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Abstract 

Rainfall forecasting can play a significant role in the planning and management of water resource systems. This study 
employs a Markov chain model to examine the patterns, distributions and forecast of annual maximum rainfall (AMR) 
data collected at three selected stations in the Kurdistan Region of Iraq using 32 years of 1990 to 2021 rainfall data. A 
stochastic process is used to formulate three states (i.e., decrease—"d"; stability—"s"; and increase—"i") in a given year 
for estimating quantitatively the probability of making a transition to any other one of the three states in the follow-
ing year(s) and in the long run. In addition, the Markov model is also used to forecast the AMR data for the upcoming 
five years (i.e., 2022–2026). The results indicate that in the upcoming 5 years, the probability of the annual maximum 
rainfall becoming decreased is 44%, that becoming stable is 16%, and that becoming increased is 40%. Furthermore, 
it is shown that for the AMR data series, the probabilities will drop slowly from 0.433 to 0.409 in about 11 years, as indi-
cated by the average data of the three stations. This study reveals that the Markov model can be used as an appropri-
ate tool to forecast future rainfalls in such semi-arid areas as the Kurdistan Region of Iraq.
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1  Introduction
Rainfall Prediction is one of the most difficult research 
topics globally (Oswal, 2019), but it is extremely impor-
tant in water resource engineering for proper man-
agement of floods and droughts (Gao et  al., 2020). 
Modeling and predicting rainfall is crucial for generat-
ing data as well as for providing information, which can 
then be used in a variety of applications, such as water 
resource management, hydrology, and agriculture (He 
et  al., 2022). The prediction of rainfall and other cli-
mate conditions requires various models, depending on 
the time and spatial scales involved (Yusuf et  al., 2014). 

For analyzing, simulating and forecasting hydrological 
variables, a variety of models, methods and techniques 
are found in literature review, e.g., Autoregressive Inte-
grated Moving Average (ARIMA), Artificial Neural Net-
work (ANN), Nearest-Neighbors (NN), Fuzzy System, 
Numerical Weather Prediction model, and Holt’s method 
(Holt, 1957). These methods, models and techniques can 
be selected typically based on the goals of research, the 
accessibility of input data, the quality of models, and cer-
tain predefined assumptions (Makridakis et al., 1998).

To guarantee a high degree of accuracy, research-
ers have evaluated the properties and characteristics of 
different models, so as to determine whether a certain 
model is appropriate for application in a given real-world 
situation. As a result, model selection becomes one of 
the major factors that influence the precision of the pre-
diction data series. For example, Brath et al. (2002) used 
three models – ANN, ARIMA and NN – to enhance the 
prediction of the occurrence of floods caused by rainfall. 
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With six hours’ worth of rainfall data, it was found that 
ANN was the best at predicting rainfall. In a study by 
Kottegoda et al. (2004), a first-order Markov chain model 
successfully fitted the observed rainfall data in Italy; the 
model was built under the presumption that daily rain-
fall was dependent on the amount of rain that had fallen 
down the day before. Also using a Markov chain model, 
Barkotulla (2010) generated the daily rainfall occurrence 
based on transitional probability matrices; the model’s 
parameters were acquired from historical daily rainfall 
records from 1980 to 2009. The results revealed that the 
model could successfully generate rainfall data.

Moreover, Liu et  al. (2011) applied a Markov chain 
model to predict the daily rainfall series in 2004 based on 
the daily rainfall data collected in 2002 and 2003 in Tian-
jin, China. Because the predicted results met practical 
requirements, the model could be used as a weather gen-
erator to produce rainfall data for future periods. Chung 
et al. (2016) also used a Markov chain model for hourly 
rainfall data collected from 1985 to 2014 in Korea, find-
ing that the rainfall occurrence was successfully fitted 
with the results of the Markov chain model. In addition, 
Fadhil et al. (2016) developed a stochastic rainfall genera-
tor model based on a first-order Markov chain model, by 
employing the data of a rainfall time series collected from 
1976 to 2006 in Northwest Perak, Malaysia, with a two-
state model (i.e., for dry and wet conditions) taken into 
account. In a word, first-order Markov models are gen-
erally deemed to be satisfactory, so it is justifiable to use 
such models to produce future rainfall series under vari-
ous climate change scenarios.

