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Fusion of thermal and RGB images 
for automated deep learning based crack 
detection in civil infrastructure
Quincy G. Alexander1,4*   , Vedhus Hoskere2†, Yasutaka Narazaki3†, Andrew Maxwell1† and Billie F. Spencer Jr4 

Abstract 

Research has been continually growing toward the development of image-based structural health monitoring 
tools that can leverage deep learning models to automate damage detection in civil infrastructure. However, these 
tools are typically based on RGB images, which work well under ideal lighting conditions, but often have degrading 
performance in poor and low-light scenes. On the other hand, thermal images, while lacking in crispness of details, 
do not show the same degradation of performance in changing lighting conditions. The potential to enhance 
automated damage detection by fusing RGB and thermal images together within a deep learning network has yet 
to be explored. In this paper, RGB and thermal images are fused in a ResNET-based semantic segmentation model for 
vision-based inspections. A convolutional neural network is then employed to automatically identify damage defects 
in concrete. The model uses a thermal and RGB encoder to combine the features detected from both spectrums 
to improve its performance of the model, and a single decoder to predict the classes. The results suggest that this 
RGB-thermal fusion network outperforms the RGB-only network in the detection of cracks using the Intersection Over 
Union (IOU) performance metric. The RGB-thermal fusion model not only detected damage at a higher performance 
rate, but it also performed much better in differentiating the types of damage.
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1  Introduction
Infrastructure in the United States is in a growing state 
of disrepair, as the annual needs for repair/replacement 
funding continue to outpace the spending. The Ameri-
can Society of Civil Engineers (ASCE) estimated that 
the gap in infrastructure funding reached $2 trillion dol-
lars between 2016 and 2025 (ASCE, 2020). To combat 
this funding gap, infrastructure managers are moving 
towards an asset management-based model to maximize 
the impact of the limited funding. ASCE (2020) describes 

asset management as an effective tool for managing 
capital assets across various types of infrastructure to 
minimize the total cost of maintenance and operation 
in a dynamic and data-rich environment. Furthermore, 
it points out that the key to success of this proactive 
approach lies in the significant advances in the monitor-
ing technologies, to prioritize needs and plan long-term 
strategies. As automated structural health monitoring 
(SHM) tools progress, their potential impact on asset 
management practices will continue to grow.

SHM tools employing deep learning have shown 
their efficacy in providing powerful data processing 
approaches for damage detection and structural condi-
tion assessments for a variety of infrastructure types (Bao 
& Li, 2020; Hess et al., 2015; Ye et al., 2019). Computer 
vision-based deep learning techniques, in particular, 
have seen a tremendous growth as computational power 
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continues to increase and the cost per pixel of data con-
tinues to decrease (Koch et al., 2015; Long et al., 2015). 
As noted by Barry Hendy of Kodak Digital Camera Tech-
nology has developed at an exponential improvement 
rate similar to Moore’s law for microprocessors, with 
the pixels per dollar doubling annually when comparing 
cameras of similar feature level (Brynjolfsson & McAfee, 
2014; Commons, 2015; Lucas, 2012). This trend across a 
range of camera types is illustrated in Fig. 1.

Leveraging the reduced technology cost and the 
increased computational power, there has been an 
exponential increase in the creation and deployment of 
computer vision-based inspection and infrastructure 
monitoring methods. For example, Hoskere et al. (2020) 
proposed the use of semantic segmentation for vision-
based structural inspection, where a fully convolutional 
neural network was used to automatically identify multi-
ple damage defects, like cracks, corrosion, spalling, etc., 
on certain structures of interest to the U.S. Army Corps 
of Engineers, such as lock gates and bridges. A detailed 
review of the current research, key challenges, and ongo-
ing work related to computer vision-based tools for the 
inspection of infrastructure can be found by Spencer 
et  al. (2019). Dong and Catbas (2020), and Avci et  al. 
(2021) also provided a comprehensive summary of com-
puter vision-based SHM tools and techniques at both 
local and global levels, including the factors that can 
affect accuracies.

