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Abstract
The present study proposes a new fuzzy finite element method for dynamic multibody interaction with consideration for 
structural damage. Here, fuzzy parameters are equivalently transformed into stochastic parameters using information entropy, 
and the fuzzy response of the structure is obtained by fuzzy calculation combined with the new point estimation method. 
Numerical examples are used to illustrate the accuracy and efficiency of the presented methods, and scanning method simu-
lations are implemented to validate the computational results. Considering that the damage degree of the pier is uncertain, 
namely fuzzy uncertainty, stiffness reduction is used to simulate the damage of the pier. The fuzzy dynamic response of the 
train–bridge system is investigated when the pier structure and the mass of the train are fuzzy parameters. The response of 
the train–bridge interaction considering damage far exceeds that obtained from conventional deterministic parameter cal-
culations. To ensure running safety, studying the response of the vehicle-system coupled vibration with fuzzy parameters 
is of great significance.

Keywords  Fuzzy · Information entropy · Multibody system · Damage

1  Introduction

In recent decades, the coupled vibration caused by high-
speed trains passing through bridges has been extensively 
studied [1]. Over the years, both the train and bridge mod-
els have been well refined [2]. The research on numerical 
algorithms and other aspects of train–bridge system research 
are also constantly evolving [3]; however, the uncertainty 
of train and bridge parameters is not considered much, and 
the values of train and bridge are usually regarded as exact 
values [4]. In reality, the uncertainty of structural parameters 
will inevitably occur during the construction and service of 
bridges, and the mass of train also presents uncertainty dur-
ing running [5]. Obviously, the traditional dynamic analysis 
of the train–bridge-coupled system, which considers struc-
tural parameters as exact values, is not applicable to the real 
complex situation [6].

Various stochastic finite element methods have been 
proposed and applied to train–bridge-coupled systems 
[7], such as Monte Carlo method [8], stochastic perturba-
tion method [9], orthogonal expansion theory [10], point 
estimation method [11], and probability density evolu-
tion theory [12]. These methods are used for dynamic 
analysis of train–bridge-coupled systems with uncertain 
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parameters. In reality, certain structural parameters, like 
the extent of damage to piers, exhibit uncertainty that can-
not be adequately explained by randomness. Analyzing 
these parameters through probability is inconvenient and 
inaccurate due to their varying magnitudes. The uncer-
tainty of damage belongs to another kind of uncertainty 
different from randomness-fuzziness. Fuzziness refers to 
the objective attribute of things in the intermediate transi-
tion process, which is the result of the actual intermediate 
transition process between things [13]. Fuzziness is very 
suitable for explaining the uncertainty of parameters such 
as damage.

Despite Professor Zadeh [14] introducing the concept 
of fuzzy sets in the 1960s, many fuzzy finite element 
methods have been proposed [15]. However, it still can-
not effectively address the challenges posed by fuzzy 
parameters in solving fuzzy dynamics problems [16]. 
The scanning method is generally used to calculate fuzzy 
response [17], and due to its large computational com-
plexity, scholars have begun to study for fuzzy meth-
ods to reduce computational complexity. Rao et al. [18] 

proposed a fuzzy finite element method that considers 
the geometric shape, material properties, external loads, 
and boundary conditions of the structure as fuzzy param-
eters for static analysis. Massa et al. [19] proposed a new 
and effective method to improve the predictive ability of 
numerical models in static analysis situations. Yang et al. 
[20] proposed the fuzzy variational principle, which is 
also used for static analysis of structural systems with 
fuzzy parameters. Wasfy et al. [21] proposed a compu-
tational method for predicting the dynamic response of 
flexible multibody systems and evaluating their sensi-
tivity coefficients containing fuzzy parameters. Möller 
B et al. [22] developed and formulated an α-generalized 
method for fuzzy structural analysis using an improved 
evolutionary strategy. It should be noted that when the 
fuzzy output is non-monotonic and the evaluation cost 
is high, the cost of solving these optimization problems 
may be high [23]. Pham et al. [24] proposed an improved 
optimization method based on Jaya, which can save a 
lot of computation while ensuring sufficient accuracy. 
Some scholars try to reduce the calculation cost of fuzzy 
analysis by response surface method [25], the reliabil-
ity of fuzzy analysis depends entirely on the accuracy of 
approximate model [26].

Some scholars reduce the computational complexity of 
fuzzy analysis from the perspective of entropy. Cherki A 
et al. [27] adopted λ-level cutting method to transform the 
fuzzy equilibrium equation into interval equilibrium equa-
tion, which was used to analyze the fuzzy structure. How-
ever, this method requires a large amount of computation 
and is complicated. Lei et al. [28] proposed a new finite 
element analysis method of fuzzy structure using the concept 
of information entropy. The fuzzy variables are transformed 
into random variables, and the mean and variance of struc-
tural response are obtained. However, the upper and lower 
limits of the response are not obtained, and this method is 
not complete enough. The majority of the aforementioned 
methods focus on straightforward static problems. When 
applied to dynamic problems, they either involve complex 
and extensive calculations or are embedded, limiting their 

Fig. 1   Train–track–bridge-coupled system

Table 1   The integral points 
and weights for Gauss–Hermite 
quadrature with r = 7

i 1 2 3 4 5 6 7

x
GH,i

 − 2.65196  − 1.67355  − 0.81629 0 0.81629 1.67355 2.65196
w
GH,i

9.71781 × 10−4 5.45156 × 10−2 0.425607 0.810265 0.425607 5.45156 × 10−2 9.71781 × 10−4

Table 2   The estimating points 
and corresponding weights

i 1 2 3 4 5 6 7

u(i)  − 3.75044  − 2.36676  − 1.15441 0 1.15441 2.36676 3.75044
P
i

5.48269 × 10−4 3.07571 × 10−2 0.24012 0.45714 0.24012 3.07571 × 10−2 5.48269 × 10−4
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applicability to broader dynamic analyses. In this paper, the 
mean and variance of the obtained structural response are 
further calculated based on the previous work by Lei et al. 
[28] and combined with the new point estimation method to 
obtain the upper and lower limits of the response of the train 
and the bridge, that is, the fuzzy response of the train and the 
bridge. The proposed fuzzy finite element method is non-
embedded and can be applied to other dynamics problems.

