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Abstract
Introduction  Osteoarthritis (OA) is a common degenerative disorder of the synovial joints and is usually an age-related 
disease that occurs due to continuous wear and tear of the cartilage in the joints. Presently, there is no proven medical manage-
ment to halt the progression of the disease in the early stages. The purpose of our systematic review is to analyze the possible 
metabolites and metabolic pathways that are specifically involved in OA pathogenesis and early treatment of the disease.
Materials and Methods  The articles were collected from PubMed, Cochrane, Google Scholar, Embase, and Scopus data-
bases. “Knee”, “Osteoarthritis”, “Proteomics”, “Lipidomics”, “Metabolomics”, “Metabolic Methods”, and metabolic* were 
employed for finding the articles. Only original articles with human or animal OA models with healthy controls were 
included.
Results  From the initial screening, a total of 458 articles were identified from the 5 research databases. From these, 297 
articles were selected in the end for screening, of which 53 papers were selected for full-text screening. Finally, 50 articles 
were taken for the review based on body fluid: 6 urine studies, 15 plasma studies, 16 synovial fluid studies, 11 serum stud-
ies, 4 joint tissue studies, and 1 fecal study. Many metabolites were found to be elevated in OA. Some of these metabolites 
can be used to stage the OA Three pathways that were found to be commonly involved are the TCA cycle, the glycolytic 
pathway, and the lipid metabolism.
Conclusion  All these studies showed a vast array of metabolites and metabolic pathways associated with OA. Metabolites 
like lysophospholipids, phospholipids, arginine, BCCA, and histidine were identified as potential biomarkers of OA but a 
definite association was not identified, Three pathways (glycolytic pathway, TCA cycle, and lipid metabolic pathways) have 
been found as highly significant in OA pathogenesis. These metabolic pathways could provide novel therapeutic targets for 
the prevention and progression of the disease.

Keywords  Osteoarthritis · Metabolomics · Knee · Lipidomics

Introduction

Primary osteoarthritis (OA), a degenerative joint condition, 
is the most prominent type of arthritis. Patients with OA are 
typically elderly patients, with almost 80% of them being 
at the age of 65 years or above [1]. The most affected joint 
is the knee where OA occurs mostly due to loss of balance 
between continuous wear and tear and remodeling occur-
ring in the joint. This degenerative process is significantly 
influenced by inflammation as well. Besides the knee, hip, 
spine, and small joints are also involved with the slow pro-
gressive loss of cartilage. Although there is still a long way 
to go before total control over OA progression is reached, 
early detection of this condition can help us to better manage 
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this condition and prevent morbidity. Currently, clinical and 
radiological methods are used to classify or grade OA.

Conservatively knee osteoarthritis is treated with 
NSAIDs, cartilage supplements, and calcium. Injections of 
hyaluronic acid [2] or intraarticular steroids are tried. Proxi-
mal fibular osteotomy (PFO) and high tibial osteotomy [3] 
are two joint preservation surgeries that would be instru-
mental in halting the initial phase of the disease. KOA is 
often diagnosed at an advanced stage when a patient exhib-
its medial joint line tenderness, joint crepitus, effusion, and 
deformity, which after initial conservative measures might 
eventually progress to require total knee arthroplasty (TKR).

A closer look at the molecular metabolites in KOA 
patients could help us better understand the disease which 
could potentially lead to the development of newer methods 
of identifying the disease and their treatment which would 
ultimately mean better management in KOA. Though many 
studies have been conducted recently to find and charac-
terize biomarkers, however, none of these biomarkers have 
received clinical validation. It is possible to analyze thou-
sands of different molecules all at once through a single tar-
geted method using mass spectrometry (LC–MS), gas Chro-
matography–Mass Spectrometry (GC–MS), and H-NMR 
(proton nuclear magnetic resonance spectroscopy). Other 
techniques such as microarrays for deoxyribonucleic acid, 
ribonucleic acid, or protein can also simultaneously analyze 
thousands of molecules all at once [4]. Although metabolite 
signatures were identified, no published literature is avail-
able for the treatment of KOA. Proteomic, lipidomic, and 
metabolomic approaches aim to identify molecular profiles 
or signatures of different tissues such as cartilage, bone, syn-
ovium, meniscus, and tendon. Followed by synovial fluid, 
serum, and even urine and fecal samples, hoping to find cer-
tain predictive molecules or molecular classes responsible 
for OA development, disease progression, or possible thera-
peutic targets. The goal of this study is to uncover common 
molecular signatures that can be adopted in the future for the 
prognosis and treatment of KOA. Our objective is to provide 
a review of molecules in the synovial fluid or urine or other 
samples that can distinguish between KOA and non-KOA 
patients.

Materials and Methods

The systematic review was conducted following the 
PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analysis) Guidelines [5]. The study protocol has 
been registered in PROSPERO with registration number 
CRD42024428345. The studies that met the PICO criteria 
that were included in the review are mentioned below. The 
review included studies that fulfilled the PICO criteria as 
mentioned below.