Infrared thermography (IRT) is the science of detect-
ing infrared energy emitted by an object, converting it 
into an apparent temperature, and displaying the result 
as an image (Fluke, 2021). Infrared (IR) wavelengths 
are longer than those found in the visible spectrum and 
are not visible with the human eye. IRT can often pro-
vide structural anomaly information that is not identifi-
able in the visible spectrum; indeed, the power of IRT for 
non-destructive evaluation (NDE) has been well docu-
mented (Avdelidis & Moropoulou, 2004; Hess et al., 2015; 

ASTM International, 2013). Passive IRT, specifically, is 
commonly used in the NDE of large civil infrastructure, 
where artificially heating the specimen is not always fea-
sible (Avdelidis & Moropoulou, 2004). For passive IRT, 
solar radiation serves as the heat source, and studies 
have been performed to understand the optimum times 
to capture images with the highest thermal contrast and 
that diurnal temperature variations can be adequate to 
support the use of IRT to detect defects in fully shaded 
regions (Alexander et al., 2019; Washer et al., 2013).

Visible (RGB) and thermal images each have their own 
strengths and weaknesses. For example, visible images 
can provide a clear representation of the scene at high 
resolutions and low cost per pixel, but light sources can 
affect the image quality. In contrast, thermal images are 
much more robust to variations in lighting conditions 
and can provide sub-surface information, but generally 
suffer from comparatively low resolution and weak crisp-
ness. Several manufactures have produced cameras that 
can capture both visible and thermal images simultane-
ously, thus providing more contextual information for the 
thermal images.

Research has been performed in various fields to deter-
mine how the two image types (RGB and thermal) can 
be combined to enhance their respective advantages, 
while neutralizing their disadvantages. For example, 
the automotive industry is particularly interested in the 
fusion of RGB and thermal images for object detection 
in autonomous vehicles, for which low light conditions 
and strong glares are common challenges (Sun et  al., 
2019). Liu et al. (2016) showed an 11% improvement over 
the baseline in pedestrian detection by using their pro-
posed fusion model. Shivakumar et  al. (2019) proposed 
an RGB-thermal fusion technique in the DARPA Subter-
ranean Challenge to identify four different object classes 
(person, drill, backpack, and fire-extinguisher). An et al. 
(2018) used an image matching technique for crack 
detection, which can compare areas on thermal and vis-
ible spectrum images to determine to identify matching 
cracks, thus reducing the false positives. For each of the 
referenced applications, the fusion of thermal and RGB 
images performed better than adoption of only RGB 
images.

While the existing researchers have previously inves-
tigated the use of both visible and thermal images for 
damage detection in civil infrastructure, those studies are 
typically performed on simple laboratory test specimens 
that lacked the type of visual complexity that is present in 
the field. In addition, these studies have leveraged active 
IRT, which requires an artificial heating element to high-
light the flaws for detection. Moreover, they are based on 
object detection, simply drawing a box around the identi-
fied cracks without considering the pixel-level accuracy 

Fig. 1  Relative cost per pixel, through time
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of the prediction, which is nevertheless crucial for dam-
age severity assessment.

This paper proposes to fuse features from visible and 
thermal spectrum images to develop a robust automated 
damage detection strategy for in-service civil infrastruc-
ture. The novelty of the research effort is the quantifica-
tion of the benefits of fusing thermal features within the 
neural network for a semantic segmentation model, with 
class predictions determined per pixel. To achieve the 
goal, a curated dataset of both damaged and undamaged 
in-service infrastructure is developed, with each visible-
spectrum image having a corresponding thermal image 
as well as hand-labelled ground truth images for seman-
tic segmentation. The thermal images are collected in 
the field using passive IRT technology, with a low-cost 
thermal imager that connects to a mobile device. This set 
of hardware better aligns with the tools that would com-
monly be utilized by inspectors in the field. Additionally, 
images of concrete joints are included in the dataset to 
represent crack-like visual patterns that are actually not 
associated with any damage. The model, therefore, not 
only has to detect the cracks, but also is able to differen-
tiate between visually similar classes. The performance 
is then measured by the predictions of each pixel. This 
research demonstrates that the fusion of RGB and ther-
mal images improves the performance of the model over 
the RGB only model in properly predicting cracks, as 
well as in differentiating between cracks and comparable 
features.