This paper is organized as follows: Sect. 2 introduces the 
model of train–bridge-coupled system, Sect. 3 briefly intro-
duces information entropy method and fuzzy calculation 
processing, Sect. 4 verifies the reliability of the proposed 
method, considers whether the degree of pier damage is 
fuzzy, and uses stiffness reduction to simulate pier damage. 
The fuzzy dynamic response of train and bridge is studied 
when the pier structure and train mass are fuzzy parameters, 
and the conclusion is presented in the last section.

2 � The motion equation of train–track–
bridge systems

The train model is constructed with multiple rigid bodies, 
and each car is composed of a car body, two bogies, four 
wheelsets, and linear spring dampers connected between 
them [29]. The car body contains six degrees of freedom 
(vertical, longitudinal, lateral, yaw, roll, pitch), each wheel-
set contains five degrees of freedom (vertical, longitudinal, 
lateral, yaw, roll), and each bogie contains six degrees of 
freedom (vertical, longitudinal, lateral, yaw, roll, pitch), so 
this paper establishes a fine train model with 38 degrees of 
freedom [30]. The track structure is mainly composed of 
base, CA mortar layer, track plate, elastic fasteners, rails, and 
other components [31]. The rail is modeled as a beam ele-
ment, and the track plate and the base are modeled as plate 
elements, which are connected by linear spring dampers 
[32]. Taking a three-span simply supported concrete bridge 

Fig. 2   Normal fuzzy member-
ship degree: a upper and lower 
bounds of the fuzzy variable X; 
b relationship between fuzzy 
membership degree and uncer-
tainty level

Fig. 3   Fuzzy response with different COVs (0.15 0.20 0.25 0.30): a–d vertical displacement of bridge midspan with fuzzy parameter Eb; e–f 
vertical acceleration of the 1st train with fuzzy parameter Mc 
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as an example, the bridge model is established based on the 
finite element method, and the pier and beam are simulated 
as Euler–Bernoulli beam elements. The train–track–bridge-
coupled system model is shown in.

Figure 1, the corresponding parameters are detailed in 
Ref. [33].

According to the mass matrix, stiffness matrix and damp-
ing matrix obtained by the finite element method, multi rigid 
body dynamics, and other processing methods, based on the 
energy principle, the train–track–bridge-coupled vibration 
equation can be derived, as shown below
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where �cc,�rr , and �bb represent the displacement vectors 
of the train, rail, and bridge, respectively. �cc and �rr denote 
the load train vectors of the train and rail, respectively.

In this paper, Eq. (1) is solved based on the Wilson-θ 
method in the prepared MATLAB program, when θ > 1.37, 
this algorithm is unconditionally stable. The value for θ is 
taken as 1.4 in our calculations [34].

3 � Information entropy

3.1 � Equivalent transformation of entropy

Shannon [35], the father of information theory, believed 
that information is random in nature. He borrowed the term 
"entropy" from statistical mechanics, and proposed infor-
mation entropy to measure probabilistic information, called 
probabilistic entropy. The greater the uncertainty, the greater 
the entropy.

For a continuous random variable X, its probability 
entropy is defined as follows:

where p(x) is the probability density function of the random 
variable X.

When random variable is obeyed Gaussian distribution, 
probability entropy can be expressed as [36]

As understanding deepens, researchers have come to 
recognize that information carries non-probabilistic uncer-
tainty, specifically in the form of fuzziness. Fuzzy infor-
mation can also be measured using information entropy, 
called fuzzy entropy. Aldo De Luca and Settimo Termini 
[37] first defined fuzzy entropy as follows, where f (y) is 
the membership function of fuzzy variable Y:

(2)H = −∫x

p(x) lnp(x)dx,

(3)H = ln(
√
2�e�)

(4)G = −∫y

f (y) ln f (y) +
[
1 − f (y)

]
ln
[
1 − f (y)

]
dy

Table 3   Fuzzy parameters’ distribution

Parameters Unit a

E (elastic modulus of pier concrete) N/m2 3.45 × 1010

Eb (elastic modulus of bridge concrete) N/m2 3.45 × 1010

D (pier concrete density) kg/m3 2.5 × 103

Mc (mass of locomotive) kg 48000

Table 4   Fuzzy parameters under different working conditions

Working condition 
type

Fuzzy parameter

Elastic modulus and density of pier Mass of 
locomo-
tive1st pier 2nd pier 3rd pier 4th pier

Total damage √ √ √ √ √
1st Pier damage √ √
2nd Pier damage √ √
3rd Pier damage √ √
4th Pier damage √ √

Table 5   Comparison of the 
fuzzy method with scanning 
method

Method Calculation time 
(s)

Maximum relative error (COVs)

0.10 0.15 0.20 0.25 0.30

IE-7 528 Vertical displacement of bridge midspan
1.93% 2.47% 4.81% 7.70% 13.68%
Vertical acceleration of the 1st train
3.74% 4.24% 3.89% 3.05% 2.30%

SM-1000 75876 -
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Fig. 4   Vertical displacement 
and standard deviation at the 
top of pierwith different fuzzy 
parameters