•	 Population: Human or animal subjects with KOA
•	 Intervention: Identification of KOA-specific metabolites 

from body fluid and tissue samples.
•	 Comparator: Healthy controls or no comparator
•	 Outcome: Identification of molecules specific to KOA 

in different fluid and tissue samples in the body. Their 
correlation with diagnosis, treatment, and prognosis of 
KOA.

Study Design

Any original studies qualifying the PICO criteria.

Search Strategy

On February 14th, 2023, the PubMed, Cochrane, Google 
Scholar, Embase, and Scopus databases were searched. 
Search keywords employed for the review were “Knee”, 
“Osteoarthritis”, “Proteomics”, “Lipidomics”, “Metabo-
lomics”, “Metabolic Methods”, and metabolic* used in 
various combinations with the Boolean operators—“AND” 
“OR” and “NOT”. The review included the original studies 
on animal and human KOA models with established pri-
mary and surgically induced OA, respectively. Only Eng-
lish language studies were selected for review. Analytical, 
observational, and cross-section studies were included in 
the review. Review articles, conference papers, brief reports, 
opinions, and editorials were excluded from the review. The 
screening was done by two reviewers independently on the 
Rayyan QCRI tool. Any discrepancy between the reviewers 
was resolved by the involvement of the third reviewer.

Data Extraction

Two reviewers independently retrieved relevant data from 
articles included for analysis. The following data were 
extracted:

1.	 Study characteristics: Year of publication, authors, the 
animal model used (if applicable), and methodology 
used for the study,

2.	 Baseline characteristics: Method of induction of arthri-
tis, number of subjects in both the groups, nature of the 
control group, names, and the number of metabolites 
isolated, and

3.	 Outcomes: Clinical changes in patients, histologic 
changes in KOA, and metabolite level changes from 
baseline.

Risk of Bias and Quality Assessment

The risk of bias in the included studies was assessed by the 
JBI risk of bias tool [6] by two reviewers independently. 
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A third reviewer was included to resolve any discrepancy 
between the reviewers.

Results

Search Results

After title screening, 458 articles were retrieved from 5 
databases. After eliminating the duplicates, the abstracts of 
297 articles were subjected to screening. In the end, a total 
of 53 papers were selected for full-text screening. While 
screening all the included papers, one article was excluded 
because of the use of non-English language, one article did 
not have details of metabolites, and one article did not have 
any healthy controls. These three were excluded. To synthe-
size the data, 50 papers were included. The PRISMA flow 
diagram of the study selection is shown in Fig. 1.

Quality Assessment

The methodological quality of the included studies was 
assessed using the JBI tool and is included as supplementary 
file 1. The included studies did not show a high risk of bias 
to warrant exclusion.

General Characteristics

Thirteen studies focused exclusively on animal studies and 
the remaining thirty-seven papers focused on human studies. 
Based on samples used for metabolic analysis, 6 studies used 
urine samples which are shown in Table 1, 15 studies used 
plasma which is presented in Table 2, 16 studies used syno-
vial fluid (Table 3), 1 study used fecal samples (Table 4). 
Four studies were based on joint tissue (Table 5), and eleven 
studies used serum samples (Table 6).

Fig. 1   PRISMA flow diagram

Records identified through 
database searches (n = 458)

Records removed before 
screening:

Duplicate records removed (n 
= 161)
Records marked as ineligible 
by automation tools (n = 0)
Records removed for other 
reasons (n = 0)

Records screened (n = 297) Records excluded (n = 243)

Reports sought for retrieval 
(n = 53) Reports not retrieved (n =0)

Reports assessed for eligibility
(n = 53)

Reports excluded:
No healthy Controls (n = 1)
No discussion on OA and 
Metabolomics (n = 1)
Language other than English 
(n = 1)

Studies included in the review
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Metabolomics in Synovial Fluid

We analyzed 16 synovial fluid studies, of which 12 studies 
were human and 4 studies were animal. One study employed 
both synovium tissue and synovial fluid as their sample, 
whereas two other studies simultaneously evaluated metabo-
lites in synovial fluid and plasma. The remaining 13 studies 
were evaluated based on synovial fluid as the sample.

Animal Studies  All the animal studies used different ani-
mal models. One study used male mice [7], another used 

18 skeletally mature female Suffolk-cross sheep [8] and 
one study was conducted on white rabbits [9]. Two out of 
four studies demonstrated altered levels of branched-chain 
amino acids (BCCA). Levels of leucine, isoleucine, and 
valine were upregulated in OA models compared to healthy 
controls. All three studies did not show any common metab-
olites in their results. Mickiewicz et al. [8] indicated a fun-
damental reduction in the concentration of glucose in OA 
models. Yiwen et al. [9] revealed a consequential accumula-
tion of arginine and proline levels in ACL transected rabbit 
knee and noted elevated levels of N1-acetylspermidine. In 

Table 1   Metabolic analysis in urine samples

References Species Comparator (controls) Pathway affected Metabolites in OA

Abdelrazig et al. [18] Human Healthy non-OA controls Pyruvate and TCA pathway 
(increase activity)

Purine pathway
Lysine metabolism
Glutamine metabolism

Acyl phosphate, fumarate, and 
S-lactoylglutathione increased

Significant low levels—4-hydroxy-
butyrate, 3-oxoalanine, and homo-
cysteine sulfinic acid