2 � Methodologies
The dataset collected and used for training, validat-
ing and testing for this effort contains images of certain 
in-service infrastructure taken in the field. This section 
describes the curation of the dataset, with aligned RGB 
and thermal images of the damaged infrastructure and 
corresponding labelled ground truths for use in a seman-
tic segmentation algorithm.

2.1 � Data collection
The FLIR One Pro Gen 3 (Flir One) thermal camera was 
selected to collect data, due to its balance between a low 
price point and relatively high thermal resolution (Alex-
ander & Lunderman, 2021). The FLIR One unit can cap-
ture thermal and RGB images simultaneously. When this 
camera is connected to a mobile device, the FLIR One 
mobile app is used as a viewfinder and to control the 
operations of the camera. Thermal images are captured 
at a resolution of 160 × 120 pixels for storage on the 
device and then can be decompressed to a resolution of 
640 × 480 pixels when uploaded to a personal computer 
by using the FLIR software. The visible spectrum images 
have a resolution of 1440 × 1080 pixels. A preliminary 

study about the reliability of the unit revealed that the 
camera’s performance was found to be within the speci-
fication for temperatures ranging from 0 °F to 120 °F 
(Alexander & Lunderman, 2021).

The RGB-thermal pairs of images are annotated for 
semantic segmentation as part of this research effort. 
Annotating images for semantic segmentation is an ardu-
ous task, as each pixel in the image must be assigned a 
label. While the annotation of regular shapes, like poly-
gons, can be completed with a few clicks, such amor-
phous shapes as cracks require meticulous attention to 
details. To develop a high-quality dataset for this study, 
annotations are conducted using InstaDam (Hoskere 
et al., 2021), an open-source software for damage anno-
tation developed by the University of Illinois at Urbana-
Champaign. The dataset collected and used for training, 
validating and testing for this effort contains images of 
in-service infrastructure taken in the field.

2.2 � Image alignment
Fusion of images requires that the images are properly 
aligned. To match two images, Rao et al. (2014) outlined 
a normalized cross-correlation (NCC) approach, which 
works well when there is good structure within the two 
images. In this approach, one image is held fixed, while 
the position of the second image is moved pixel-by-pixel, 
with the quality of the match calculated at each position. 
The quality of the match is quantified through a coeffi-
cient of correlation, a value ranging from 0 to 1, where 1 
indicates a perfect match. The position with the highest 
correlation coefficient should provide the best alignment 
between the two images.

As shown in Fig. 2, the native resolution of the thermal 
images is lower than that of the visible image; therefore, 
the thermal image should be scaled up to align the ther-
mal scenes with the corresponding visible image. The 
thermal image is appropriately scaled, and then the NCC 
method is applied to the scaled thermal image to locate 
the position of the maximum correlation coefficient. The 
image size is made consistent with the RGB image by 
zero-padding. To qualitatively validate the accuracy of 
this approach, the two images are blended. Fig. 3 shows: 
(a) the RGB image, (b) the padded thermal image, and (c) 
the RGB-padded thermal blended images for one exam-
ple scene. Finally, this approach is applied to all the image 
pairs in the dataset, using the iron palette (e.g., Fig.  3c) 
and greyscale palette used for the thermal images. How-
ever, the NCC approach is not effective for all image pairs 
and specifically works poorly for the images with low 
thermal definition. Therefore, some images have to be 
manually realigned.
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2.3 � Data preparation and annotation
Each image in the dataset has its corresponding pixel-
wise annotations. Seventy-five of the images are selected 
with at least one crack and well-defined thermal contrast. 
The frequency of occurrences of different labelled classes 
is provided in Table 1. While the focus of this study is on 
crack detection, additional labels are included for spalling 
and vegetation growth. All the images are cropped to the 
size and position corresponding to the thermal images 
by removing the padded borders. The datasets generated 
during the current study are available from the corre-
sponding authors on reasonable requests.