(a) Vertical displacement of 1st pier with 
fuzzy parameter: , ,cE M D (b) Standard deviation of 1st pier

(c) Vertical displacement of 2nd pier with 
fuzzy parameter: , ,cE M D (d) Standard deviation of 2nd pier

e) Vertical displacement of 3rd pier with 
fuzzy parameter: , ,cE M D (f) Standard deviation of 3rd pier

(g) Vertical displacement of 4th pier with 
fuzzy parameter: , ,cE M D (h) Standard deviation of 4th pier
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Achintya Haldar and Rajasekhar K. Reddy [38] also 
proposed a simple computational form of fuzzy entropy, 
as shown below

The definition equation of fuzzy entropy makes the 
membership function f (y) normalized as well as the prob-
ability density function p(x)

Entropy is a measure of information uncertainty, and 
there is essentially no difference between probabilistic 

(5)G� = −∫y

f �(y) ln f �(y)dy

(6)f �(y) = f (y)∕∫y

f (y))dy

(7)∫y

f �(y)dy = 1

entropy and fuzzy entropy. Fuzzy variables can be trans-
formed into random variables by retaining the invariabil-
ity of the measure of uncertainty. The principle of this 
transformation is that the equivalent probabilistic entropy 
equals to the fuzzy entropy [28]. In this paper, the total 
entropy is converted into the equivalent stochastic entropy 
Heq , and the structural parameters are converted into sto-
chastic parameters for calculation, as shown in Eq. (8)

To convert the uncertain variables into equivalent nor-
mal random variables, and obtain the mean � and standard 
deviation � of random variables, we assume that the mean 
� of the equivalent normal random variable is the value of 
the fuzzy variable at the membership degree of 1.

The standard deviation � of the equivalent normal random 
variable can be obtained from Eq. (3)and (8), as follows:

(8)G = Heq

(a) Standard deviation of 1st pier (b) Standard deviation of 2nd pier

(c) Standard deviation of 3rd pier (d) Standard deviation of 4th pier

Fig. 5   The standard deviation of the response corresponding to the maximum mean vertical displacement at the top of pier with different COVs
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Fig. 6   Vertical response and 
standard deviation of bridge 
midspan and locomotive with 
different fuzzy parameters

(a) Vertical displacement of 1st midspan
with fuzzy parameter: , ,cE M D (b) Standard deviation of 1st midspan

(c) Vertical displacement of 2nd
with fuzzy parameter: , ,cE M D (d) Standard deviation of 2nd midspan

(e) Vertical displacement of 3rd midspan 
with fuzzy parameter: , ,cE M D (f) Standard deviation of 3rd midspan

(g) Vertical acceleration of locomotive
with fuzzy parameter: , ,cE M D (h) Standard deviation of locomotive
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3.2 � New point estimation method (NPEM)

Zhao et al. [39] proposed a new point estimation of prob-
ability moments, which greatly improves the practicability 
and accuracy of point estimation. Jiang et al. [7] used NPEM 
based on adaptive dimensionality reduction to study the sto-
chastic dynamic response of the axle system, and the results 
are verified to be accurate and efficient. The specific solution 
steps for the vibration response of the stochastic axle system 
are as follows:

(1) Determine the distribution state of the random param-
eters, and transform the original relevant random param-
eters into mutually independent standard normal random 
parameters. The random parameters in this paper all obey 
normal distribution, therefore, they can be standardized as

(9)� =
1√
2�

eG−0.5

(10)X(i) = � + �u(i)

where X(i) denotes the value of the random parameter cor-
responding to the ith estimation point, � and � denote the 
mean and standard deviation of the random parameter, 
respectively, and u(i) denotes the ith estimation point.

(2) Choose a suitable reference point uc , and determine 
the number of Gaussian integration points r (r is usually 
an odd number, usually taken as 5 or 7). In this paper, 
we take uc = 0 , and use 7 Gaussian integration points, 
corresponding to the integration points xGH,i and weights 
wGH,i of the Gauss–Hermite product formula as shown:
(3) Based on the data in Table 1 , substitute 

√
2xGH,i as 

u(i) in Eq. (10), and the weight coefficients Pi are calcu-
lated, and the estimated points and corresponding weight 
coefficients in the standard normal space are shown in 
Table 2:

Calculate the time-range dynamic responses �(Xl(i), t) and 
�(Xl(i),Xm(j), t) of the axle coupled system with different 

(11)Pi =
wGH,i√

�

Fig. 7   The standard deviation 
of the response corresponding 
to the maximum mean vertical 
response at the bridge midspan 
and locomotive with different 
COVs

(a) Standard deviation of 1st midspan (b) Standard deviation of 2nd midspan

(c) Standard deviation of 3rd midspan (d) Standard deviation of locomotive
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Fig. 8   Vertical displacement 
and standard deviation of piers 
with different fuzzy parameters

(a) Vertical displacement of 1st pier with 
fuzzy parameter: , ,cE M D (b) Standard deviation of 1st pier

(c) Vertical displacement of 2nd pier with 
fuzzy parameter: , ,cE M D (d) Standard deviation of 2nd pier

(e) Vertical displacement of 3rd pier with 
fuzzy parameter: , ,cE M D (f) Standard deviation of 3rd pier

(g) Vertical displacement of 4th pier with 
fuzzy parameter: , ,cE M D (h) Standard deviation of 4th pier
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random variables and different estimation points respec-
tively, where l and m denote the lth and mth random param-
eters, and i and j denote the ith and jth estimation points, 
respectively.

