the principles of natural selec-
tion and ’mutation’ to enhance performance. Addition-
ally, Adaptive Network-based Fuzzy Inference Systems 
(ANFIS) and fuzzy systems are two further examples of 
modern artificial intelligence. ANFIS integrates fuzzy 
logic and neural networks to leverage the strengths of 
both approaches, utilizing linguistic interpretations 
of variables and adaptive learning processes to gener-
ate effective models (Erzin, 2007; Syed et al., 2023). The 
effectiveness of AI-based methods lies in their ability to 
learn from data and produce relevant models for a broad 
array of applications. However, achieving results that 
approximate real-world conditions often necessitates a 
data set that is both extensive and high-quality.

3.2  Fuzzy logic
Lotfi Zadeh is credited with pioneering the field of fuzzy 
logic (FL), as documented in seminal works (Duan et al., 
2013; Sergio & Mauro, 1997; Silva et al., 2021; Syed et al., 
2023). His contributions, including the development of 
fuzzy inference systems such as Mamdani, Takagi, and 
Sugeno, fundamentally transformed methods for knowl-
edge representation.

Unlike the binary nature of traditional Boolean logic, 
which strictly adheres to values of "completely false" (0) 
or "completely true" (1), fuzzy logic introduces a nuanced 
approach based on degrees of membership (Duan et al., 
2013; Erzin, 2007; Sergio & Mauro, 1997; Silva et  al., 
2021; Syed et al., 2023). In contrast to the rigid bounda-
ries of Boolean logic, where information is represented in 

black-and-white terms, fuzzy logic acknowledges shades 
of gray and accommodates the inherent uncertainties in 
real-world data. An individual may, for instance, possess 
data on the heights of 10 persons in a dataset, catego-
rized into groups: ’tall’ individuals ranging from 1.75  m 
to 2.20  m and ’short’ individuals ranging from 1.50  m 
to 1.74  m. In such scenarios, the use of crisp sets may 
appear inadequate. Scholars (Duan et  al., 2013; Erzin, 
2007; Sergio & Mauro, 1997; Syed et al., 2023) have criti-
cized this dichotomous approach as “overly simplistic” 
and often “out of touch with reality.” Fuzzy sets offer a 
more precise and robust method to represent such data. 
According to Sergio and Mauro (1997); Syed et al., 2023; 
Erzin, 2007; Duan et al., 2013), a fuzzy set is defined as 
a class of objects with degrees of membership that form 
a continuum. Here, a membership function assigns each 
item in the set a score between one and zero, reflecting 
its degree of membership in the set.

Modelling non-linear systems and designing sophis-
ticated controllers are two pivotal applications of fuzzy 
logic control (FLC), a robust mathematical framework. 
In concrete, each constituent component serves a dis-
tinct purpose, individually and collectively. This interplay 
leads to nonlinearity in the relationship between constit-
uent quantities and resulting compressive strength. FLC 
mitigates this nonlinearity by its application in scenarios 
where the system’s complexity precludes the use of tra-
ditional modeling approaches (Duan et  al., 2013; Erzin, 
2007; Sergio & Mauro, 1997; Syed et al., 2023).