2.4 � Network architecture
The RTFNet network proposed by Sun et  al. (2019) 
is used as the foundation for analysis in this study. The 
RTFNet architecture consists of an RGB encoder, a par-
allel thermal encoder, and a single decoder followed by 
the pixel-wise classification prediction. The encoder pro-
duces low-resolution feature maps for the RGB image 
and the thermal image, and the decoder up-samples the 
features to develop dense feature maps (Yasrab et  al., 
2017). The features acquired from each layer within the 
thermal decoder are mapped to the corresponding layer 
within the RGB encoder, as part of the fusion process. 
This network is illustrated in Fig. 4. The encoder is based 
on the Residual Network (ResNet) architecture, which 
has certain variants based on the number of layers. The 
ResNet-18 model with 18 neural network layers is used 
in this study.

Within the network, the classes are weighted based on 
the pixel distribution, according to the class weighting 
methodology outlined by Paszke et  al. (2016). The class 
weighting formula is provided in Eq.  1. And the results 
are shown in Table 1.

Fig. 2  Illustration of visible and thermal image pair alignment

Fig. 3  a Visible image, b padded thermal image, and c blended image

Table 1  Class label overview and weight

Class Description Pixels Class probability Weight

0 No label 242,470,928 0.9868 1.4357

1 Crack 2,252,136 0.0092 34.7848

2 Joint 998,536 0.0041 42.0544

3 Spalling 1,360,938 0.0055 39.654

4 Vegetation 2,678,104 0.0055 39.6544
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where c is the  Paszke Method Coefficient (1.02),  and 
andclass_probability indicates the Ratio of the pixels of 
an individual class to the total number of pixels in the 
dataset.

Image augmentation schemes are applied to improve 
the training results. First, RGB images are duplicated, 
and the brightness of the matching images is reduced 
uniformly to simulate a low-light environment. The cor-
responding label images and thermal images are not 
modified. This augmentation method would double 
the size of the dataset, which is then randomly split by 
80/10/10 for training/validating/testing, respectively. 
When the model is run for training, further data aug-
mentations is applied: random flip, random noise, ran-
dom brightness change, and random cropping.

3 � Results
The following four scenarios are studied as part of the 
effort to quantify the value, including the thermal data:

(1)Weight =
1

ln c + class_probability
,

(1)	 Fusing the RGB and thermal images (RGBT). The 
greyscale version of the thermal images is used in 
the analysis.

(2)	 Fusing the RGB images with a blank image (RGBB). 
This scenario represents the condition where 
only RGB data is available in an architecture that 
includes an empty (white) thermal input in the 
encoder.

(3)	 Removing the thermal encoder from the architec-
ture and analysing the RGB images only (RGB).

(4)	 Removing the RGB encoder from the architecture 
and analysing the thermal images only (T).

3.1 � Model performance evaluation
Both the RGBB and RGB models are included in the 
analysis to validate the process, as the RGB-blank 
pair should perform similarly to the RGB-only model. 
The performance of these four scenarios is measured 
in terms of Intersection over Union (IOU), which is 
one of the most common performance metrics used 
for semantic segmentation. At the pixel level, IOU 

Fig. 4  RGB-thermal fusion network architecture [Sun et al., 2019]
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indicates the ratio of the correct class predictions to the 
sum of the correct and incorrect class predictions, as 
shown in Eq.  2. The performance for each scenario is 
shown in Fig. 5, after applying a Locally Weighted Scat-
terplot Smoothing (LOWESS) regression technique 
applied.

where TP is the true positive (pixels), FP the false posi-
tive (pixels), and FN the false negative (pixels).