Moreover, Gui and Shao (2017) and Zhou et al. (2017) 
applied certain Markov chain models to predict annual 
rainfall data series in Dangshan County and Shandong 
Province, China, respectively, finding that their proposed 
models had good prediction accuracy. Mahanta et  al. 
(2018) applied a Markov chain model to the daily rainfall 
data collected at two stations (Dhaka and Chittagong) in 
Bangladesh. Examination of the behavior of the then-cur-
rent daily rainfall data revealed that 56% of the days from 
May to October in Dhaka station are rainy, while 58% 
of the days in Chittagong are sunny. Malakoutian et  al. 
(2021) used the rainfall data in six meteorological regions 
of North Cyprus from 1975 to 2014 to predict each mete-
orological region’s yearly rainfall 5 years ahead. Three dif-
ferent models (i.e., Markov, ARIMA, and Holt-Winter) 
were adopted. The selected model for each region was 
then used to predict the rainfall for the five successive 
hydrologic years from 2014–2015 to 2018–2019.

Although most of the earlier rainfall forecasting stud-
ies have noted the effectiveness of the Markov model in 
forecasting rainfall, few studies have compared the out-
comes of the prediction of Markov probability matrixes 

using various rainfall states with the outcomes of Markov 
chain models for forecasting rainfall in future periods. 
To address the gaps in previous research, this study sets 
the followings goals: (1) To provide additional insights 
into the changes in rainfall patterns; (2) To calculate the 
length of time needed for finding the steady-state prob-
abilities in forecasting rains;  (3) To predict and forecast 
rainfall in future periods; (4) To show how to use the first-
order Markov chain model to create annual rainfall data 
for future times. This study makes the following research 
contributions: (1) A novel approach for creating predic-
tion models is proposed using different rainfall states 
based on the Markov model; (2) The ability of the Markov 
model to predict and generate time series data is proved. 
The methodology used in this study can be applied to 
other regions of Iraq as well as to other nations.

2 � Area and data of this study
Located in northern Iraq, and bordering Iran, Syria and 
Turkey, the Kurdistan Region comprises three main gov-
ernorates: Duhok, Erbil and Sulaymaniya (Danilovich, 
2016). With a Mediterranean climate (Hajani & Klari, 
2022), the Kurdistan Region has hot and dry summers, 
but its temperature is mild in winter, with a very attrac-
tive spring season (WCG, 2019). Its average annual tem-
perature is 32 °C, with about 71 mm of precipitation in a 
year (WCK, 2021). The daily average maximum tempera-
ture in Kurdistan goes up to 45 °C in the summer (in July) 
and the minimum goes down to 11  °C in January (Aziz 
et al., 2022). It is dry for 315 days across a year, with an 
average humidity of 26% and a UV index of 7 (Hajani 
et  al., 2022). This study covers the historical daily rain-
fall data series for 32 years in the period of 1990–2021 at 
three rainfall stations in the Kurdistan region (see Fig. 1). 
The daily rainfall data are analyzed to identify the maxi-
mum precipitation in a year (i.e., 365 days), so as to use in 
the analysis of this study.

Table  1 shows the descriptive statistics of the three 
adopted stations, including their variance, standard devi-
ation (Std. D.), coefficient of variation (C.V.), variance, 
coefficient of skewness (SK), and kurtosis. The mean 
AMR varies between 48.179 mm in the northern part of 
the study area (i.e., the Duhok station) and 62.998  mm 
in the southwestern part (i.e., the Sulaymaniya station). 
The minimum (Min) and maximum (Max) in Table  1 
show that the lowest amount of rainfall (23.9  mm in 
1996) occurred at the Erbil station and an extremely high 
amount occurred at the Duhok station (150 mm in 1993). 
The highest values of Std. D., C.V., Variance and Kurtosis 
are discovered at the Duhok station, indicating a signifi-
cant variation in the rainfall data; and the highest Kur-
tosis value in the data set tends to have a clear peak close 
to the mean. The Sulaymaniya station has the highest 
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value of SK, which clearly shows that this station is highly 
skewed, and its asymmetric tail also extends to the right 
of the mean value.

3 � Methodologies
3.1 � Markov probability model
Markov analysis is a scientific method for studying and 
analyzing a phenomenon in the current period, so as to 
predict its behavior in the future (Kenton, 2021). The 

Markov process is a type of stochastic process that can, 
in essence, predict a random variable based solely on 
the current circumstances surrounding the variable, 

without the need to know the past (Rykov et  al., 2010). 
The Markov chain contributes to situation forecasting by 
identifying a phenomenon from one period to the next 
with a Markov Matrix, which is known as Transition 
Probabilities Matrix (TPM) from the prior case (Jimoh 
& Webster, 1996). According to Eq.  (1), the conditional 
prediction of any future state ( Xn+1 ) by using a Markov 
chain model is independent of the past state ( X0 , …, 
Xn−1 ), but depend only on the present state ( Xn ) (Yusuf 
et al., 2014).