4  Neural Network
The transformative evolution of neural networks in prob-
lem-solving approaches is currently underway. Since the 
inception of artificial intelligence in the 1950s, neural net-
works have spearheaded endeavors to augment robots’ 
functionalities beyond physical labor to intellectual 
tasks. The term "artificial neural network" encompasses 
various conceptualizations, analogous to biological brain 
networks. Here, axons represent outputs and synapses 
signify weights. In artificial neural networks, the ubiq-
uitous neuron is also referred to as a "processing ele-
ment." According to Silva et al. (2021), Duan et al. (2013), 
Alade et al. (2018), and Iqbal et al. (2020), artificial neu-
ral networks are succinctly as a class of massively parallel 
designs that address complex issues by coordinating the 
efforts of several, relatively uncomplicated processors (or 
"artificial neurons"). A perceptron exemplifies a simple 
neural network with a direct input-to-output mapping. In 
contrast, more intricate neural networks feature multiple 
layers and employ diverse activation functions. Classifi-
cation of artificial neural networks sheds light on diverse 
structures and functionalities.
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Damage detection, structural systems identification, 
material behavior modelling, structural settlement anal-
ysis, control and optimization strategies, groundwater 
monitoring, and determination of concrete mix pro-
portions are just some of the many areas where ANNs 
have been put to use (Saridemir, 2010). In a study ref-
erenced by Gandomi and Roke (2015), ANNs were 
explored within prediction models alongside fuzzy logic 
to forecast the compressive strength of self-compacting 
concrete. Their ANN model, featuring a hidden layer 
comprising 6 neurons, underwent 500 iterations. Com-
parable success rates were achieved, although discrep-
ancies in measurement accuracy persisted. Notably, the 
ANN model exhibited superior performance with an  R2 
value of 0.9767 compared to the fuzzy logic approach. 
Subsequent refinement involving an ANN configuration 
with eleven neurons in a single hidden layer, and later 
with a two-hidden-layer setup (nine neurons in the first 
layer and eight in the second), resulted in further accu-
racy improvements, achieving the lowest absolute per-
centage error (= 0.000515) (Khan et al., 2021). Reference 
(Faradonbeh et al., 2018) also considered the advantages 
of a multi-layer architecture. Material considerations 
are integral to this model, evident in the utilization of 
chemical analysis data for fly ash, gradient, and sand 
compositions. The model achieved  R2 value of 0.9557 
for compressive strength and 0.9119 for flexural tensile 
strength, indicating that the prediction model performed 
well. The influence of water-to-binder ratio on compres-
sive strength was also analyzed, revealing a decrease as 
the ratio increased, thereby influencing the compres-
sive strength forecasting model (Faradonbeh et al., 2018; 
Khandelwal et al., 2017). Their model demonstrated high 
accuracy with an  R2 of 0.9944 in reproducing experimen-
tal outcomes and 0.9767 for predicting testing samples. 
Comparative analyses of concrete strength prediction 
methodologies, including artificial neural network (ANN) 
approaches (Ferreira, 2002, 2006; Gholampour et  al., 
2017), highlight the ANN’s superior performance over 
multiple linear regression models, especially for low and 
medium strength concretes.

4.1  Genetic programming
In order to evaluate a computer’s performance executing 
a specific task, genetic programmers employ a framework 
called Gene Expression Programming (GEP), which uti-
lizes a set of instructions and a fitness evaluation process. 
GEP operates akin to a subtype of genetic algorithms 
(GA), where each node represents a segment of code exe-
cuted on a computer. This methodology aims to enhance 
program efficiency by strategically relocating its com-
ponents to optimal physical positions based on prede-
fined conditions that must be met. Previous studies have 

identified three key genetic manipulations (Faradonbeh 
et al., 2018; Ferreira, 2002, 2006; Khandelwal et al., 2017).

Some critical adjustment factors are elucidated in 
articles (Faradonbeh et  al., 2018; Ferreira, 2002, 2006; 
Khandelwal et al., 2017). The genetic programming (GP) 
building process begins with an initial population size 
of 49 without cement/FA substitution and 27 with a 
cement/FA substitution rate set at 0.15. he curing period 
serves to further categorize each dataset within the GP 
model, mirroring its role in the ANN model. Specifically 
targeting a 28-day compressive strength outcome, the 
GP model incorporates four primary input parameters: 
water, cement, coarse aggregate, and fine aggregate.

Reference (Ferreira, 2002, 2006; Khandelwal et  al., 
2017) presented regression equations for predicting the 
in situ concrete compressive strength. Their models were 
derived from comprehensive datasets encompassing 
ready-mixed concrete mixture compositions and corre-
sponding on-site compressive strength assessments. The 
study utilized 1,442 compressive strength tests across 68 
distinct concrete mix designs, characterized by specified 
compressive strengths ranging from 18 to 27 MPa, water 
to cement ratios varying between 0.39 and 0.62, and 
aggregate maximum sizes spanning 25 to 100 mm. Addi-
tionally, references (Ferreira, 2002, 2006; Gholampour 
et  al., 2017) tested a proposed model for predicting the 
compressive strength of concrete using in situ data.

4.2  Parameters in machine learning models
Hyperparameters in machine learning are external set-
tings that guide decision-making and influence the learn-
ing process of algorithms. Machine learning engineers 
must configure these hyperparameters before training 
the algorithm (Asteris et  al., 2021; Mehmannavaz et  al., 
2014; Neira et  al., 2020). Hyperparameters encompass 
various elements such as the learning rate, the number 
of clusters in a clustering algorithm, and the number of 
branches in a regression tree. During the training pro-
cess, the algorithm adjusts its internal parameters—such 
as weights and biases—based on the hyperparameters 
and the training data. These internal parameters are 
refined through training to achieve optimal model per-
formance. Ideally, the final model parameters should fit 
the data set precisely without underfitting or overfitting 
(Asteris et  al., 2021; Mehmannavaz et  al., 2014; Neira 
et al., 2020).