(2)IOU =
Area of overlap

Area of union
=

TP

TP+ FP+ FN
,

The results are shown in Fig. 5, and a summary of the 
performance at 6000 epochs is provided in Table 2. The 
results show that the fusion of RGB and thermal images 
outperforms RGB-only and T-only models, indicat-
ing that the network is able to leverage the additional 
information provided by the thermal images. By 6000 
epochs, the performance of each scenario becomes 
stabilized relative to each other. The RGBT model 
outperforms the RGB-only model by approximately 
15%. The RGBB network was trained to ensure that 
any performance improvement of the RGBT network 
over the RGB network was due to the additional infor-
mation from the thermal images and not due to addi-
tional parameters in the network. The RGBB and RGB 

Fig. 5  Smoothed crack detection IOU rate for RGBT, RGBB, RGB and T datasets

Table 2  IOU performance summary at 6000 epochs

Scenario IOU crack 
detection 
performance

RGBT 0.31

RGB/RGBB 0.27

T 0.20

Table 3  Runtime comparison

Model Avg. 
seconds/
epoch

Dual encoder 23.5

Single encoder 18.1
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accuracies align well with each other, signifying that the 
dual encoder systems with the second blank image per-
form similarly to an RGB-only image as expected. The 
results also show the ability of thermal images alone to 
provide an indication of cracks at approximately 74% of 
the rate of the RGB-only model, and 66% of the rate of 
the RGBT model. Thus, damage can be indicated in a 
scene with reduced impact of the lighting conditions, 
which supports the original hypothesis.

All the scenarios were run on the same device by 
using the same datasets for training, validating and test-
ing. The run times (seconds/epoch) for the single-input 
and fused-input scenarios are summarized in Table  3, 
using a Predator PH317 with an Nvidia GeForce RTX 
2070 GPU. Fusing the thermal data to the RGB data 
increases the run time by approximately 30 percent.

3.2 � Qualitative results comparison
A sample of the inputs, labels, and predictions is pro-
vided in Fig.  6. As shown, some features, such as joints 
in the sidewalk, are challenging to be identified in the 
RGB image, but are prominent in the thermal image. The 
RGB-thermal pair performs well in predicting the joint 
locations and differentiating them from other classes, 
such as spalling. The thermal-only model’s predictions 
are good for the class, but it lacks the sharpness in identi-
fying the boundaries.

4 � Further discussion
To illustrate the overall performance of the model, three 
specific conditions were evaluated. The first condition 
(Sample 1) displays a complex mix of classes; the second 
condition (Sample 2) represents certain visually similar 
materials with different thermal characteristics; and the 
third condition (Sample 3) represents low light condi-
tions. These three conditions are highlighted in Fig.  7, 
with their performance compared in Tables  4, 5, 6. In 
addition to IOU, the recall rates are presented. In simple 
terms, recalls are used to measure the probability that a 
predicted class for a pixel is true. The equation is similar 
to IOU, except that the FN term is removed, so not rec-
ognizing a class is not as strongly penalized.

Sample 1, shown in the first column of Fig.  7, repre-
sents a scene with a complex mix of cracks and joints, 
as well as some vegetation in a well-lit scene. The results 
of this scenario indicate that the RGBT model is  slightly 
better than the RGB model in identifying cracks. How-
ever, enhancements  from fusing the thermal image are 
observed, as the RGBT model is much better at correctly 
differentiating between the classes. The RGB model misi-
dentified  joints as spalling, resulting in a joint recall and 
IOU score of 0. Vegetative growth was also misidentified 
as spalling.    The T model had a comparable recall rate 
to that of the RGBT and RGB models, but with a slight 
reduction in IOU, as the thermal image lacked crispness 
to correctly maintain the boundaries of the classes.