(4) Substitute the values of the dynamic responses, h, 
into Eq. (12) and Eq. (13), and calculate the mean value 
of the time-range response and the central moments of 
each order

where �(t) denotes the time-response mean, �q(t) denotes 
the time-response qth (q = 2,3,4) order center distance, n 
denotes the number of random parameters, and �

(
uc, t

)
 

denotes the time-response at u(i) = uc . The expressions for 
E in Eq. (11) and (12) above can be rewritten as

(12)

𝜇(t) ≈
∑
l<m

E
[
�
(
Xl,Xm, uc, t

)]
− (n − 2)

n∑
k=1

E
[
�
(
Xk, uc, t

)]
+

(n − 1)(n − 2)

2
�
(
uc, t

)

(13)

�q(t) ≈
∑
l<m

E
[(
�
(
Xl,Xm, uc, t

)
− 𝜇(t)

)q]
− (n − 2)

n∑
k=1

E
[(
�
(
Xk , uc, t

)
− 𝜇(t)

)q]
+

(n − 1)(n − 2)

2

(
�
(
uc, t

)
− 𝜇(t)

)q
,

When there is only one random parameter, Eq. (12) and 
Eq. (13) here can be simply expressed as

(5) Transform the first four central moments of the time-
range response into the corresponding mean �z , standard 
deviation �2 , skewness coefficient �3 , and kurtosis coef-
ficient �4 according to Eq. (18)

(14)

E
[(
�
(
Xl, uc, t

)
− �(t)

)q]
=

r∑
i=1

Pi

(
�
(
Xl,i, uc, t

)
− �(t)

)q

(15)

E
[(
�
(
Xl,Xm, uc, t

)
− �(t)

)q]
=

r∑
i=1

r∑
j=1

PiPj

(
�
(
Xl,i,Xm,j, uc, t

)
− �(t)

)q

(16)�(t) ≈ E
[
�
(
Xl, uc, t

)]

(17)�q(t) ≈ E
[(
�
(
Xl, uc, t

)
− �(t)

)q]
.

(18)

⎧⎪⎪⎨⎪⎪⎩

�z = �

�2 =
√
M2

�3 = M3∕�
3
z

�4 = M4∕�
4
z

Fig. 9   The standard deviation 
of the response corresponding 
to the maximum mean vertical 
displacement at the pier top 
with different COVs
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Fig. 10   Vertical response and 
standard deviation of bridge 
midspan and locomotive with 
different fuzzy parameters

(a) Vertical displacement of 1st midspan
with fuzzy parameter: , ,cE M D (b) Standard deviation of 1st midspan

(c) Vertical displacement of 2nd
midspan with fuzzy parameter: 

, ,cE M D
(d) Standard deviation of 2nd midspan

(e) Vertical displacement of 3rd midspan
with fuzzy parameter: , ,cE M D (f)

(h)

Standard deviation of 3rd midspan

(g) Vertical acceleration of locomotive
with fuzzy parameter: , ,cE M D Standard deviation of locomotive
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3.3 � Fuzzy response

After obtaining the mean and standard deviation of the 
response volume Y, we use �y ± k(�)�y to approximate the 
range of variation of the response volume Y. k(�) is a func-
tion of �-cut level that varies with �-cut level. In this paper, 
we consider the membership function of fuzzy variable as 
normal membership function and transformed the fuzzy var-
iables into equivalent normal random variable. The normal 
membership function [40] is as follows, such fuzzy variables 
can be denoted as Ã = (a, 𝛼2):

Referring to a random normal distribution, the fuzzy coef-
ficient of variation (COV) is defined in Eq. (19). Obviously, 
the larger the COV, the greater the ambiguity of the fuzzy 
parameters

From Eq. (5) and Eq. (9), we can obtain the mean � and 
the standard deviation � of the equivalent random variable, 
as follows:

(19)f (x) = e
−

(x−a)2

�2

(20)COV =
�

a

(21)� = a, � =
�√
2

For each �-cut level, the upper and lower bounds of the 
fuzzy variable X will be obtained, denoted by the interval 
[xl, xr] , as shown in Fig. 2a. From Eq. (19) and Eq. (21), we 
can obtain the following equation:

After the interval [xl, xr] is obtained by �-cut set, according 
to the interval analysis method [41], the interval midpoint XC 
and the interval radius XR are defined as

The uncertainty level of the interval is defined as

In this paper, the normal fuzzy membership degree is 
adopted, so the interval midpoint here is a. The uncertainty 
level of the interval can be obtained as shown in Eq. (25)

(22)
[xl, xr] = a + �[−

√
− ln �,

√
− ln �]

= � + �[−
√
−2 ln �,

√
−2 ln �]

(23)
XC = (xl + xr)∕2

XR = (xr − xl)∕2

(24)� =
XR

||XC||
× 100%

Fig. 11   The standard deviation 
of the response corresponding 
to the maximum mean vertical 
response at the bridge midspan 
and locomotive with different 
COVs
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Fig. 12   Vertical displacement 
and standard deviation of piers 
with different fuzzy parameters

(a) Vertical displacement of 1st pier with 
fuzzy parameter: , ,cE M D (b) Standard deviation of 1st pier

(c) Vertical displacement of 2nd pier with 
fuzzy parameter: , ,cE M D (d) Standard deviation of 2nd pier

(e) Vertical displacement of 3rd pier with 
fuzzy parameter: , ,cE M D (f) Standard deviation of 3rd pier

(g) Vertical displacement of 4th pier with 
fuzzy parameter: , ,cE M D (h) Standard deviation of 4th pier
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As can be seen from Eq. (25) and Fig. 2b, the uncertainty 
level of the interval increases significantly with the increase 
of COV. When the COV is determined, the uncertainty level 
of the interval increases significantly with the increase of �
.This means that the smaller the membership degree, the 
fuzzier the interval obtained after the �-cut and the higher 
the uncertainty level of the interval.