In this study, the first-order Markov chain model 
was used. The three states adopted include: decrease—
"d"; stability—"s"; and increase—"i". The flowchart 

(1)P Xn+1 = j | Xn = i,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0 = P Xn+1 = j | Xn = i = Pij .

Fig. 1  The location map of the study area

Table 1  The statistical description of the Duhok, Erbil and Sulaymaniya stations

Station Mean (mm) Min. (mm) Max. (mm) Std. D. (mm) C.V Variance (mm2) SK Kurtosis

Duhok 59.622 24.200 150.000 26.822 44.987 719.435 1.511 3.072

Erbil 48.179 23.900 103.900 17.212 35.726 296.269 1.183 1.982

Sulaymaniya 62.998 36.800 131.800 23.306 36.995 543.153 1.663 2.901
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of Markov modeling adopted in this study is given 
in Fig.  2. The transition probability matrix (Markov 
matrix) is defined as Pij ≡ P(j | i) , where i, j ∈ the states. 
The Markov matrix is formed through observing the 
time series and identifying the number of transitions 
from one state to another for the three states under 
study ("d", "s", and "i"). In this study, depending on the 
AMR data for the three adopted stations, the transition 
forms of the Markov matrix are modeled as below:

1.	 State decrease—"d": the AMR data are below 50 mm.
2.	 State stability—"s": the AMR data are between 

50 mm and 60 mm.
3.	 State increase—"i": the AMR data are above 60 mm.

The transition between the states is described by the 
transition diagram and probability matrix ( P ) below:

The Maximum Likelihood Estimator (MLE) is 
used for estimating the transition probabilities in the 
Markov matrix (Jale et  al., 2019; Zhang et  al., 2014). 
The sum of the probabilities of the P matrix in each 
row must equal one. The MLE process involves divid-
ing the elements in a row of the P matrix by the sum of 

P =





P11 P12 P13
P21 P22 P23
P31 P32 P33



.

all the elements in that row, so as to estimate each ele-
ment in the Markov matrix.

3.2 � Test for goodness of fit
In order to predict the AMR data series by using the 
Markov chain model, the validity of the proposed three 
states (i.e., decrease, stability and increase of rainfall) 
used in the Markov chain approach was tested in the fol-
lowing way: The null hypothesis H0: rainfall occurrences 
in consecutive years are independent; vs. The alternative 
hypothesis H1: rainfall occurrences in consecutive years 
are not independent (Garg & Singh, 2010). For the three 
suggested states in the Markov chain, two tests for good-
ness of fit, namely the WS test and the Chi-Squared ( χ2 ) 
test (Wang & Martiz, 1990; Preacher, 2001; Jale et  al., 
2019), were made, as given in Eqs. (2) and (3) below:

where A = Pdd + Pss + Pii;B = PidPdi + PsiPis + PdsPsd

−PddPss − PddPii − PssPii . The variance (V) of 
(A+ B− 1) in Eq. (1) is given by

V (A+ B− 1) = 2p1p2p3(

1

ndns
+

1

nsni
+

1

nind

)

 , where nd , ns and , nr are the num-
bers of states used in this study (i.e., "d", "s", and "i" states), 
while p1, p2 and p3 indicate the stationary probabilities, 
specifically:p1 = [(1+ p)+ (1+s)p

q]−1
; p2 =

[

r + ps

q

]

p1; p3 = [p/q]p1 . 

(2)WS = A+ B− 1√
V (A+ B− 1)

N (0, 1),

Fig. 2  The procedure of applying the Markov model
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p =
[

Pdi + Psi(1−Pdd )
Psd

](

1

1−Pii

)

; q = 1+
[

PsiPid
Psd (1−Pii)

]

; r =
(

Pds
1−Pss

)

;

q = 1+
[

PsiPid
Psd (1−Pii)

]

; r =
(

Pds
1−Pss

)

; s =
(

Pis
1−Pss

)

 . The probability ( P ) 
transforming from a state of "d" into another state of "d" 
is represented byPdd ; that from a state of "s" into another 
"s" is represented byPss ; that from a state of "i" into 
another "i" is represented byPii ; that from a state of "d" 
into a state of "i" is represented byPdi ; that from a state of 
"i" into a state of "d" is represented byPid ; that from a state 
of "s" into a state of "i" is represented byPsi ; that from a 
state of "i" into a state of "s" is represented byPis ; that 
from a state of "d" into a state of "s" is represented byPds ; 
and that from a state of "s" into a state of "d" is repre-
sented byPsd.Pdd , Pss , Pii , Pdi , Pid , Psi , Pis , Pds and Psd are 
the elements of the TPM.