Fig. 6  Sample Inputs and comparison between RGB, RGBT and T predictions



Page 8 of 10Alexander et al. AI in Civil Engineering             (2022) 1:3 

Fig. 7  Sample inputs and comparisons of output predictions
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Sample 2, shown in the second column of Fig. 7, rep-
resents a much simpler scene with a crack and a joint. In 
this sample, the material to the left of the joint is asphalt, 
and the material to the right of the joint is concrete. The 
two  material types  have different thermal properties. 
This difference can be seen in the thermal input image. 
All models correctly identified the crack, but the RGB 
model misidentified the joint as spalling, resulting in a 
joint recall and IOU score of 0, and overestimated the 
width.

Sample 3, shown in the third column of Fig. 7, repre-
sents a scene with only cracks, but in a low-light con-
dition. The images were taken at night and included a 
pavement stripe for more visual complexity. In this sce-
nario, the cracks were correctly identified by the RGBT 
and T models. But a portion of the crack patterns was 
misidentified as spalling by the RGB model.

In summary, these results show the significant poten-
tials of the proposed RGBT approach in enhancing the 
efficiency and reliability of inspection of in-service civil 
infrastructures. Such inspection is required to identify 
structural damage, while robustly differentiating damage 
patterns from other similar patterns under various light-
ing conditions.

5 � Conclusion
The purpose of this study was to quantify the value of fus-
ing RGB and thermal images to improve a deep learning 
model for damage detection in large civil infrastructure. 
This is a novel approach for automated inspection of such 
infrastructure by leveraging the strengths of each image 
type, especially, where the features from each image type 
are fused at each layer of the deep-learning network. The 
RTFNet framework developed for autonomous vehicles 
was used as the foundation of this study. Images were 
collected by using a relatively inexpensive combined 
thermal and RGB camera, which was connected to a 
mobile device. Thermal-RGB image pairs were properly 
aligned, with annotations for semantic segmentation 
manually created for multiple classes, including cracks, 
joints, spalling and vegetation. Four scenarios were eval-
uated, including RGB-thermal fusion, RGB encoder only, 
RGB-fused with a blank image, and thermal image only. 
Each of the models was trained with over 6000 epochs, 
and using an 80/10/10 split for training, validating and 
testing. The results showed that the fusion of RGB and 
thermal spectrum images created a more robust model 
for the sample dataset, increasing the IOU value boosted 
by approximately 14% over the RGB-only model for crack 
detection, while providing more reliable class identifica-
tion. The models trained with the thermal images alone 
delivered the lowest performance metrics. While the 
thermal-only model was generally capable of predicting 
the proper classes, the predictions lacked crispness and 
were often wider than the actual damage/joints. The pre-
dictions on the RGB images alone were not capable of 
consistently differentiating between the multiple class 
types, particularly in complex and low-light scenes. This 
study confirmed the hypothesis that fusion of RGB and 
thermal images can outperform the RGB-only and T-only 
models. Therefore, it is demonstrated that the network is 
able to leverage additional information provided by ther-
mal images to provide a more robust model for inspec-
tion tasks of in-service civil infrastructures inspection 
tasks.
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Table 4  Results of Sample 1

Model RGBT RGB T

Crack IOU 0.36 0.32 0.29

Crack recall 0.97 0.98 0.97

Joint IOU 0.18 0 0.10

Joint recall 0.94 0 0.82

Table 5  Results of Sample 2

Model RGBT RGB T

Crack IOU 0.28 0.25 0.24

Crack recall 0.95 0.95 0.94

Joint IOU 0.36 0 0.38

Joint recall 0.97 0 0.93

Table 6  Results of Sample 3

Model RGBT RGB T

Crack IOU 0.25 0.22 0.20

Crack recall 0.83 0.68 0.62
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