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Abstract

In this paper, for the first time, the nonlinear vibration response of toroidal shell segments with varying thickness subjected
to external pressure is investigated analytically using Reddy’s third-order shear deformation shell theory. The variable
thickness shells are made of functionally graded material (FGM) that is created from ceramic and metal constituents. The
material properties of FGM shells are assumed to be gradually graded in the thickness direction according to a simple power-
law distribution in terms of volume fractions of constituents. Equations of motion of variable thickness FGM toroidal shell
segments are established based on Reddy’s third-order shear deformation shell theory with von Karmén nonlinearity. The
Galerkin method and the Runge—Kutta method are used to solve the governing system of partial differential equations of
motion, and then the nonlinear vibration response of variable thickness FGM toroidal shell segment is analyzed. A numerical
analysis is also performed to show the effects of material and geometrical parameters on the nonlinear vibration response of
variable thickness FGM toroidal shell segments.

Keywords Variable thickness FGM toroidal shell segment - Nonlinear vibration - Reddy’s third-order shear deformation

shell theory - von Karmén nonlinearity

1 Introduction

In recent years, the study on the stability and vibration
of thin structural components with variable thickness has
attracted many researchers' interests. Irie et al. [1] and
Efraim and Eisenberger [2] studied vibration of variable
thickness annular plate and variable thickness thick FGM
plates, respectively. Based on classical shell theory, Koiter
et al. [3] studied the buckling of cylindrical shells with
small periodic axisymmetric thickness variations under
axial compression using the energy criterion and a modi-
fied shooting method. The buckling of a cylindrical shell
with small thickness variations subjected to external pres-
sure has been studied by Nguyen et al. [4] making use of the
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perturbation technique and the Bubnov—Galerkin method.
Li et al. [5] investigated the effect of thickness variation
on the stability of composite cylindrical shells subjected to
axial compressive load using the perturbation technique and
weighted residuals method based on classical shell theory.
Also, based on classical shell theory, buckling of a cylindri-
cal shell with variable thickness under axial compression
is investigated by Brar et al. [6] making use of the finite
difference method. Chen et al. [7] and Feng et al. [§] made
use of the perturbation technique, the Galerkin method, and
classical shell theory to investigate the buckling of cylin-
drical shells with arbitrary axisymmetric variable thickness
under axial compression and the buckling of pressure loaded
cylindrical shells with arbitrary circumferential thickness
variations, respectively. Zhou et al. [9] studied the buckling
of a cylindrical shell with stepwise variable thickness under
external pressure using the hybrid perturbation-Galerkin
method. Free vibration characteristics of rotating cylindri-
cal shells with variable thickness is studied by Taati et al.
[10] using Galerkin method. Duan and Koh [11] used an
analytical approach to investigate free vibration of variable
thickness cylindrical shells. A semi-analytical finite clement
approach is used by Ganesan and Sivadas [12], and Sivadas
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and Ganesan [13] to investigate the free vibration behav-
iour of isotropic circular cylindrical shells and cantilever
isotropic circular cylindrical shells with thickness varied
in the axial direction, respectively. Using wittrick williams
algorithm, El-Kaabazi and Kennedy [14] studied free vibra-
tion of variable thickness cylindrical shell. Viswanathan
et al. [15] made use of the Spline Function approximation
and a point collocation method to study free vibration of
layered circular cylindrical with variable thickness. Based
on classical shell theory, Aksogan and Sofiyev [16] used
the Galerkin method and the Ritz method to investigate the
dynamic buckling of a cylindrical shell with variable thick-
ness loaded by a uniform external pressure. Jia-chu et al.
[17], and Xin-zhi et al. [18] studied stability, and natural
frequency of variable thickness conical shells, respectively.

All the above-mentioned studies are based on classical
thin shell theory, usually used for static and dynamic anal-
ysis of thin-shell structures. Higher order shear deforma-
tion theory has been used for investigating the static and
dynamic behaviour of thicker structures with variable thick-
nesses. Kalbaran and Kurtaran [19] based on the first-order
shear deformation shell theory to study the nonlinear static
response of laminated composite elliptic panels having vari-
able thickness using the generalized differential quadrature
method and Newton—Raphson method. Also, based on the
first-order shear deformation shell theory, Nasrekani and
Eipakchi [20], and Eipakchi and Nasrekani [21] investigated
the displacements of isotropic cylindrical shells and auxetic
composite cylindrical shells with variable thickness under
external pressure and axial compressive load using the per-
turbation technique, respectively. Duc et al. [22] made use of
the first-order shear deformation shell theory to investigate
vibration and dynamic response of sandwich panel with vari-
able thickness.