A hyperparameter in the context of machine learn-
ing refers to a parameter that governs the learning pro-
cess itself, distinct from the parameters whose values 
are determined through training, typically node weights. 
These hyperparameters fall into two main categories: 
model hyper parameters, which pertain to the model 
selection task and cannot be inferred during machine 
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learning, and algorithm hyper parameters, which impact 
the speed and caliber of learning but theoretically have 
no effect on the model’s performance. The topology 
and size of a neural network are two instances of model 
hyperparameters (Asteris et  al., 2021; Mehmannavaz 
et al., 2014; Neira et al., 2020).

Hyperparameters of an algorithm include learning 
rate, batch size, and mini-batch size. A mini-batch size 
denotes a smaller sample set, whereas batch size can refer 
to the entire data sample. While some straightforward 
methods (like ordinary least squares regression) require 
none, other model training procedures require different 
hyperparameters. The training algorithm extracts param-
eters from the data and applies them to these hyperpa-
rameters. The selection of a model’s hyperparameters 
can affect how long it takes to train and test. Typically, 
a hyperparameter is of an integer or continuous form, 
leading to challenges in mixed-type optimization. Some 
hyperparameters may only exist contingent upon the 
values of others, for example, in a neural network, the 
number of layers can affect the size of each hidden layer 
(Asteris et  al., 2021; Mehmannavaz et  al., 2014; Neira 
et al., 2020).

4.3  Untrainable parameters
Hyperparameters play a crucial role in enhancing a 
model’s capacity, yet their aggressive tuning may lead 
to suboptimal outcomes by driving the loss function 
towards undesired minima. This phenomenon, known as 
overfitting, occurs when the model begins to excessively 
capture noise in the data rather than faithfully represent-
ing its underlying structure. Consequently, the learning 
process of these hyperparameters from the training set 
may be hindered. For example, consider the degree of a 
polynomial equation used in a regression model. If this 
degree were treated as a trainable parameter, the model 
could potentially adjust it to perfectly fit the training 
data, thereby minimizing training error. However, such 
an approach often sacrifices generalization performance, 
as the model becomes overly specialized to the training 
dataset and fails to generalize well to unseen data.

4.4  Tuning in ML
Only a few hyperparameters account for the perfor-
mance variation of machine learning models. The extent 
to which adjusting an algorithm, hyperparameter, or 
combination thereof enhances performance is referred 
to as its tuning capability. Among the various hyperpa-
rameters, the most critical for machine learning models 
are the learning rate and network. In contrast, empiri-
cal evidence suggests that batch size and momentum 
exert negligible influence on model performance (Ast-
eris et  al., 2021; Mehmannavaz et  al., 2014; Neira et  al., 

2020). Research has shown that mini-batch sizes ranging 
from 2 to 32 generally yield optimal results, despite occa-
sional arguments in favor of larger mini-batch sizes in the 
thousands.

4.5  Robustness of ML models
Learning processes inherently exhibit stochasticity, 
implying that performance evaluations based on empiri-
cal hyperparameters may not faithfully represent true 
performance. Without considerable simplification and 
robustness, methods that are not resistant to straightfor-
ward modifications in hyper parameters, random seeds, 
or even various implementations of the same algorithm, 
cannot be incorporated into mission-critical control sys-
tems. In particular, algorithms for reinforcement learn-
ing must have their performance evaluated across a large 
number of random seeds and their sensitivity to hyper 
parameter selection evaluated. Because of the high vari-
ance, evaluating these algorithms with a limited number 
of random seeds inadequately captures their performance 
dynamics (Asteris et al., 2021; Mehmannavaz et al., 2014; 
Neira et al., 2020). Certain reinforcement learning tech-
niques like Deep Deterministic Policy Gradient (DDPG) 
are more responsive to selections of hyper parameters 
than others.

4.6  Optimization
Through the use of hyperparameter optimization, a 
tuple of hyperparameters is found to produce an opti-
mal model on test data that minimizes a predetermined 
loss function. The objective function computes and 
returns the associated loss upon receiving the set of 
hyperparameters.