Low levels—tryptophan, pipecolic 
acid, hypoxanthine, and aminoadi-
pic acid

Increased levels of 3-nitrotyrosine 
are observed

Increased urinary excretion of 
2-keto-glutamic acid(eightfold)

Li et al. [19] Human Healthy controls and two OA 
phenotypes

TCA pathway activity increased Increased isocitrate aconitate and 
histamine levels

Reduced histidine and glutamine 
levels

Jiang et al. [17] Animal Healthy rat models without OA TCA cycle
Glycolysis pathway
Fatty acid metabolism
Inhibition of activation of insulin 

signaling

Decreased—glutamine, N-carbamyl 
glutamate, urocanic acid, 5-amino 
valeric acid, and asparagine

Increased alanine content
Increased—lactic acid, pyruvic acid, 

and α-ketoglutaric acid levels
2,8-Hydroxyquinoline levels are 

decreased
Increased diglycerol and 

D‑(glycerol‑1‑phosphate)
Decrease—cytosine levels

Loeser et al. [20] Human Age, BMI, and gender matched 
non-radiographic progressive OA 
models

Amino acid and collagen metabo-
lism

TCA cycle and fatty acid metabo-
lism

Higher—hydroxybutyrate, pyruvate, 
creatine/creatinine, and glycerol 
levels

Lower—histidine and methylhisti-
dine levels

Lower—urine arginine levels
Yin et al. [16] Animal Sham-operated rat models TCA cycle upregulated

Phenylalanine metabolism
Nucleotide metabolism
Lipid metabolism affected

Glycine, hippuric acid, acetoacetic 
acid, 5 hydroxy indole acetic, ala-
nine, threonine were upregulated

Adipic acid, glutamine, phenylacetic 
acid, azelaic acid, tryptophan, 
histidine, succinic acid were down-
regulated

Lamers et al. [52] Human Healthy non-OA controls Glycolysis pathway
Histidine metabolism

Lower levels of histidine and methyl 
histidine

Upregulated hydroxybutyrate, 
pyruvate, creatine/creatinine and 
glycerol levels
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addition, tryptophan and its derivatives were also elevated 
in samples of OA models compared to sham controls. Hahn 
et al. [7] for their study used two groups of mice—control 
fat-fed (CF) and high fat-fed (HF) mice. These two groups 
were evaluated at the end of the 52 weeks. In CF mice, they 
revealed downregulation of metabolites like lysine degra-
dation, pyruvate metabolism, fatty acid metabolism, steroid 
biosynthesis, and tryptophan metabolism; in HC mice on 
the other hand, there was a positive association with coen-
zyme A biosynthesis, short-chain fatty acid synthesis, and 
BCCA synthesis.

Human Studies  We analyzed 12 human studies, 6 of 
which showed an upregulation of the TCA cycle. Amino 

acid metabolism was altered in 8 out of 12 studies. One 
study indicated changed nucleotide metabolism, while 
seven studies revealed altered lipid metabolism. Argi-
nine levels varied in ten studies, eight out of ten studies 
exhibited depletion of arginine levels in OA, but Carlson 
et al. [10] laid out an enhancement of glycine, serine, ala-
nine threonine, lysine, proline, and arginine levels in OA. 
Weidong et al. [11] found that OA patient’s leucine levels 
were considerably higher when compared to healthy con-
trols. Corina et al. [12] found 43 metabolites, among them 
9 were important. But out of these nine, four were con-
sidered significant for the study, they were phospholipids, 
phosphatidylcholines, sphingomyelin, and ceramide. This 
study also revealed that phosphatidylcholine, diadenosine 

Table 4   Metabolic analysis in fecal samples

References Species Comparator (control) Pathway affected Metabolites in OA

Rushing et al. [21] Human OA controls without hand OA and KL 
stage 0–1

Leukotriene metabolism
Tryptophan metabolism
Pyruvate metabolism

Indole-3-acetate, tryptophan, indole pyru-
vate, indole acetaldehyde are elevated

Elevated levels of dipeptides and tripeptides
Hippuric acid levels are decreased in OA

Table 5   Metabolic analysis in joint tissue samples

References Species Comparator Pathway affected Metabolites in OA

Jessica et al. [22] Human No comparator Amino acid metabolism Glucose 
metabolism

Glucose most significant metabo-
lite differentiating low- and 
high-grade synovitis, followed 
by glycine, dimethyl sulfone, 
dimethyl-alanine, acetate, acetone 
and tryptophan

Haudenschild et al. [23] Animal No comparator Vitamin D metabolism
Amino acid metabolism Pyrimi-

dine pathway

Upregulation of vitamin D3 in OA. 
Downregulation of deoxycytidine 
triphosphate, glutamine, gluta-
mate, arginine, and proline

Shiyu et al. [61] Human Mutual comparison between grade 
3 OA and grade 4 OA patients

CoA biosynthesis pathway
Glycerophospholipid pathway
Histidine, lysine, glycine pathway
Fructose and mannose pathway