Whether triangular fuzzy membership, normal fuzzy 
membership or other fuzzy membership functions are used 
to describe the fuzziness of fuzzy parameters, � - cut are 
finally carried out to get the corresponding interval, and 
the uncertainty level of the corresponding interval is cal-
culated. The smaller � is, the greater the uncertainty level 
of the interval is. To fully consider the large uncertainty of 
parameters, this paper takes � as 0.01.

The upper and lower intervals of the fuzzy variable X 
can also be represented by the mean and standard deviation 
of the equivalent random variable and k(�) . We make an 
approximate assumption that the k(�) part of the response 
quantity Y is equivalent to the k(�) of the upper and lower 
bound intervals of the fuzzy variable X. We demonstrate in 
Sect. 4.1 that the assumption is reliable

(25)� =
xr − xl

2a
=

2�
√
− ln �

2a
= COV

√
− ln �

where �y and �y denote the mean and standard deviation of 
the response volume Y, respectively. In the actual problem-
solving process, there may be more than one fuzzy vari-
able. Therefore, for the applicable range of n fuzzy variables, 
Eq. (22) can be rewritten as

where �yi denotes the standard deviation of the ith response 
volume Yi obtained by the ith fuzzy variable Xi acting alone, 
and �y denotes the standard deviation of the response volume 
Y  obtained by the interaction of all fuzzy variables.

Certainly, fuzzy membership functions can also be 
other types of functions, such as triangular membership 
function, with a similar processing process and unchanged 
core ideas. Calculate the upper and lower limit intervals 
through the membership function, expressed in the form 
of �x ± k(�)�x . We use �y ± k(�)�y to approximate the 

(26)
f ∶ x → y
�
yl, yr

�
= �y + �y[−

√
−2 ln �,

√
−2 ln �],

(27)

fi ∶ xi → yi

f ∶ x1, x2,⋯ xn → y

�
yl, yr

�
= �y + �y ⋅

n∑
i=1

�yi

�
n∑
i=1

�2

yi

[−
√
−2 ln �,

√
−2 ln �],

Fig. 13   The standard deviation 
of the response corresponding 
to the maximum mean vertical 
displacement at the pier top 
with different COVs
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Fig. 14   Vertical response and 
standard deviation of bridge 
midspan and locomotive with 
different fuzzy parameters

(a) Vertical displacement of 1st midspan
with fuzzy parameter: , ,cE M D (b) Standard deviation of 1st midspan

(c) Vertical displacement of 2nd
midspan with fuzzy parameter: 

, ,cE M D
(d) Standard deviation of 2nd midspan

(e) Vertical displacement of 3rd midspan
with fuzzy parameter: , ,cE M D (f) Standard deviation of 3rd midspan

(g) Vertical acceleration of locomotive
with fuzzy parameter: , ,cE M D (h) Standard deviation of locomotive
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range of variation of the response volume Y, and make an 
approximate assumption that the k(�) part of the response 
quantity Y is equivalent to the k(�) of the upper and lower 
bound intervals of the fuzzy variable X. The specific veri-
fication is shown in Fig. 3 and Table 5.

Obviously, when � = 1 , the fuzzy variables are trans-
formed into deterministic values, and the response volume 
is exactly the result obtained by conventional calculations 
ignoring parameter uncertainty (fuzziness).

4 � Fuzzy response of train–bridge‑coupled 
vibration with pier damage

Bridges that have been in operation for an extended period 
inevitably undergo damage due to various factors, and the 
extent of this damage is uncertain, varying from signifi-
cant to minor. Simulating the uncertainty of bridge dam-
age solely through randomness is not accurate enough. 
The uncertainty of damage is consistent with the definition 
of fuzziness, which refers to the objective attributes that 
things exhibit during the intermediate transition process. 
Fuzziness is very suitable for explaining the uncertainty 
of parameters such as damage.

Given that the pier constitutes a crucial component of 
a bridge structure, this article addresses the uncertainty 
associated with pier damage to investigate the fuzzy 
response in the coupled vibration of trains and bridges. 

Pier stiffness reduction is used to simulate bridge pier 
damage. In the construction and manufacturing of concrete 
bridges, discrepancies between structural parameters and 
calibration data are inevitable, introducing uncertainty. 
Similarly, during train operation, encountering uncer-
tainty in the mass of the train is also unavoidable. The 
uncertainty arising from both situations can be effectively 
simulated using the concept of fuzziness. Therefore, the 
fuzzy variables considered in this paper are the elastic 
modulus of pier, the concrete density of pier, and the mass 
of locomotive.

As shown in Table 3, the fuzzy distribution of each 
parameter obeys the normal fuzzy distribution. The speed 
of the train passing through the bridge is 250 km/h, and 
the train grouping is: locomotive + trailer × 2 + locomotive. 
The detailed parameters of the train can be found in Ref. 
[42].

To verify the influence of different fuzzy parameters 
and different fuzzy distributions on the fuzzy response of 
train–bridge. The fuzzy coefficient of variation (COV) of 
the studied fuzzy parameters are 0.10, 0.15, 0.20, 0.25, 
and 0.30. Five working conditions are studied, as shown 
in Table 4. The symbol '√' denotes the consideration of a 
fuzzy parameter, while a blank indicates the exclusion of 
a parameter from being treated as fuzzy.