4.7  Reproduction in ML models
In addition to fine-tuning hyperparameters, machine 
learning entails reproducibility checks, parameter and 
result organization, and storage. Without robust infra-
structure, research code often undergoes frequent modi-
fications, risking essential aspects such as reproducibility 
and record-keeping. Online collaboration platforms for 
machine learning facilitate seamless exchange, organi-
zation, and communication of experiments, data, and 
algorithms among scientists. Reproducing deep learning 
models, in particular, presents notable challenges (Khan, 
2012).

4.8  Creating machine learning models
Machine learning models are developed using various 
approaches that leverage labeled, unlabeled, or a combi-
nation of both types of data (Khan, 2012; Onyelowe et al., 
2021). There are four main machine learning algorithms 
available:
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1. Supervised learning: This method involves training 
algorithms on labeled data, where each data point 
is associated with a known label. The labels serve 
as a guide for the algorithm to learn to classify new 
data accurately. Supervised learning ensures that the 
resulting model aligns with the intended classifica-
tion objectives set by researchers.

2. Unsupervised learning: Algorithms under unsuper-
vised learning operate on unlabeled data. Without 
predefined labels, these algorithms autonomously 
identify patterns and structures within the data. This 
approach is particularly useful for researchers seek-
ing to uncover hidden patterns and structures in 
datasets.

3. Semi-supervised learning: This technique trains an 
algorithm by combining labeled and unlabeled data. 
Initially, the algorithm is trained on a small set of 
labeled data to establish a foundational understand-
ing. Subsequently, it utilizes a larger pool of unla-
beled data to further refine its learning and improve 
model performance.

4. Reinforcement learning: In reinforcement learning, 
algorithms learn through interaction with an envi-
ronment where they receive feedback in the form of 
rewards or penalties. The goal is to maximize cumu-
lative rewards over time by selecting actions that lead 
to positive outcomes while avoiding negative ones. 
Reinforcement learning can guide unsupervised 
machine learning by providing incentives for discov-
ering beneficial patterns.

4.9  Types of machine learning models
In the realm of machine learning, problems can gener-
ally be categorized into two main types: classification 
and prediction. These categories represent fundamental 
challenges addressed by machine learning algorithms. 
Depending on the nature of the problem, algorithms are 
tailored to develop models that are either classifiers or 
predictors (Prasad et al., 2019). Notably, some algorithms 
can be trained to produce models suitable for both 
regression (used for predictive modeling) and classifica-
tion tasks. A variety of well-established algorithms are 
employed for constructing regression and classification 
models, as listed below:

Classification Models:

1. Support Vector Machines.
2. Random Forests.
3. Decision Trees.
4. Logistic Regression.
5. Naive Bayes.
6. K-Nearest Neighbor (KNN).

Regression Models:

1. K-Nearest Neighbor (KNN) Regression.
2. Decision Trees.
3. Random Forests.
4. Neural Network Regression.
5. Linear Regression.

4.10  Overfitting in machine learning (ML)
In machine learning (ML), overfitting denotes a condi-
tion where a model exhibits diminished performance on 
new, unseen data due to excessive alignment with the 
training data from which it was derived. The primary 
objective is to enhance the model’s ability to generalize 
to novel data instances, thereby ensuring its applicabil-
ity beyond the specific dataset used for training (Dias & 
Pooliyadda, 2001; Nguyen et al., 2019). Overfitting mani-
fests commonly in tasks such as image recognition and 
natural language processing. Upon mitigating overfitting, 
these models can achieve improved precision in predict-
ing new data and provide dependable forecasts for practi-
cal applications. Overfitting arises due to several factors: 
insufficient data, inclusion of extraneous information in 
the dataset, prolonged training on a specific dataset, and 
excessive model complexity. In the context of ML, over-
fitting describes a scenario where the model becomes 
overly intricate and closely adheres to idiosyncrasies 
within the training data. Mitigating overfitting aims pri-
marily at enhancing the model’s generalization capability 
to handle unseen data effectively. Techniques for identi-
fying and addressing overfitting include monitoring all 
loss metrics, scrutinizing the learning curve, integrating 
regularization techniques, conducting cross-validation, 
and visually inspecting predictions to verify alignment 
with the training data.