According to the test procedure, the critical region 
is |WS|c ≥ Zα at the α level of significance, i.e., the null 
hypothesis is rejected if |WS| ≥ Zα , where Zα indicates 
the 100(1− α) lower percentage points of a standard nor-
mal distribution (Garg & Singh, 2010).

where Xi is the observed frequency of the data sample, Ei 
is the expected frequency of the data sample as calculated 
by Ei = F(X2)− F(X1) , and F  is the cumulative distribu-
tion function of the probability distribution being tested. 
The test was conducted at a 5% significant level.

3.3 � The initial state vector and the n‑step transition state 
vectors

The initial state vector ( π0 ) of the Markov chain is esti-
mated from the sum elements of the rows of the TPM 
divided by the sum of all the elements of the TPM (How-
ard, 1971; Jain, 1986) as follows:

In this study, the n-step transition probability state 
vectors ( πn ) of the Markov chain are following Cox and 
Miller (1984) and Yusuf et  al. (2014). In the equation 
above, Pn

i  is the probability that the annual maximum 
rainfall is in the ith state at the nth observation. In par-
ticular, πn is the state vector of the Markov chain at the 
nth year (Jain, 1986; Yusuf et al., 2014), and it can be esti-
mated by using the following equation:

where P is the TPM and πn+1 is the state vector at the 
(n+ 1) th data observation. After a different number of 
iterations, the n-step state vectors will be estimated as:

(3)χ2 =
n

∑

i=1

(Xi − Ei)
2

Ei
,

(4)π0 =
∑n

i=1 Pi
∑

P
.

(5)π(n+1) = π(n)P,

3.4 � Equilibrium probabilities
The equilibrium probabilities πd,πs and πi (of a "d", "s" 
and "i", respectively) are determined by resolving the sta-
tionary matrix equation (Garg & Singh, 2010; Jale et al., 
2019). As a result, there is no change in the probability 
of being in any state over time, i.e., there is a limit of 
limn→∞P

(n)
ij = πj > 0 , where πj satisfies only the follow-

ing stable state equation: πj =
∑m

i=1πiPij to j = 1, . . . ,m . 
Therefore, the linear system of equations (i.e., 
πd = πdPdd + πsPsd + πiPid ,πs = πdPds + πsPss + πiPis 
and πi = πdPdi + πsPsi + πiPii ) can be solved to obtain 
the estimators of the long-term equilibrium probabili-
ties, together with the probability normalization condi-
tion πd + πs + πi = 1.

4 � Using a Markov model in forecasting
The formula of a Markov model for generating a data 
series is based on the following procedures (Gupta, 
1989).

	 i.	 Transform data to the normal distribution

	Before starting the steps of building a random number 
generation model, it must be first confirmed that 
the time series used in the model is subject to the 
normal distribution. In this study, Anderson–Dar-
ling (AD) and Lilliefors (LT) tests for normality 
were applied (Anderson & Darling, 1954; Abdi & 
Molin, 2007). If the normal distribution cannot be 
achieved in a data series, the Box-Cox method will 
be applied for transformation (Box & Cox, 1964; 
Sakia,  1992). The forms of the Box-Cox transfor-
mation are given by:

	 The lambda (λ) value ranges from − 5 to 5, and 
the best λ value for the data is chosen after taking all 
possible values into account. The optimal value of λ 
appears where a normal distribution curve is most 
closely approximated (Chedded, 2020).

	 ii.	 Make descriptive statistics
	Three important parameters were used during the anal-

ysis of the Markov model: the mean, standard devi-

(6)πn = π0Pn.

(7)X(�) =
(

X� − 1
)

�
for � �= 0.

(8)X(�) = ln(X) for � = 0.
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ation, and correlation coefficient, as determined by 
the following equations:

	iii.	 Generate random numbers
	Random numbers (t) were generated in Microsoft Excel 

(Kuo, 2016; Maass et  al., 1962) with the RAND () 
command. After a random variable t with an arith-
metic mean of zero and unit variance was acquired, 
i.e., N (0, 1), it was then converted to follow the 
standard normal distribution according to the fol-
lowing equation (inverse error function).

where z value can be found through the cumulative 
function distribution (CDF) function of the normal 
logarithm, as follows:

	 As the normal logarithm of random numbers has 
properties of μ = 1 and σ = 1, therefore:

	 Then the random number formula is:

(9)µX = 1

n

n
∑

i=1

Xi,

(10)σX =

√

√

√

√

1

n− 1

n
∑

i=1

(Xi − µX )
2,

(11)

rk = n
∑n−k

i=1 (Xi − µX )(Xi+k − µX )

(n− k)σ 2
X

; k = 1.