Functionally graded materials (FGMs) are known as
advanced materials usually composed of metal and ceramic
constituents, in which material properties gradually vary
from one interface to the other. In recent years, static and
dynamic behaviours of FGM structures, especially variable
thickness FGM structures, have received attention. Shariyat
and Alipour [23] presented an analytical approach to inves-
tigate the bending and stress of FGM auxetic conical/cylin-
drical shells with variable thickness based on the first-order
shear deformation shell theory. Khoshgoftar [24] and Kho-
shgoftar et al. [25] used the total potential energy approach
and perturbation method to analyze the static behaviour of
cylindrical shells with variable thickness based on the first-
order shear deformation shell theory and the second-order
shear deformation shell theory, respectively. Based on the
first-order shear deformation shell theory and perturbation
technique, Parhizkar Yaghoobi and Ghannad [26] studied
static behaviour of variable thickness FGM cylindrical shell
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under thermal load. Kashkoli et al. [27] made use of multi-
layer method to study static response of FGM cylindrical
shell with variable thickness loaded by thermo-mechanical
loads. Saeedi et al. [28] investigated static response of long
FGM cylindrical shell under thermomechanical loading
using the differential quadrature method. Also, using the
differential quadrature method, Behravan Rad and Shariyat
[29] static response of variable thickness annular plates sub-
jected to magnetic, thermal, and mechanical loads.

Hayati and Atai [30] based on a third-order shear defor-
mation shell theory to study multiobjective mechanical
buckling optimization FGM cylindrical shell with thick-
ness variation and initial imperfection, making use of energy
approach and finite element modes. Also, using finite ele-
ment model, Minh and Duc [31] studied the effects of cracks
on the stability of variable thickness FGM plates based
on the phase-field theory and the new third-order shear
deformation plate theory. Using the differential quadrature
method, Akbari Alashti and Ahmadi [32] studied buckling
of variable thickness FGM cylindrical shell loaded by axial
compression and external pressure.

Kim et al. [33] based on the first-order shear deformation
shell theory to investigate vibration of FGM doubly curved
shell of revolution by using a semi-analytical method. Phu
et al. [34] studied nonlinear dynamics responses of vari-
able thickness FGM cylinder shell based on classical thin
shell theory. Quoc et al. [35] based on the first-order shear
deformation shell theory and Galerkin method investigated
vibration of rotating FGM cylindrical shell with variable
thickness. Miao et al. [36] investigated free vibration of
variable thickness 2D-FGMs cylindrical shell making use
of the Sanders’ shell theory, Chebyshev polynomials and
the Rayleigh—Ritz method. Ahlawat and Saini [37] studied
vibration and buckling of 2D-FGM circular plates with vari-
able thickness using Hamilton’s principle and the Harmonic
differential quadrature method. Based on the first-order shear
deformation shell theory, Kurpa et al. [38] investigated
vibration of variable thickness FGM shallow shells making
used of R-functions method.

Toroidal shell segments are special structures and have
found applications in practical. Studies on the buckling,
postbuckling, and vibration of toroidal shell segments in
general, and toroidal shell segments with thickness variation,
in particular, have attracted the attention of many authors.
Based on classical shell theory, Stein and McElman [39]
studied the buckling of isotropic toroidal shell segments
under mechanical loads. Oyesanya [40] utilized an analyti-
cal approach to investigate the buckling of initial imperfec-
tion toroidal shell segments based on Donnell shell theory.
Weingarten et al. [41] presented an investigation on finite
element shell-buckling of thin isotropic toroidal shell seg-
ments using classical thin shell theory. Recently, there has
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been some research on buckling and post-buckling of the
FGM toroidal shell segment. Ninh and Bich [42] investi-
gated nonlinear vibration of simply supported FGM toroidal
shell segment under mechanical load based on classical thin
shell theory. Based on Reddy’s third-order shear deformation
shell theory, Duc and Vuong [43] investigated the vibration
behaviour of simply supported FGM toroidal shell segment
with constant thickness under mechanical load. Long and
Tung [44] studied buckling of FGM toroidal shell segment
making use of Reddy’s higher order shear deformation shell
theory. Thinh et al. [45] utilized the Galerkin method and
the improved Donnell shell theory to investigate nonlinear
buckling and postbuckling of FGM toroidal shell segments
with thickness variation. In the above studies on isotropic
and FGM toroidal shell segments, except for Thinh et al.
[45], the main attention is focused on toroidal shell segments
with constant thickness. Thinh et al. [45] utilized improved
Donnell shell theory usually used for thin shells.

To the best of our knowledge, there are very rare stud-
ies focused on the variable thickness shell, and no works
focused on the vibration of the thicker variable thickness
FGM toroidal shell segment. Toroidal shell segment has
been applied in practical fields such as oxygen tanks, rocket
fuel tanks, underwater toroidal pressure hull, and satellite
support structures. These structures may be made of FGM
and have variable thickness. The study of vibration of vari-
able thickness functionally graded toroidal shell segments is
necessary and has practical significance. Thus, in this paper,
for the first time, the nonlinear vibration response of toroidal
shell segments with varying thickness subjected to external
pressure is studied. The governing equations are derived
based on Reddy’s third-order shear deformation shell the-
ory with von Karman nonlinearity. Galerkin method and
Runge—Kutta method are used to solve the governing equa-
tions, and then the nonlinear vibration response of variable
thickness FGM toroidal shell segment is analyzed.