Various strategies are available to prevent overfitting in 
machine learning, including dropout, feature selection, 
early stopping, cross-validation, regularization (such as 
L1 and L2), and data augmentation. When a machine 
learning model becomes excessively attuned to the 
nuances of the training data, impeding its ability to gen-
eralize effectively to new data instances, it is said to suffer 
from overfitting. This phenomenon is particularly notice-
able in neural networks, where the model assigns undue 
significance to incidental details in the training dataset. 
Addressing overfitting is crucial for ensuring the model’s 
accuracy in making predictions about new data, distin-
guishing between essential patterns and irrelevant noise.

4.11  Causes of overfitting
The training dataset utilized by the model exhibits 
considerable noise and imperfections. Moreover, the 
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dataset’s size is insufficient; utilizing only a fraction of 
the available data leads to an incomplete representation 
of the entire dataset. Consequently, when evaluating 
decision trees for overfitting through validation metrics 
such as accuracy and loss, one can discern instances of 
overfitting. Overfitting causes these metrics to typically 
ascend until reaching a peak, after which they commence 
a decline or reach a plateau. Furthermore, as the model 
strives to achieve an optimal fit, these metrics stabilize 
or decrease. Addressing this issue necessitates striking a 
delicate balance between model complexity and the vol-
ume of available training data.

4.12  Identifying overfitting in ML models
Overfitting can be identified through various indicators, 
as outlined below:

1. Monitoring all losses is crucial; notable is when 
the validation loss increases while the training loss 
decreases.

2. Close attention should be paid to the machine learn-
ing curve, as any noticeable divergence between the 
training and validation curves suggests overfitting. 
Incorporating a regularization term into the loss 
function is essential to mitigate overfitting.

3. Visual inspection of the model’s predictions is indis-
pensable for assessing whether the model excessively 
conforms to the training data, which serves as a 
direct indicator of overfitting.

4.13  Preventing ML from overfitting
Several methods are available to mitigate overfitting in 
machine learning models, as outlined below:

1. Regularization techniques such as L1 and L2 are 
employed by augmenting the loss function with pen-
alty terms. These techniques discourage the model 
from excessively tailoring itself to the training data, 
thereby mitigating overfitting.

2. Cross-validation serves as a pivotal method to pre-
vent overfitting. By employing techniques such as 

early stopping, training halts just before the onset of 
overfitting, thereby ensuring that the model general-
izes well to unseen data.

3. Another effective approach is data augmentation, 
which enriches the training dataset by generating 
synthetic data from existing samples. By exposing the 
model to a diverse array of data instances, data aug-
mentation enhances its robustness against overfit-
ting.

4. Feature selection reduces model complexity by 
excluding irrelevant or noisy features, thereby pre-
venting overfitting to noisy data.

5. The dropout technique forces the model to learn 
more robust and generalizable representations, thus 
preventing data overfitting.

Implementing these techniques collectively diminishes 
the overfitting problem, resulting in the development of 
more precise and reliable machine learning models.

4.14  Fuzzy logic approach
The four main components of each fuzzy system are 
Fuzzy rule base, Fuzzification, Defuzzification and Infer-
ence Engine (Golafshani et al., 2020b). Figure 2 presents a 
general fuzzy logic model architecture.

Fuzzification is the first step in which fuzzy inputs are 
assessed and transformed into one or more fuzzy sets. 
Two primary types of fuzzification commonly employed 
are Gaussian and trapezoidal. Within the framework 
of fuzzy logic, any element may belong to multiple sub-
sets of the universal set. Fundamentally, fuzzy rules are 
structured as linguistic IF–THEN statements, employ-
ing the general format "IF A THEN B," where A and B 
are schemes incorporating linguistic variables. Here, A 
denotes the condition (premise), while B signifies the 
consequence (rule significance). In order to account for 
ambiguity and inaccuracy, linguistic variables and fuzzy 
IF–THEN rules are used. Depending on how unique the 
challenges are, two different types of rule techniques are 
used. In a fuzzy inference engine, the fuzzy rule base is 
incorporated to analyze fuzzy outputs (Ben, Al-Asri, 
Zaher, Hafidi, Burtschell, 2022; Golafshani et al., 2020b). 
Subsequently, the Defuzzification process converts these 

Fig. 2 Fuzzy Logic Architecture
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outputs from the fuzzy inference engine into precise 
numerical values and crisp outputs.