(12)

erf
−1(z) =1

2

√
π

(

z + π

12
z
3 + 7π2

480
z
5

+127π3

40320
z
7 + 4369π4

5806080
z
9 + · · ·

)

,

(13)CDF = 1

2
+ 1

2
erf

∣

∣

∣

∣

lnx − µ√
2σ 2

∣

∣

∣

∣

= RAND(),

(14)

erf(z) = erf

∣

∣

∣

∣

lnx − µ√
2σ 2

∣

∣

∣

∣

= [RAND()− 0.5] ∗ 2,

(15)z = 2[RAND()− 0.5].

∣

∣

∣

∣

lnx − 1√
2

∣

∣

∣

∣

=z → erf
−1

(z) = lnx − 1√
2

→
√
2erf

−1
(z) = lnx − 1

(16)t = lnx =
√
2erf−1

(z)+ 1.

	iv.	 Build the Markov model for the generation
	The Markov model’s generalized form, as developed by 

Thomas and Fiering (Bin Muhammad, 2012), is 
represented by the following equation:

where Xi is the rainfall value in time i, µX is the 
mean value of the data series, ri is the correlation 
coefficient, σx is the standard normal deviation, and 
ti is the random number.

4.1 � Measurements of the reliability of the forecasting
To assess the forecasting model in this study, the rela-
tive error (RE), root mean square error (RMSE), mean 
absolute error (MAE), and mean absolute percent-
age error (MAPE) were measured. Additionally, the 
Willmott (1981) index of agreement (D) was meas-
ured, which can be interpreted as the relative predic-
tion error between the actual data and the fitted data 
from the Markov chain model. D = 1 indicates a perfect 
match, while D = 0 indicates no agreement at all. The 
errors mentioned above are expressed in the following 
equations:

where Xt is the actual AMR value (mm),  X̂t is the esti-
mated (forecasted) AMR value (mm), and X̄ is the aver-
age actual AMR (mm).

(17)
Xi+1 = µX + ri(Xi − µX )+ σxti

√

(1− r2i ),

(18)RE =
n

∑

t=1

Xt − X̂t

Xt
,

(19)RMSD =

√

√

√

√

1

n

n
∑

t=1

(

Xt − X̂t

)2
,

(20)MAE = 1

n

n
∑

t=1

∣

∣

∣
Xt − X̂t

∣

∣

∣
,

(21)MAPE = 1

n

n
∑

t=1

∣

∣

∣
Xt − X̂t

∣

∣

∣

Xt
∗ 100,

(22)

D = 1−
∑n

i=1

(

Xt − X̂t

)2

∑n
i=1

(∣

∣

∣
X̂t − X

∣

∣

∣
+

∣

∣X̄t − X̄
∣

∣

)2
, 0 ≤ D ≤ 1,
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5 � Results and discussion
5.1 � The AMR data series
The plots for the time series of the AMR data at the three 
adopted stations during the period of 1990–2021 are 
presented in Fig. 3. As can be seen, the trend line moves 
downward at a rate of 0.215 mm/year at the Duhok sta-
tion and at a rate of 0.044 mm/year at the Erbil station; 
for the Sulaymaniya station, however, the trend line 
moves upward at a rate of 0.794 mm/year, although the 
trend slopes of decreasing and increasing are quite small 
in magnitude.

5.2 � The transition probability matrix (TPM)
The data of AMR time series were used in this study to 
form the Markov matrix (TPM), with three states taken 
into account (i.e., "d", "s" and "i"). For these states, the 
TPM was sorted by the number of transitions from one 
state to another. To obtain the TPM, the elements of each 
row of the TPM were divided by the sum of the rows. 
The number of transfers in the states being examined is 
shown in Table 2. The Initial State Vector ( π0 ) was esti-
mated for each station based on the sum of the rows in 
Table 2. The TPM for the three adopted stations is shown 

Fig. 3  The AMR data series for the three adopted stations

Table 2  The transition count and initial state vector for the AMR behavior between "d", "s" and "i" states

Transition count

Duhok Erbil Sulaymaniya

"d" to "d" "d" to "s" "d" to "i" "d" to "d" "d" to "s" "d" to "i" "d" to "d" "d" to "s" "d" to "i"