Fig. 15   The standard deviation 
of the response corresponding 
to the maximum mean vertical 
response at the bridge midspan 
and locomotive with different 
COVs
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Fig. 16   Vertical displacement 
and standard deviation of piers 
with different fuzzy parameters

 Vertical displacement of 1st pier with 
fuzzy parameter: , ,cE M D (b) Standard deviation of 1st pier

(c) Vertical displacement of 2nd pier with 
fuzzy parameter: , ,cE M D (d) Standard deviation of 2nd pier

(e) Vertical displacement of 3rd pier with 
fuzzy parameter: , ,cE M D (f) Standard deviation of 3rd pier

(g) Vertical displacement of 4th pier with 
fuzzy parameter: , ,cE M D (h) Standard deviation of 4th pier
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4.1 � Comparison of the fuzzy method with the other 
researcher’s work

Most dynamic problems are extremely complex and lack 
analytical solutions. Currently, many researchers use scan-
ning methods to solve fuzzy dynamics problems [17]. 
After λ is taken, the fuzzy parameter will become an inter-
val number, and the scanning method uniformly takes a 
large number of values within the interval and substitutes 
them into the dynamic equation, taking their maximum 
and minimum values as the fuzzy result. However, the 
scanning method is evidently characterized by extremely 
low efficiency.

To verify the feasibility of applying the method pro-
posed in this paper to train–bridge problems, the fuzzy 
vertical displacement of the bridge midspan with fuzzy 
parameter (elastic modulus of bridge concrete Eb) and 
the fuzzy vertical acceleration of the first train with fuzzy 
parameters (mass of locomotive Mc) were solved, and the 
results were compared with those calculated by the scan-
ning method. The corresponding parameters are shown in 
Table 3 and the value of � is taken as 0.01. From.

Figure  3, IE represents the fuzzy method based on 
information entropy (proposed method), and SM repre-
sents the fuzzy method based on scanning method. It can 
be seen that the results obtained by the fuzzy method in 

this paper are very close to those obtained by the scanning 
method.

As shown in Table 5, the calculation efficiency of this 
method is much higher than that of the scanning method. It 
should be noted that when � is taken as 0.01, the correspond-
ing uncertainty level for the interval with COV of 0.10, 0.15, 
0.20, 0.25, and 0.30 are 21.46%, 32.19%, 42.92%, 53.65%, 
and 64.38%. Many articles believe that when the uncertain 
level is greater than 20% [43], the problem studied is a large-
range uncertainty problem [44]. Therefore, the results in the 
table are acceptable. For a fuzzy parameter, it only needs to 
calculate the train–bridge model 7 times, which takes much 
less time and has good results. Therefore, it is reliable to 
apply this method to the train–bridge problems.

4.2 � Total damage

Considering the elastic modulus and density of four piers 
and the mass of locomotive as fuzzy parameters.

4.2.1 � Fuzzy response and standard deviation at the top 
of pier

Taking the fuzzy coefficient of variation COV = 0.3 , Fig. 4 
shows the vertical displacement and standard deviation at 
the top of pier with different fuzzy parameters. From our 

Fig. 17   The standard deviation 
of the response corresponding 
to the maximum mean vertical 
displacement at the pier top 
with different COVs
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Fig. 18   Vertical response and 
standard deviation of bridge 
midspan and locomotive with 
different fuzzy parameters

(a) Vertical displacement of 1st midspan
with fuzzy parameter: , ,cE M D (b) Standard deviation of 1st midspan

(c) Vertical displacement of 2nd
midspan with fuzzy parameter: 

, ,cE M D
(d) Standard deviation of 2nd midspan

(e) Vertical displacement of 3rd midspan
with fuzzy parameter: , ,cE M D (f) Standard deviation of 3rd midspan

(g) Vertical acceleration of locomotive
with fuzzy parameter: c

(h) Standard deviation of locomotive
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computed results, we observed that the maximum ampli-
tude of the fuzzy vertical displacement at the top of the four 
piers exceeds the conventional vertical response by 37.13%, 
36.57%, 35.68%, and 35.96%, respectively.

Figure  5 demonstrates the standard deviation of the 
response corresponding to the maximum mean vertical 
displacement at the top of pier. It can be observed that the 
fuzziness of the elastic modulus of the pier has the greatest 
influence on the response at the top of pier, and the pier 
density has a similar influence as the mass of the locomo-
tive. The standard deviation of the response is approximately 
linear with the fuzzy coefficient of variation.

4.2.2 � Fuzzy response and standard deviation of bridge 
and locomotive

Figure 6 shows the vertical response and standard devia-
tion of bridge midspan and locomotive with different fuzzy 
parameters. From our calculation results, we observed that 
the maximum amplitudes of the fuzzy vertical displacement 
at the midspan of three spans bridge and the fuzzy vertical 
acceleration of locomotive exceed the conventional vertical 
response by 1.77%, 1.74%, 1.43%, and 78.62%, respectively. 
This also reflects that the elastic modulus of the pier, the 
density of the pier, and the mass of locomotive have less 
influence on the vertical displacement of the bridge midspan, 
and the mass of locomotive has a significant influence on the 
vertical acceleration of locomotive.

Figure  7 demonstrates the standard deviation of the 
response corresponding to the maximum mean vertical 
response at the bridge midspan and locomotive. It can be 
observed that the fuzziness of the elastic modulus of pier has 
the greatest influence on the vertical response of the bridge 
midspan, and the pier density has a similar influence as the 
mass of locomotive. The fuzziness of the mass of locomo-
tive has the greatest influence on the vertical acceleration 
of locomotive, and the elastic modulus of pier has a similar 
influence as the pier density. The standard deviation of the 
response is approximately linear with the fuzzy coefficient 
of variation.

4.3 � 1st Pier damage

Consider the elastic modulus and density of 1st pier and the 
mass of the locomotive as fuzzy parameters.