4.15  Evaluating the performance of the GP model:
In assessing the adequacy of a model, it is recommended 
that the ratio of the dataset size to the total number of 
input features be at least 3, with a preference for a ratio 
of 5. Validation of the GEP model involves employing 
various statistical computations across training, testing, 
and validation datasets. Evaluation focuses on determin-
ing the effectiveness of model training and establishing 
significant associations between the model and experi-
mental data, while minimizing errors. Key parameters 
such as RMSE, MAE, and RSE are computed during the 
testing phase (Ben, Al-Asri, Zaher, Hafidi, Burtschell, 
2022; Golafshani et  al., 2020b). Additionally, employing 
statistical techniques allows for external validation of the 
GEP model. A crucial criterion is that one of the regres-
sion lines (k or k’) with a slope passing through the origin 
should closely approximate 1. The same dataset is uti-
lized in the linear regression model of this review, which 
calculates the SCC represented as fc. It is important to 
remember that the robustness and generalizability of the 
resulting model depend on the fitting parameters. The fit-
ting parameters for the GEP algorithm are determined 

using test runs or experimental results. contingent upon 
the population size (number of chromosomes), which 
dictates the duration of program execution. Population 
size levels are chosen based on the quantity and complex-
ity of the prediction model. In this study, the algorithm 
used two variables—head size and number of genes—to 
define model architecture (Babatunde et al., 2022; Mog-
araju, 2023; Shariati et  al., 2021). The head size, repre-
senting the size of the model’s "head," determines the 
complexity of each term within the model. Meanwhile, 
the number of sub-ETs (elementary trees), basic data 
structures comprising the model, is determined by the 
number of genes. Five alternative head sizes—8, 9, 10, 12, 
and 14—are considered in this review, each associated 
with either three or four genes (Mogaraju, 2023; Nguyen 
et al., 2019). The GEP algorithm is used to derive the pre-
cise parameters for each model. The flow chart for the GP 
is shown Fig. 3.

4.16  Model evaluation criteria
One commonly used performance indicator is the cor-
relation coefficient (R). However, R is insensitive to the 
division and multiplication of output values by con-
stants, hence it cannot be used as a primary indicator of 
how well the model predicts. Consequently, this study 
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EXPRESSION TRESS

PERFORMING EXPRESSION 

ASSESSING THE FITNESS

TERMINATE/ITERATE

STOP

PRODUCING CHROMOSOMES OF FURTHER 
GENERATION

MODIFYING THE GENES

GENES REPLICATION

CHOOSING THE BEST TREES

TERMINATE

ITERATE

Fig. 3 Genetic Algorithm Flow Chart Diagram
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also assesses additional metrics including mean absolute 
error (MAE), relative squared error (RSE), and relative 
root mean square error (RRMSE) (Aci et al., 2018; Kiani 
et al., 2016; Nehdi et al., 2001; Othman, 2023; Tiza et al., 
2023). To evaluate the model’s performance in regard to 
both the RRMSE and R, Gandomi and Roke proposed 
a performance index (Golafshani et  al., 2020b). Equa-
tions  1–7 provide the mathematical formulas for these 
error functions.

where Fc is the compressive strength, β1 to βn denote the 
regression coefficients, α is the regression constant, £1 is 
the error term.

4.17  Experimental setup of artificial neural network
The experimental setup focuses on evaluating the com-
pressive and flexural strength of mixed design specimens. 

(1)
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+βnYn) + £1
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Samples undergo casting and subsequent testing at inter-
vals of 7, 14, 21, and 28  days. Compressive strength is 
determined using cube samples, and flexural strength is 
determined using beam specimens. After 28 days of cast-
ing, cube samples are weighed to determine their den-
sity (Algaifi et  al., 2021; Chou 2013; Imam et  al., 2021; 
Ly et al., 2021). The flow chart for the ANN is shown in 
Fig. 4.

References [72, 73, 74, 75] evaluate the feasibility of 
MARS and GEP models in predicting the 28-day com-
pressive strength of SCC. In their research, values of 
compressive strength were estimated using multivariate 
adaptive regression spline approach [76, 77, 78, 79, 80, 
81]. The findings indicated high ability of both the GEP 
and MARS models in predicting SCC strength Figs. 5, 6 
and 7 and Table 1.   

4.18  Gaps in knowledge

1. For AI algorithms to efficiently identify patterns and 
generate precise predictions, vast volumes of high-
quality data are needed. However, due to variables 
including variations in material composition, cur-
ing conditions, and testing methodologies, it might 
be difficult to gather enough information about self-
compacting concrete (SCC) qualities, particularly 
compressive strength.