5 2 8 5 1 8 3 1 8

"s" to "d" "s" to "s" "s" to "i" "s" to "d" "s" to "s" "s" to "i" "s" to "d" "s" to "s" "s" to "i"

2 2 0 1 1 3 1 2 1

"i" to "d" "i" to "s" "i" to "i" "i" to "d" "i" to "s" "i" to "i" "i" to "d" "i" to "s" "i" to "i"

8 1 4 8 2 3 9 2 5

Initial state vector ( π0)
[

0.469 0.125 0.406
] [

0.438 0.156 0.406
] [

0.375 0.125 0.500
]
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in Table 3. The state-transition diagrams of the system for 
the three stations are shown in Fig. 4. The results of the 
TPM for the three adopted stations show that the proba-
bilities of transitions from the state "i" to "d" and from the 
sate "d" to "i" are higher than for other states at the Duhok 
and Erbil stations; but at the Sulaymaniya station, the 
probability of transition from the state "i" to "d" is higher 
than for other states. The lowest value of the probability 
of transition is found for transition from the state "s" to "i" 
at the Duhok station.

5.3 � The results of goodness‑of‑fit tests
The statistics of WS and χ2 tests (as described in Sect. 3) 
were used to measure the goodness of fit of the Markov 
chain to the AMR data for the three adopted stations 
(Duhok, Erbil, and Sulaymaniya). The estimated values of 

the WS and χ2 statistics as well as their p-values are pre-
sented in Table 4. As seen in Table 4, the results of these 
two statistics indicate that the Markov chain is a model 
appropriate to the AMR data series for the three adopted 
stations, and it is proven that the both tests satisfy a 
major property of the Markov chain model.

Table 3  The TPM ( P ) of the AMR behavior for the three adopted stations

Stations Duhok Erbil Sulaymaniya

P




0.333 0.133 0.534

0.500 0.500 0

0.615 0.077 0.308









0.357 0.071 0.572

0.200 0.200 0.600

0.615 0.154 0.231









0.250 0.083 0.667

0.250 0.500 0.250

0.563 0.125 0.312





Fig. 4  Diagrams of state transitions for the Duhok, Erbil and Sulaymaniya stations

Table 4  Estimated values of the WS and χ2 statistics and their 
p-values

Stations Duhok Erbil Sulaymaniya

WS 3.141 (p < 0.001) 4.280 (p < 0.001) 5.914 (p < 0.001)

χ2 0.889 (p = 0.828) 1.126 (p = 0.890) 1.100 (p = 0.777)

Reject? No No No
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5.4 � The transition probability for future periods
Depending on the initial state vector shown in Table  2, 
the average probability of moving from all transition 
count states to the state "d" for all the three stations 
is 0.427; that for the state "s" is 0.135; and that for the 
state "i" is 0.438. The probability prediction of all the 
states under study for a future period (e.g., 5 years) was 
estimated based on the initial state vector and Markov 
matrix, as described in Sect.   3 (i.e., π1 = π0 ∗ P , 
π2 = π1 ∗ P , …, π5 = π4 ∗ P ). The result is shown in 
Table 5.

5.5 � The transition probability matrix for the n‑steps 
(equilibrium state)

The equilibrium and stability state can be reached based 
on Formula (4) in iteration, as described in Sect.  3. In this 
study, MATLAB software was used to obtain accurate 
results of n-steps of the TPM. It should be noted that the 
TPM was corrected to 3 decimal places. As observed in 
Additional file 1: Table S1, when n increases, the results 
will become more similar. According to the results in 
Additional file 1: Table S1, the TPM will reach an equilib-
rium and stability state in 12 years for the Duhok station, 
in 11  years for the Erbil station, and in 9  years for the 
Sulaymaniya station. These probability matrices continue 
to infinity (if the current climate conditions are kept). 
After the process reaches a steady state as mentioned 
before, the limiting state vectors (by using Eq. (5)) are: for 
the Duhok station: π(n≥12)

Duhok =
[

0.464 0.178 0358
]

 ; for the 
Erbil station: π(n≥11)

Erbil =
[

0.448 0.123 0. 429
]

 ; and for the 
Sulaymaniya station: π(n≥9)

Sulaymaniya =
[

0.387 0.174 0.439
]

 . 
Therefore, the results of limiting state vectors show that 
the probabilities would drop slowly from 0.433 to 0.409 in 
about 11 years on average for the three adopted stations.