Levels of choline, 2-propylpiperi-
dine, rhamnose and monomethyl 
glutaric acid were higher in grade 
4 OA

Methylhistamine, sphingomy-
elin, zeranol, propanol, 5-ami-
nopentanamide, dihydrouracil, 
2-hydroxypyridine and 3-amino-
2-piperidone levels were lower in 
grade 4 OA

Welhaven et al. [62] Human Healthy cartilage from tissue bank Lipid pathway
(glycerophospholipid pathway)
Amino acid pathways. Vitamin K 

and E metabolism

Elevated levels of arachidonic acid, 
leukotriene F4, panaxydol were 
higher in OA cartilage

Vitamin E metabolism was upregu-
lated, but vitamin A levels were 
decreased

Decreased levels of histidine but 
increased levels of tryptophan, 
methionine, cysteine, aspartate, 
and asparagine were noted in OA 
samples
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Table 6   Metabolic analysis in serum samples

References Species Comparator (controls) Pathway affected Metabolites in OA

Schadler et al. [32] Human No comparator Leptin pathway Higher FABP4 and leptin levels
Onurol et al. [48] Human Compared with Non-obese OA

Control group and
Healthy non-OA
Control group

Glycerolipid, nitrogen, glycerophos-
pholipid, -lipid metabolism

Phosphatidylethanolamine, lysoPC, and 
PA levels were high

Indole acetic acid levels are increased
Significantly elevated levels of valine

Tootsi et al. [63] Human Healthy non-OA controls Urea cycle
Glycine–serine pathway

Increased levels of leucine, arginine
Serine, and spermidine
Lower levels of glycine and serotonin
Decreased spermine:spermidine ratio

Xie et al. [33] Human No comparator Fatty acid metabolism
Beta oxidation of long-chain fatty 

acids

Altered ratios of C16:1:C14 and 
C16:1:C12, choline:lysine and 
choline:C5-OH

and Sarcosine: Proline and C3:1:C2
Chen et al. [31] Human Healthy non-OA

controls
Amino acid metabolism Elevated levels of ten metabolites

(leucine, arginine, valine, isoleucine, 
tryptophan, alanine, lysine, creatine, 
tyrosine and 4- hydroxy- L-proline)

Downregulated metabolites
(glutamine, phenylalanine, serine, 

proline, GABA, creatinine, dimethyl-
glycine, taurine, asparagine, amin-
obutyric acid, acetyl carnitine and 
citrulline)

Tristan et al. [29] Animal Healthy control rats TCA cycle
Amino acid metabolism

72-h analysis post-surgery (ACL resec-
tion OA models)—Increase concentra-
tion of glycine and 9-hexadecenoylcar-
nitine and decreased carnosine levels

4-week follow-up—Increase levels of 
dodecenoylcarnitine, acetic acid and 
9- decenoylcarnitine

10 weeks—decrease levels of D- man-
nose and increased levels of hexanoyl 
carnitine and butyryl carnitine

Anthony et al. [30] Animal Sham control sheep
models

Amino acid pathway (BCCA path-
ways)

4 weeks post-ACL resection OA models 
showed lower levels of BCCA (valine, 
leucine and isoleucine)

12 weeks postop
Increased levels of glutamine, creatine, 

creatinine and 3 methyl histidine were 
seen with OA models compared to 
sham models

Tootsi et al. [49] Human Healthy non-OA
controls

Lipid metabolism The levels of C10:1, C10:2, C12, C12:1, 
C14, C14:2, C14:1-OH, CPT1-ratio 
and total AC/C0 were found to be 
significantly lower in the OA group

Qingmeng et al
[64]

Human Healthy non-OA
controls

Amino acid metabolism Significantly decreased levels of glycine 
and histidine in OA

L-Tryptophan levels were elevated with 
OA compared to healthy controls

Zhai et al. [37] Human Healthy non-OA
Controls

Amino Acid metabolism Serum BCAA to histidine ratios are 
significantly altered

Neus et al. [36] Animal No comparator Amino acid metabolism
Lipid metabolism
Arachidonic acid pathway

Eight organic acid derivatives, benze-
noids, Organoheterocyclic compounds 
and lipid molecules were altered in all 
OA-induced samples



822	 Indian Journal of Orthopaedics (2024) 58:813–828

5′,5′- diphosphate, and lysophosphatidylcholine levels 
were heightened in late OA. Zhang et  al. [13] detected 
a total of 86 metabolites, among which they found that 
glycerophospholipids, sphingolipids, biogenic amine, 
and acylcarnitine were higher in OA patients. Anderson 
et  al. [14] compared OA with rheumatoid arthritis (RA) 
controls. Citrate, creatinine, glucose, glutamine, glycerol, 
pyruvate, and taurine levels were raised in OA patients 
while 3-hydroxybutyrate, acetate, isoleucine, leucine, sar-
cosine, and threonine were higher in RA. Kim et al. [15] 
graded OA using different metabolites. From the synovial 
fluid of both early and late-stage OA, 114 metabolites 
were identified, of which 28 were the ones differentiating 
early OA from late OA. The key metabolites differentiat-
ing were higher levels of malate, ethanolamine, squalene, 
glycerol, myristic acid, oleic acid, lanosterol, heptadeca-
noic acid, and capric acid in late OA.