2. Developing precise prediction models requires iden-
tifying the most pertinent features or input vari-
ables that affect the compressive strength of SCC. 
To find out which elements have the most effects on 
strength, researchers may need to investigate differ-
ent concrete mix designs, admixtures, curing times, 
and environmental conditions.

3. While AI methods like deep learning can provide 
strong prediction skills, model interpretability is 
sometimes sacrificed in the process. Understand-
ing how input features contribute to the anticipated 
compressive strength and learning about the under-
lying relationships in the data require striking a bal-
ance between interpretability and model complexity.

4. AI models that have been trained on historical data 
could find it difficult to generalize to novel situations 
or scenarios that greatly deviate from the training set. 
To make sure that prediction models can reliably han-
dle differences in material qualities, environmental 
conditions, and construction processes, researchers 
need to investigate methods including transfer learn-
ing, domain adaptation, and robust optimization.
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5. To evaluate AI models’ dependability and general-
izability, proper validation is essential. To properly 
assess the precision and resilience of their prediction 
models, researchers must use the right performance 
measures (such as mean absolute error, root mean 
square error) and validation strategies (such as hold-
out validation, cross-validation).

6. Measurement inaccuracy and other kinds of variability 
make predicting concrete strength fundamentally ques-
tionable. AI approaches that use uncertainty quantifica-
tion techniques, like ensemble learning or Bayesian neu-
ral networks, can produce more accurate forecasts and 
uncertainty estimations, which are necessary for engi-
neering applications to make well-informed decisions.

Y3

Y7

Y6

Y4

Y1

Y2

Y9

Y8

Y5

Output layer 
(Strength) 

Fig. 4 ANN Architecture

Fig. 5 GEP Models in Concrete Strength Prediction.  Source: Milad, B 
and Valiollah, A: Civil Engineering Journal, Vol. 4, No. 7, July 2018 

Fig. 6 Scatter Plot of Observed and Predicted Compressive Strength 
during the Training Phase of the GEP Model.  Source: Milad, B 
and Valiollah, A: Civil Engineering Journal, Vol. 4, No. 7, July 2018 
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5  Conclusions
From the findings of this review, it was observed that the 
application of artificial intelligence techniques in predict-
ing the compressive strength of self-compacting concrete 
yields approximate strength values closely aligned with 
experimental investigations. The research indicates that 
models achieving R2 > 0.8 demonstrate a significant cor-
relation between predicted values and experimental out-
comes in the dataset. The review further noted that across 
all evaluated techniques, R2 consistently exceeded 0.8 for 
28-day compressive strength, affirming the suitability of 
these models for accurate predictions. Particularly, the 
ANN model exhibited notable consistency when com-
pared to experimental results of concrete compressive 
strength, thereby establishing ANN as a robust predictive 
tool suitable for both in  situ and experimental predic-
tions. Consequently, it is recommended for formulating 

various civil engineering properties requiring predictive 
capabilities. Artificial intelligence models offer signifi-
cant time and resource savings by obviating the need for 
experimental tests, which can occasionally delay con-
struction projects. Reinforcement learning techniques 
like Deep Deterministic Policy Gradient (DDPG) are 
more responsive to selections of hyperparameters than 
others. Through hyperparameter optimization, a set of 
parameters can be identified that optimizes model per-
formance on test data, minimizing predefined loss func-
tions. Overfitting, a common issue in machine learning 
where models perform poorly on new data due to over-
adaptation to training data, can be mitigated through 
strategies such as cross-validation, data augmentation, 
dropout techniques, and careful feature selection.
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Fig. 7 Scatter Plot of Observed and Predicted Compressive Strength 
during the Testing Phase of the GEP Model.  Source: Milad, B 
and Valiollah, A: Civil Engineering Journal, Vol. 4, No. 7, July 2018 

Table 1 Parameters of optimized GEP models

Source: Milad, B and Valiollah, A: Civil Engineering Journal, Vol. 4, No. 7, July 2018 

Parameters Description of parameters Setting of parameters

P1 Function set  + , -, × , /, exp, power

P2 Mutation rate 0.138

P3 Inversion rate 0.546

P4 One point and two point 
recombination rate

0.277

P5 Gene recombination rate 0.277

P6 Gene transportation rate 0.277

P7 Maximum tree depth 6

P8 Number of gene 3

P9 Number of chromosomes 30
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