5.6 � Steps of applying the Markov model in forecasting 
the AMR data

	 i.	 The normality distribution of the data

	To find out whether the AMR data series follows a nor-
mal distribution or not, the normality tests (i.e., AD 
and LN) was conducted, as mentioned in Sect.  3, 

with the results demonstrated in Table 6. Whereas 
the null hypothesis for the tests is that the data 
were normally distributed, the alternate hypothesis 
is that the data did not come from a normal dis-
tribution. The p values of the both tests in Table 6 
are less than 0.05, so the tests reject the hypothesis 
of normality. Hence, it can be concluded that the 
AMR data series for three adopted stations do not 
follow a normal distribution. The Box-Cox trans-
formation method (Sect. 3) was used to transform 
non-normal AMR data, so as to meet a normal dis-
tribution, as shown in Table 7.

	 ii.	 The statistical measures and features of the Markov 
model

Table 5  The probability prediction vectors for a certain future period in the Duhok, Erbil, and Sulaymaniya stations

Period π Duhok Erbil Sulaymaniya

2022 π1
[

0.468 0.156 0.376
] [

0.437 0.125 0.438
] [

0.407 0.156 0.437
]

2023 π2
[

0.465 0.169 0. 366
] [

0.450 0.123 0.427
] [

0.387 0.166 0.447
]

2024 π3
[

0.464 0.175 0.361
] [

0.448 0.122 0.430
] [

0.390 0.171 0. 439
]

2025 π4
[

0.464 0.177 0.359
] [

0.449 0.123 0.428
] [

0.387 0.173 0.440
]

2026 π5
[

0.463 0.178 0.359
] [

0.448 0.122 0.429
] [

0.388 0.174 0.438
]

Table 6  Estimated values of the normality tests of AMR data 
series

Stations Duhok Erbil Sulaymaniya

AD statistic (p-values) 1.330 (0.002) 0.740 (0.041) 2.001 (< 0.001)

LT statistic (p-values) 1.103 (0.008) 0.732 (0.028) 1.108 (0.003)

Reject? Yes Yes Yes

Table 7  The transformed function depends on the Lambda 
value (λ)

Station λ: Transformed function

Duhok 0: Log (AMR)

Erbil − 0.5: 1/Sqrt (AMR)

Sulaymaniya − 1: 1/(AMR)

Table 8  Descriptive statistical measures of the transformed AMR 
data series

Stations Duhok Erbil Sulaymaniya

Min 1.384 0.098 0.008

Max 2.176 0.208 0.027

Mean 1.738 0.151 0.018

SD 0.177 0.025 0.005

r 0.135 − 0.148 − 0.292
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	Table  8 presents the summary of statistical results of 
the transformed AMR data for the three adopted 
stations. These statistical results are essential for 
generating the AMR data in the Markov model, as 
described in Sect. 3.

	iii.	 Generation of random numbers
	At this stage, random numbers were generated in 

Microsoft Excel through its RAND () command, 
as mentioned in Sect.  3. For example, the proce-
dures for generating random numbers for the years 
1990–2000 are shown in Additional file 1: Table S2.

	iv.	 The application of the Markov Model for generat-
ing the AMR data

	The Markov model consists of two parts: the first part is 
deterministic and considers the effect of the previ-
ous statistical values on the model (in Subsection 
ii); and the second part is for random numbers 

and represents the random part of the model (in 
Subsection iii). By combining and adding these 
two parts, a Markov generation model is applied 
according to Eq. (17) in Sect. 3. It should be noted 
that for the purposes of using Eq.  (17), the first-
generation value was assumed to be the mean (μ) 
of the data series. The plots between the observed 
and predicted values in Fig. 5 for the Markov model 
on the transformed AMR data series for the three 
adopted stations indicates that the predicted values 
follow the observed data closely enough.

In addition, five other statistical tests (i.e., RE, MAE, 
MAPE, RMSE, and D) were conducted to evaluate the 
closeness between the actual AMR data and the fit-
ted AMR data in the Markov chain model, as shown in 
Table 9. The lower values of RE, MAE, MSE and RMSE 

Fig. 5  Time series data was generated by using the Markov model for the Duhok, Erbil and Sulaymaniya stations. The actual data are given in blue 
color, and the fitted values are in red line color



Page 11 of 13Hajani and Sarma ﻿AI in Civil Engineering             (2023) 2:5 	

indicate a higher accuracy of the Markov chain model for 
each adopted station. The value of D is sensitive to the 
differences between the observed data and the generated 
data, and is also sensitive to certain changes in propor-
tionality (Willmott et  al., 1981). The results in Table  9 
show that the D value between the observed data and the 
generated AMR from the Markov model for the three 
stations are greater than 80%, indicating that in the three 
adopted stations, the magnitudes of D were consistent 
with the independent and intuitive evaluations.