Metabolomics in Urine Sample

We analyzed six studies that evaluated urine metabolites, 
which consisted of two animal studies and four human 
studies.

Animal Studies  Both studies used Sprague–Dawley rats 
as their medium of analysis. Both studies similarly noted 
significant upregulation in the TCA cycle and fatty acid 
metabolism. Yin et  al. [16] identified 14 metabolites of 
which glycine, hippuric acid, acetoacetic acid, 5 -hydroxy 
indole acetic, alanine, and threonine were upregulated 
but citric acid, adipic acid, glutamine, phenylacetic acid, 
azelaic acid, tryptophan, histidine, succinic acid were 
downregulated. Due to abnormal activity of the TCA 
cycle, citric acid and succinic acid levels were decreased 
in the OA rat’s urine samples. Jiang et  al. [17] identi-
fied multiple components as potential biomarkers of OA 
including, alanine, alpha-ketoglutarate, asparagine, malt-
ose, and glutamine all of which were significantly altered 
in OA compared to healthy controls.

Human Studies  All four studies in common exhibited 
elevated levels of amino acid metabolism, but only three 
studies showcased an upregulation of the TCA cycle. 
Abdelrazig et  al. [18] recognized 26 altered metabolites 
in patients with inflammatory OA. Alterations in amino 
acid metabolism, pyruvate metabolism, and TCA cycle 
were also noted by them. According to Li et al. [19], OA 
patients with joint effusion had lower levels of glutamine 
and histidine and higher levels of aconite, isocitrate, cit-
rate, and histamine. Loeser et al. [20] recognized that argi-
nine and histidine levels were reduced in OA patients in 
contrast to healthy controls.

Metabolomics in a Fecal Sample

Only one fecal study which was based on a human model 
was analyzed in our study. This study revealed alterations 
in amino acid, tryptophan, and leukotriene metabolism. 
Rushing et al. [21] analyzed metabolite changes associated 
with gut microbiota in obese OA patients. More than 100 
metabolites have been isolated but the most prominent dif-
ferentiators between OA cases and controls were dipeptides 
and tripeptides. In comparison to controls, it was identified 
that OA patients’ fecal samples had lower hippuric acid 
(phenylalanine derivative).

Metabolomics in Joint Tissue Samples

Four studies analyzed joint tissue sampling for metabolic 
analysis in OA, of which three were based on human mod-
els and one study on an animal model. One human study 
utilized both synovial fluid and synovial tissue for analy-
sis while the other three studies including the animal study 
focused only on joint tissue study. All four studies showed 
altered amino acid metabolism, but no similar metabolites 
were detected. Jessica et al. [22] showcased that 42 metabo-
lites were isolated from synovial tissue and 29 metabolites 
from synovial fluid but only 3 metabolites (lactate, dimeth-
ylamine, and creatine) positively correlated in both sam-
ples. The most crucial metabolite to distinguish between 
low-grade and high-grade synovitis has been revealed to be 
glucose. Haudenschild et al. [23] used mice models with 
ACL resection, which were injected with intraperitoneal 
flavopiridol (cdk9 inhibitor). Flavopiridol downregulates 
transcription of early response genes, which were associated 
with joint damage. The study concluded that flavopiridol 
prevented the upregulation of vitamin D3, phylloquinone, 
and acetylcarnitine.

Metabolomics in Plasma Study

A total of 15 studies were analyzed, of which 3 were ani-
mal studies and 12 were human studies. In the 12 studies 
based on human models, 2 used plasma and synovial fluid 
for analysis.

Animal Studies  All the animal studies used mice models for 
analysis. Only lipid metabolism was commonly altered in all 
the studies, with elevated levels of Lysophosphatidylcholine 
and phosphatidylcholine derivatives. One study observed 
significant alteration in the TCA cycle and its metabolites. 
Another study analyzed gut metabolites targeting HIF 1alpha 
to inhibit OA. Zhiyuan et al. [24] noted enhanced levels of 
iron in OA models causing a deleterious impact on joint 
homeostasis. The study presented higher serum iron levels 
in OA patients compared to the control group but transferrin 
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levels and TIBC were lower in OA models. Pousinis et al. 
[25] analyzed lipidomics study in mice models and found 24 
altered metabolites, of which 6 metabolites were considered 
significant in OA models, these metabolites were related to 
steroid biosynthesis, sphingolipid metabolism, linoleic acid, 
alpha-linolenic acid, glycerophospholipid, and arachidonic 
acid metabolism.