4.3.1 � Fuzzy response and standard deviation at the top 
of pier

Taking the fuzzy coefficient of variation COV = 0.3 . Fig-
ure 8 demonstrates the vertical displacement and standard 
deviation at the top of pier with different fuzzy parameters. 
From our calculation results, we observed that the maximum 
amplitude of the fuzzy vertical displacement at the top of 
the four piers exceeds the conventional vertical response by 
35.94%, 0.17%, 0.08%, and 0.05%, respectively.

Fig. 19   The standard deviation 
of the response corresponding 
to the maximum mean vertical 
response at the bridge midspan 
and locomotive with different 
COVs
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Fig. 20   Vertical displacement 
and standard deviation of piers 
with different fuzzy parameters

(a) Vertical displacement of 1st pier with 
fuzzy parameter: , ,cE M D (b) Standard deviation of 1st pier

(c) Vertical displacement of 2nd pier with 
fuzzy parameter: , ,cE M D (d) Standard deviation of 2nd pier

(e) Vertical displacement of 3rd pier with 
fuzzy parameter: , ,cE M D (f) Standard deviation of 3rd pier

(g) Vertical displacement of 4th pier with 
fuzzy parameter: , ,cE M D (h) Standard deviation of 4th pier
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Figure  9 demonstrates the standard deviation of the 
response corresponding to the maximum mean vertical dis-
placement at the top of the pier. It can be observed that the 
fuzziness of the elastic modulus of piers has the greatest 
influence on the response at the top of the 1st and 2nd piers, 
and the fuzziness of the three parameters has a similar influ-
ence on the response at the top of 3rd and 4th piers. The 
standard deviation of the response is approximately linear 
with the fuzzy coefficient of variation.

4.3.2 � Fuzzy response and standard deviation of bridge 
and locomotive

Figure 10 demonstrates the vertical response and standard 
deviation of bridge midspan and locomotive with different 
fuzzy parameters. From the calculation results, it can be 
observed that the maximum amplitudes of the fuzzy verti-
cal displacement at the midspan of the three span bridge 
and the fuzzy vertical acceleration of locomotive exceed the 
conventional vertical response by 0.7%, 0.1%, 0.07%, and 
76.96%, respectively.

Figure 11 demonstrates the standard deviation of the 
response corresponding to the maximum mean vertical 
response at the bridge midspan and locomotive. It can be 
observed that the fuzziness of the elastic modulus of piers 
has the greatest influence on the response of the 1st mid-
span, and the pier density has a similar influence as the 
mass of locomotive. The influence of locomotive, the elastic 

modulus of pier, and the density of pier on the response of 
the 2nd and 3rd midspan decreases in turn, but they belong 
to the same order of magnitude. The standard deviation of 
the response is approximately linear with the fuzzy coef-
ficient of variation.

4.4 � 2nd Pier damage

Consider the elastic modulus and density of 2nd pier and the 
mass of the locomotive as fuzzy parameters.

4.4.1 � Fuzzy response and standard deviation at the top 
of pier

Taking the fuzzy coefficient of variation COV = 0.3 . Fig-
ure 12 demonstrates the vertical displacement and standard 
deviation at the top of pier with different fuzzy parameters. 
From the calculation results, it can be observed that the 
maximum amplitude of the fuzzy vertical displacement at 
the top of the four piers exceeds the conventional vertical 
response by 0.58%, 36.24%, 0.08%, and 0.07%, respectively.

Figure 13 shows the standard deviation of the response 
corresponding to the maximum mean vertical displacement 
at the top of the pier. It can be observed that the fuzziness 
of the elastic modulus of piers has the greatest influence on 
the response at the top of the 1st, 2nd, and 3rd piers, and the 
fuzziness of the three parameters has a similar influence on 
the response at the top of 4th pier. The standard deviation 

Fig. 21   The standard deviation 
of the response corresponding 
to the maximum mean vertical 
displacement at the pier top 
with different COVs
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Fig. 22   Vertical response and 
standard deviation of bridge 
midspan and locomotive with 
different fuzzy parameters

(a) Vertical displacement of 1st midspan
with fuzzy parameter: , ,cE M D (b) Standard deviation of 1st midspan

(c) Vertical displacement of 2nd
midspan with fuzzy parameter: 

, ,cE M D
(d) Standard deviation of 2nd midspan

(e) Vertical displacement of 3rd midspan
with fuzzy parameter: cE M D (f) Standard deviation of 3rd midspan

(g) Vertical acceleration of locomotive
with fuzzy parameter: , ,cE M D (h) Standard deviation of locomotive
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of the response is approximately linear with the fuzzy coef-
ficient of variation.

4.4.2 � Fuzzy response and standard deviation of bridge 
and locomotive

Figure 14 demonstrates the vertical response and standard 
deviation of bridge midspan and locomotive with differ-
ent fuzzy parameters. From the calculation results, it can 
be observed that the maximum amplitudes of the fuzzy 
vertical displacement at the midspan of the three spans 
bridge and the fuzzy vertical acceleration of locomo-
tive exceed the conventional vertical response by 0.77%, 
0.88%, 0.08%, and 77.78%, respectively.

Figure 15 demonstrates the standard deviation of the 
response corresponding to the maximum mean vertical 
response at the bridge midspan and locomotive. It can be 
observed that the fuzziness of the elastic modulus of piers 
has the greatest influence on the response of the 1st and 
2nd midspan, the pier density has a similar influence as the 
mass of locomotive. The influence of locomotive, the elas-
tic modulus of pier, and the density of pier on the response 
of the 3rd midspan decreases in turn, but they belong to 
the same order of magnitude. The standard deviation of 
the response is approximately linear with the fuzzy coef-
ficient of variation.

4.5 � 3rd Pier damage

Consider the elastic modulus and density of 3rd pier and the 
mass of the locomotive as fuzzy parameters.