With a D value of 0.871, the fitted value from the 
Markov model for the Sulaymaniya station is identified 
as a slightly "better" estimator of the observed variables 
than for the Duhok (D = 0.834) and Erbil (D = 0.829) sta-
tions. The results of the Willmott index (D) in Table  9 
show a good match between the actual data and the gen-
erated AMR from the Markov chain model. Therefore, 
the generated AMR is acceptable at large percentages for 
the three adopted stations. The actual AMR data and the 
fitted AMR data by the Markov chain model are plotted 
in a scatterplot, as shown in Additional file 1: Fig. S1. A 
visual examination of the AMR time series scatterplot 
(Additional file  1: Fig. S1) confirms the results of the 
Willmott index.

The Markov chain model was used to generate the 
AMR data for a future period from 2022 to 2026 (five 
years), as shown in Table 10. It is found that, in general, 
the results of the generated AMR data for the future 
period confirm the future probability prediction vec-
tors for the three stations as made in Sub Sect. 4.4. For 
example, for the Duhok station, it is found that the AMR 
data (Table  10) would decrease for the future period. 
This consists of the probability prediction vectors for the 
Duhok station (Table 5, and Sub Sect. 4.4), showcasing a 

decrease in the probability for the state "d" for most of the 
adopted future period more than for the "s" and "i" states.

6 � Conclusions
In this study, a Markov chain model was adopted to 
examine the pattern, distribution and forecast of the 
annual maximum rainfall (AMR) data at three selected 
stations (Duhok, Erbil, and Sulaymaniya) in the Kurd-
istan region of Iraq based on the rainfall data collected 
there within 32  years of 1990–2021. A Markov matrix 
(TPM) was formed based on the AMR time series data 
and sorted by the number of transitions from one state 
to another among the three states under study (i.e., 
decrease—"d"; stability—"s"; and increase—"i"). The 
Markov model was used to forecast the AMR data for 
several upcoming years (i.e., 2022–2026). To evalu-
ate how well the Markov chain model fits the data, the 
Chi-square and WS tests were conducted. Additionally, 
the Lilliefors and Anderson–Darling tests for normality 
were used, while the Box-Cox transformation method 
was used to transform the non-normal AMR data to 
meet a normal distribution. To assess the Markov chain 
generation model, the following tests were conducted: 
the relative error (RE), the root mean square error 
(RMSE), the mean absolute error (MAE), the mean 
absolute percentage error (MAPE), and the Willmott 
index. The results of two goodness-of-fit tests (i.e., WS 
and χ2 ) indicate that the Markov chain is an appropriate 
model for the AMR data series from the three adopted 
stations. As demonstrated, in the years of 2022–2026, 
the probability of the annual rainfall data decreasing will 
be 44%, with 16% of the annual rainfall keeping stable 
and 40% of the annual rainfall increasing. The TPM will 
reach an equilibrium and stability state after 12 years at 
the Duhok station, after 11 years at the Erbil station, and 
after 9 years at the Sulaymaniya station. In addition, it is 
shown that the probabilities will drop slowly from 0.433 
to 0.409 for the AMR data series in about 11  years as 
an average for the three adopted stations. The predicted 
AMR data from the Markov model were compared with 
the observed AMR data, so as to determine the predic-
tion precision, revealing that the RE, RMSE, MAE and 
MAPE test results between the observed data and the 
predicted data are less than 4%, which satisfies the cri-
teria for forecast accuracy. In addition, the Willmott 
index shows a good match between the actual data and 
the generated AMR data from the Markov chain model. 
Therefore, the upcoming AMR data can be forecasted in 
this Markov model. The results of the generated AMR 
data for future periods were found able to confirm the 
probability prediction vectors for future periods at the 
three stations.

Table 9  The performance of the Markov model

Stations RE (%) MAE (mm) MAPE (%) RMSE (mm) D

Duhok 2.838 0.159 2.406 0.116 0.834

Erbil 1.513 0.044 0.247 0.064 0.829

Sulaymaniya 1.319 0.024 0.137 0.007 0.871

Table 10  The AMR time series (mm) forecasted by using the 
Markov model for the period from 2022 to 2026

Stations 2022 2023 2024 2025 2026

Duhok 53.424 36.355 45.193 49.405 42.105

Erbil 42.011 50.267 36.268 42.149 38.354

Sulaymaniya 65.462 64.911 55.798 54.569 68.231
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