Human Studies  A total of 12 human studies were analyzed, 
among which lipid metabolism is the only pathway com-
monly affected in most of the studies, followed by amino 
acid metabolism. Lysophosphatidylcholine: The phosphati-
dylcholine ratio was elevated in most of these studies, which 
proves to be a prominent biomarker for OA. Other signifi-
cant metabolites identified were arginine, glycine, leucine, 
and histidine. Costello et  al. [26] studied the correlation 
between metabolites and pain and functional non-respond-
ers in post-TKR patients—5 phosphatidylcholines (PC), 4 
amino acids (proline was the most significant) 2 acylcar-
nitine, and 1 biogenic amine were found to be associated 
with pain and 14 PC (PC aaC36:8 was most significant), 7 
amino acids, 1 LysoPCs and carnitine were associated with 
function non-responders in OA. Zhang et al. [27] studied the 
relevance of arginine in OA patients, out of six significant 
metabolites, arginine was the most significant metabolite in 
all stages of the study. Knee OA patients had on average 
69 microM lower plasma arginine levels compared to con-
trols. ROC analysis also showed that arginine had the great-
est diagnostic value with an AUC of 0.984. The study also 
found 2.2 times higher levels of ornithine in OA patients 
compared to control. Zhai et al. [28] studied the significance 
of phenylalanine in the radiographic advancement of OA. 
After age, sex, BMI, and clinical site adjustment, the study 
revealed phenylalanine concentration was substantially 
linked to knee OA progression. Moreover, phenylalanine 
levels were highly linked with knee progression in females 
and not in men.

Metabolomics in Serum Study

Eleven studies were analyzed with serum samples, three 
were focused on animal models, and eight on human mod-
els. While five studies pointed out altered lipid metabolism 
and seven studies indicated altered amino acid metabolism. 
LysoPCs and PC were enhanced in three studies and altered 
levels of glycine, histidine, arginine, and leucine were exhib-
ited in three studies.

Animal Studies  The animal study was based on two distinct 
models; one was on sheep and the other on mice. Both stud-
ies in common indicated enhanced amino acid metabolism. 
Tristan et al. [29] identified 17 significant metabolites after 
72 h post-surgery (ACL resection in mice models), but at 

4 weeks follow-up, only 8 metabolites were found significant 
and at 10 weeks follow-up, only 3 metabolites (decreased 
D-mannose levels and increased hexanoyl carnitine and 
butyryl carnitine) were elevated between OA models and 
sham models. Anthony et al. [30] following meniscal desta-
bilization, at 4 weeks, identified that TMAO, glutamine, and 
acetate levels were increased, and lactate and glycine levels 
were decreased whereas at 12  weeks postop only TMAO 
and tyrosine were elevated.

Human Studies  In all the human studies, lipid metabolism 
and amino acid metabolisms were altered. Chen et al. [31] 
utilized targeted metabolomics analysis and detected 25 
amino acids and 4 biogenic amines. The study found the 
metabolites with the most significant impact were found to 
be involved in the metabolism of alanine, aspartate, gluta-
mate, arginine, and proline. Schadler et al. [32] studied the 
association of FABP4 and leptins with knee OA severity 
and BMI. Higher levels of FABP4 and leptin levels were 
found in the obese women population which is a predictor 
for OA progression. Xie et al. [33] studied the relationship 
between knee cartilage loss and associated metabolites. The 
study revealed that four metabolites were associated with 
patellar cartilage loss, and four metabolites each were asso-
ciated with lateral and medial cartilage loss in OA patients 
compared to controls.

Discussion

Metabolomics is the comprehensive analysis of small mol-
ecules in a biological system. Metabolites are the ultimate 
end products of different metabolic pathways that project 
the genotypic, phenotypic, and environmental characteristics 
of various biological systems. We have analyzed 50 works 
of literature to detect metabolic perturbations in the urine, 
blood (plasma and serum), synovium, feces, and synovial 
fluid of animal models and human models [34].

Potential Biomarkers of OA

The study has identified various biomarkers that were sig-
nificant in the detection and treatment of OA. These include 
various amino acids, lipids, nucleotides, and glucose 
metabolites.

Proteomics in OA

Arginine is a semi-essential amino acid in humans, which 
is one of the most important metabolites we identified in 
OA patients. Arginase stimulates collagen formation and 
cell proliferation through the urea and L-ornithine pathway 
which causes fibrosis in OA [35]. According to Zhang et al. 
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[27], patients with knee OA had a plasma concentration of 
ornithine that was 2.2 times greater than that of the control. 
The arginine:proline ratio was lower in OA patients than in 
controls, thereby suggesting that OA is caused by overac-
tivity related to arginine depletion. Five major metabolites 
were identified by De Sousa et al. [36] as being related to 
OA; however, arginine was determined to be the notable 
metabolic marker. BCCA​ includes valine, leucine, and iso-
leucine as essential amino acids, which act as a medium 
for various protein and energy metabolism and precursors 
to other amino acids. Our study concluded that BCCA 
were significant OA markers. Anthony et al. [30] identified 
decreased levels of serum BCCA in OA subjects and the 
ratio of BCCA to histidine was also determined as a bio-
marker for knee OA. Zhai et al. [37] showed an association 
between valine:histidine and leucine:histidine ratios and 
knee OA was statistically significant. Also, the study showed 
only the BCCA:histidine ratio was significant but not the 
serum concentration of histidine alone as a marker for OA. 
Phenylalanine and tryptophan are essential aromatic amino 
acids involved in protein synthesis. According to Guangju 
Zhai et al. [28], phenylalanine levels in the plasma of OA 
progressors were reportedly higher than those of non-pro-
gressors. The study proved no association of WOMAC pain 
scores with phenylalanine levels in OA. In contrast, Chen 
et al. [31] quantified significantly lower levels of phenylala-
nine in a serum study of OA patients. Mickiewicz et al. [8] 
identified elevated levels of phenylalanine synovial fluid in 
mice models. Rushing et al. [21] showed an association of 
tryptophan metabolism with the maintenance of intestinal 
health, through kynurenine and serotonin pathways.