4.5.1 � Fuzzy response and standard deviation at the top 
of pier

Taking the fuzzy coefficient of variation COV = 0.3 . Fig-
ure 16 demonstrates the vertical displacement and standard 
deviation at the top of pier with different fuzzy parameters. 
From the calculation results, it can be observed that the 
maximum amplitude of the fuzzy vertical displacement at 
the top of the four piers exceeds the conventional vertical 
response by 0.23%, 0.23%, 35.66%, and 0.13%, respectively.

Figure 17 demonstrates the standard deviation of the 
response corresponding to the maximum mean vertical 
displacement at the top of the pier. It can be observed that 
the fuzziness of the elastic modulus of piers has the great-
est influence on the response at the top of the 2nd, 3rd, and 
4th piers, and the fuzziness of the three parameters has a 
similar influence on the response at the top of 1st pier. The 
standard deviation of the response is approximately linear 
with the fuzzy coefficient of variation.

Fig. 23   The standard deviation 
of the response corresponding 
to the maximum mean vertical 
response at the bridge midspan 
and locomotive with different 
COVs
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4.5.2 � Fuzzy response and standard deviation of bridge 
and locomotive

Figure 18 demonstrates the vertical response and standard 
deviation of bridge midspan and locomotive with differ-
ent fuzzy parameters. From the calculation results, it can 
be observed that the maximum amplitudes of the fuzzy 
vertical displacement at the midspan of the three spans 
bridge and the fuzzy vertical acceleration of locomo-
tive exceed the conventional vertical response by 0.19%, 
0.92%, 0.88%, and 76.61%, respectively.

Figure 19 demonstrates the standard deviation of the 
response corresponding to the maximum mean vertical 
response at the bridge midspan and locomotive. It can be 
observed that the fuzziness of the elastic modulus of piers 
has the greatest influence on the response of the 2nd and 
3rd midspan, and the pier density has a similar influence 
as the mass of locomotive. The influence of the elastic 
modulus of pier, the density of pier, and locomotive on 
the response of the 1st midspan decreases in turn, but 
they belong to the same order of magnitude. The standard 
deviation of the response is approximately linear with the 
fuzzy coefficient of variation.

4.6 � 4th Pier damage

Consider the elastic modulus and density of 4th pier and 
the mass of the locomotive as fuzzy parameters.

4.6.1 � Fuzzy response and standard deviation at the top 
of pier

Taking the fuzzy coefficient of variation COV = 0.3 . Fig-
ure 20 demonstrates the vertical displacement and standard 
deviation at the top of pier with different fuzzy param-
eters. From the calculation results, it can be observed that 
the maximum amplitude of the fuzzy vertical displace-
ment at the top of the four piers exceeds the conventional 
vertical response by 0.22%, 0.21%, 0.06%, and 36.09%, 
respectively.

Figure 21 demonstrates the standard deviation of the 
response corresponding to the maximum mean vertical 
displacement at the top of the pier. It can be observed 
that the fuzziness of the elastic modulus of piers has the 
greatest influence on the response at the top of the 3rd and 
4th piers, and the fuzziness of the three parameters has a 
similar influence on the response at the top of 1st and 2nd 
piers. The standard deviation of the response is approxi-
mately linear with the fuzzy coefficient of variation.

4.6.2 � Fuzzy response and standard deviation of bridge 
and locomotive

Figure 22 demonstrates the vertical response and standard 
deviation of bridge midspan and locomotive with different 
fuzzy parameters. From the calculation results, it can be 
observed that the maximum amplitudes of the fuzzy verti-
cal displacement at the midspan of the three spans bridge 
and the fuzzy vertical acceleration of locomotive exceed the 
conventional vertical response by 0.18%, 0.11%, 0.48%, and 
76.57%, respectively.

Figure 23 demonstrates the standard deviation of the 
response corresponding to the maximum mean vertical 
response at the bridge midspan and locomotive. It can be 
observed that the fuzziness of the elastic modulus of piers 
has the greatest influence on the response of the 3rd mid-
span, the pier density has a similar influence as the mass 
of locomotive. The fuzziness of the three parameters has a 
similar influence on the response of the 1st and 2nd midspan. 
The standard deviation of the response is approximately lin-
ear with the fuzzy coefficient of variation.

5 � Conclusion

In this paper, we present a fuzzy computational frame-
work utilizing the information entropy method and the new 
point estimation method to analyze dynamic train–bridge 
interactions, accounting for pier damage. The framework 
is applied to study the train–bridge-coupled vibration sys-
tem with fuzzy structural parameters. The effectiveness 
and accuracy of the proposed framework are validated. 
The following concluding remarks are drawn from our 
numerical studies and results:

(1)	 The combination of information entropy method and 
new point estimation method effectively reduces com-
putational complexity, improves computational effi-
ciency, and increases efficiency by 2–3 orders of mag-
nitude compared to scanning method.

(2)	 The fuzziness of the mass of locomotive has the great-
est influence on the vertical acceleration of locomo-
tive, and the elastic modulus of pier has a similar influ-
ence as the pier density. The standard deviation of the 
response is approximately linear with the fuzzy coef-
ficient of variation.

(3)	 The fuzziness of the elastic modulus of piers has the 
greatest influence on the vertical response of the adja-
cent top of piers and the midspan of the bridge, and 
the three parameters have a similar influence on the 
response of non-adjacent places.

(4)	 The response of the train–bridge, when considering 
damage, significantly surpasses that obtained from 
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conventional deterministic parameter calculations. 
Investigating the response of the train–bridge-coupled 
vibration system with fuzzy parameters is crucial for 
ensuring running safety.
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