Lipidomics in OA

Phosphatidylcholine and LysoPCs and their ratios are identi-
fied as potential biomarkers of OA in our study. Corina et al. 
[12] in their study had identified phosphatidylcholine, dia-
denosine 5′,5′-diphosphate, and lysophosphatidylcholine had 
higher values in late OA. According to Hahn et al. [38], OA 
patients undergoing joint replacements typically had lower 
PC levels than controls. Bingyong et al. [39] found abnor-
mal levels of glycerophospholipids in synovial fluid samples 
from advanced OA patients. Alyssa et al. [40] compared syn-
ovial fluid between OA, RA, and healthy controls and found 
19 significant metabolites were altered in diseased synovium 
compared to healthy control of which more than half were 
phospholipids. Poulami et al. [41] compared the progression 
of OA between high-fat diet-fed mice and lean-diet mice and 
found four potential biomarkers of OA in high-fat-fed mice 
which were 3 lysophosphatidylcholine (LysoPCs) analogs 
and one phosphatidylcholine (PC) analog. In the analysis 
of the plasma of 109 candidates, Zhang et al. [42] identi-
fied that the LysoPCs:PC ratio has shown great specificity 

and sensitivity in differentiating between healthy controls 
and advanced OA. Sphingomyelins, ceramides, and long-
chain fatty acids were also identified in many of our studies 
as significant markers of OA. Meessen et al. [43] studied 
a significant association between fatty acid chain length 
and stages of OA, especially end-stage OA, but the study 
showed no association between fatty acid chain length and 
OA progression.

Metabolic Pathways Affected in OA

TCA Cycle  Most of our studies including blood, synovium, 
synovial fluid, and urine studies showed that the most affected 
pathway in OA pathology was the TCA cycle. The oxidation 
of acetyl coenzyme A (CoA) which is produced from pro-
teins, fatty acids, and carbohydrates is how the TCA cycle 
harvests energy [44]. Abdelrazig et al. [18] examined urine 
samples from 74 patients with OA and found elevated lev-
els of fumarate, acetyl phosphate, and S-lactoylglutathione 
which suggest that the disrupted metabolism in cartilage 
cells is causing increased activity of the pyruvate pathway 
and the TCA cycle. After analyzing 27 urine samples from 
OA patients, Li et  al. [19] stated that the TCA cycle was 
more active in OA patients due to increased expression of 
aconitic acid, isocitric acid, and citric acid.

Glycolysis/Pyruvate Pathway  Glycolysis is commonly 
affected in the progression of OA. Chondrocytes’ main 
energy source is heavily reliant on glycolysis due to a 
hypoxic environment [45]. Other studies revealed a strong 
relationship between the advancement of OA and lactate 
levels which were found to be markedly raised in synovial 
fluid of OA patients [46]. Jessica et al. [22] analyzed syno-
vial fluid and synovium in 21 and 37 OA patients, respec-
tively, and found upregulation of the glycolytic cycle with 
increased levels of glucose, lactate, and pyruvate in synovial 
samples.

Lipid Metabolism  A close association between OA and 
lipid metabolism has been observed. Lipolysis breaks down 
triacylglycerol into glycerol and fatty acids, which exert an 
important influence on the articular microenvironment and 
cellular function of joints. Lipolysis induces the produc-
tion of excessive adipokines causing inflammation of local 
tissue [47]. According to Onurol et  al. [48], certain glyc-
erophospholipids were elevated in knee OA and can serve 
as biomarkers of OA. Altered lipid metabolism also causes 
elevation of phosphatidylethanolamine, LysoPCs, and PA 
levels in OA patients compared to the control group. After 
analyzing data from 70 individuals with OA of the knee and 
hip, Tootsi et al. [49] concluded that the disruption of lipid 
metabolism is a key pathophysiological characteristic of 
OA. Alteration in lipid metabolism causes elevation of lev-
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els of potential metabolites like glycerophospholipids (PC 
and LysoPC) and sphingolipids causing activation of proin-
flammatory mediators.

Markers of OA Staging

a.	 Early and late markers of OA: Metabolomics can be 
applied in staging OA by identifying markers for assess-
ing the progression and severity of the disease. Our 
study has analyzed some markers for early and late OA 
(Table 7). Corina et al. [12] showed heme was found 
at higher levels in early OA. Studies have also found 
elevated levels of phosphatidylcholine, diadenosine 
5′,5′-diphosphate, and phosphatidylcholine in late OA.

b.	 Obesity-related markers of OA: Some biomarkers were 
associated with OA in obese patients. Onurol et al. [48] 
in their study, additionally identified that obesity in OA 
patients affected the acidosis and metabolites concerning 
oxidative stress. Markers related to obesity in OA are 
mentioned in Table 7.

c.	 Markers associated with KL staging of OA: Epide-
miological studies of OA have frequently employed 
the Kellgren–Lawrence classification of diseases as a 
research tool that graded OA from 0 to 4 grades with 
increasing severity of the disease [50]. Kim et al. [15] 
analyzed the synovial fluid of 15 patients and noted a 
clear separation of metabolites for each stage, KL 1 
showed increased levels of arabitol, galactose, glucose, 
mannose, and tagatose. KL 2 showed increased levels 
of urate, beta-alanine, pyruvate, and terephthalate. KL 
3 and 4 showed increased levels of fatty acids, proline, 
phenylalanine, squalene, and trehalose-6-phosphate. 
Peyton et al. [8] analyzed 36 articles which were based 
on 4 samples (urine, plasma, synovial fluid, and serum) 
and they concluded that there are more than 10 meta-
bolic pathways and a vast array of metabolites that are 
related to OA. They could only identify the tryptophan 

pathway as the only association with OA pathogenesis. 
Akhbari et al. [51] reviewed only 17 articles which con-
sisted of only synovial fluid samples, which makes their 
research inconclusive. They had shortlisted 24 biomark-
ers that are not specific to OA but also to RA and other 
inflammatory arthropathies. Haartmans et al. [4] focused 
solely on the method of analysis using 24 studies in dif-
ferent samples and concluded that mass spectrometry 
was the best tool for metabolomic analysis; however, no 
metabolites or metabolic pathways associated with OA 
were identified. Even though numerous metabolites were 
shortlisted as significant, no direct correlation could be 
mapped from their analysis. Through the analysis of 50 
articles which focused on samples of 6 different sam-
ples (urine, synovial fluid, serum, plasma, feces, and 
joint tissue), we were able to arrive at a definite conclu-
sion to our review. Our study precisely narrowed down 
three specific pathways associated with OA pathogenesis 
which are TCA cycle, glycolysis, and lipid pathways. 
We were also able to narrow down metabolites that are 
specific for each stage of OA pathogenesis.

Limitations

Our study had some limitations. Heterogeneity is the fore-
most limitation in our study because selected populations 
were different in each study irrespective of age, gender, and 
ethnicity, and samples were also different in each study with 
various platforms for analysis differing in terms of coverage, 
sensitivity, and selectivity among the different studies. Each 
of these studies selected was a retrospective case–control 
study. These studies make it difficult to pinpoint the exact 
temporal sequence in which exposure factors and output 
occurrence occur which restricts the capability to deter-
mine the causality. There were numerous metabolites from 

Table 7   Metabolic markers of osteoarthritis

Markers of OA Metabolites

Early OA markers Heme has a higher level in eOA compared to lOA
Late OA markers Sphingomyelin, inosine 5′-phosphate, phosphatidylcholine, diadenosine 5′,5′-diphosphate, and phosphatidylcholine have 

higher levels in late OA
Higher levels of glycerophospholipids

OA markers in obesity Glycolate, hippurate, and trigonelline were among the important metabolites for distinguishing progressors from non-
progressors at baseline

Alanine, N-dimethylglycine, glycolate, hippurate, histidine, and trigonelline were elevated in obese OA patients
Glycerophospholipids were elevated in obese OA patients—biomarkers of obesity-related OA

Pain-related markers PC aa C28:1 is the key metabolite associated with sustained knee pain
PC aa C28:1 to PC aa C32:0 ratios provided further insights into the potential contributions of PC metabolism to sus-

tained pain
Increased accumulation of acylcarnitine causes proinflammatory mediators
Sphingomyelinase breaks down sphingomyelin into phosphocholine and ceramide which are involved in inflammation
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different studies that were associated with OA, but no com-
mon association was identified in all studies. However, three 
metabolic pathways identified were common in all studies 
and could be narrowed down to a few significant pathways.

Future Recommendations

As per our current study, the use of metabolites in different 
samples can be tried for accurate analysis and identifica-
tion of the progression of OA. Different metabolites were 
identified with different fluid samples which gave us a core 
idea about assessing the severity and progression of OA. 
Especially amino acids like arginine and valine, molecules 
like CAT, and fatty acid metabolites like LysoPC and PC 
could become targets for newer treatment development for 
OA but are not specific. Metabolic pathways like glycolysis, 
TCA cycle, and lipid pathways can be potential key targets 
for preventing OA progression, but further research in the 
field of metabolite identification specific to OA is required 
which will bridge the gap between current evolving ideas 
and concepts of metabolomics with early diagnosis, treat-
ment, and disease control.

Conclusion

All these studies showed a vast array of metabolites and 
metabolic pathways associated with OA. Metabolites like 
lysophospholipids, phospholipids, arginine, BCCA, and his-
tidine were identified as potential biomarkers of OA but a 
definite association was not identified. Three pathways (gly-
colytic pathway, TCA cycle, and lipid metabolic pathways) 
have been found as highly significant in OA pathogenesis. 
These metabolic pathways could provide novel therapeutic 
targets for the prevention and progression of the disease.
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