2 Governing equations

A configuration of FGM toroidal shell segments of vari-
able thickness i(x) and length L used in the present study is
depicted in Fig. 1. The middle surface of the shell is formed
by rotation of a plane circular arc of radius a about an axis
in the plane of the curve. If a is positive, the shell is convex.
If a is negative, the shell is concave. If a — o0, the toroidal
shell segment becomes a cylindrical shell. The x coordinate
of the shell is taken along the longitudinal direction, y coor-
dinate along the circumferential direction and z along the
thickness direction.

Concave shell

Convex shell

Fig. 1 Geometry and coordinate system of variable thickness toroidal
shell segments

Suppose that the inner surface of the FGM shell is
ceramic-rich and the outer surface is metal-rich, and the
material composition of the shell varies smoothly along
the thickness direction according to a simple power-law in
terms of the volume fractions of the constituents as Ninh
and Bich [42]

27+ h(x) \
E(x,z)=E, + (E.~E,) <%x§x)> 1)
22+ h(x)\*
p(x,2) =p,, + (PC - Pm) ) ()

where m and ¢ denote metal and ceramic, respectively.

E,., pn E,., p.are Young modulus and mass density of metal
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and ceramic constituents, respectively. E(x,z) and p(x, z)
indicate the effective properties of FGM. The non-negative
number k is the volume fraction index defining the distribu-
tion of material constituents in FGM. The Poisson’s ratio

Substituting Eq. (3) into Eq. (4) and ignoring higher order
terms on the assumption that 1 — = ~ 1,1 — = &~ 1leads to
strain—displacement relations as:

of material constituents is assumed to be equal and to be . &0 &0 @ L+ %
constant, i.e. v, = v,, = const Ninh and Bich [42]. x 5 9 . 3@ 0x
In the present study, Reddy’s third-order shear deforma- & |1=]% |T< k; '+ 2 kf [+ h—x3 0 ,
tion shell theory developed by Reddy and Liu [46] is used Yay 70 ALY 3 3(h(x)) ow,
to investigate the nonlinear vibration of variable thickness o o o b Y
FGM toroidal shell segments subjected to mechanical loads. v 70 jxe)
According to this theory, the displacement components ( xz) = < ff) + Zz< f;)
(u, v, w) can be written as Vyz Yy ky
&)
z 4 dwg
u(x’y’z7t)=u(x’y’t)<1__>+[Z_ ]¢( y7 -
’ a 3(h< ) 3(h(x>)2 ox
4 ow 3)
vz =y 01— %) + [z— ]qs( Xy = =L
3(h( )’ 3(h(X)) Y
W(-x7 y’ Z7 t) = WO('x’ ya t)9
where
ouy  wy 1({0w\’ o,
—_— — + — _—
£0 0x a 2\ ox 0] 0x & ow,
x x ) =
Ol wy 1/[0w 2 1N % ky; _ 4 0x
Al w2\ ) [ @) T aer|, L 2%
J/O y R y D ¢ vz X d)y + o
Xy Juy N ovy  Owy dw v 99, + Y
FEE VR dy 0x
dy ox dx ady 6)
a¢x + azw()
Jre) 0x ox? é owg
X 0 + _—
@l 4 9, N 9*wy e\ |77 ox
YT 30> ay o | \°) Iy
k3 ) vz ¢y + —
xy 0b, 0y v, )
ady ox 0x0y

where 1 is time, (1, vy, w, ) are displacements of a point on
the mid-surface, and ¢,, q’)y are the rotations of normal to the
middle surface with respect to y- and x-axes, respectively. R
is radius of equator.

Based on Reddy’s third-order shear deformation shell
theory taking von Kdrmén nonlinearity into consideration,
the normal strains (&, ey), in-plane shear strain (ny)’ and
transverse shear strains (y,., 7,,) are expressed as Reddy and
Liu [46]

. =0_u_lw+1<6w> . za_v_lw_l_l(()w)

Toox a 2\ ox Y dy R 2\ dy
UYL 2 MR O W T
Y9y ox oxoy '™ ox o9z a " ady 9oz

“)
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The strain—displacement relations taking von Kdrman non-
linearity for variable thickness shell presented in Eq. (5) is a
novelty of the present study.

The stress—strain relations for variable thickness FGM
toroidal shell segments using Hooke’s law are

E(x,z) E(x,z)

0= T (e, +ve,).0, = T (g, +ve,)
o _Exd _ Ewxn _ Ex2) 0
¥ T M+ e T A T Ay

where v is Poisson’s ratio, ( }) are normal stresses, o, is
in-plane shear stress, ( 0, yz) are transverse shear stresses.
The force and moment resultants of variable thickness FGM

toroidal shell segment are defined as
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h(x)/2
(N.M,P,) = 0,(1,2,2)dz, (i = x;y;xy)
—h(x)/2
h(x)/2 ®)

(0R;) = / 0, (1,2%)dz, (= xy)

—h(x)/2

Setting Eq. (1), Eq. (5), and Eq. (6) into Eq. (7) and then
putting the results into Eq. (8) yields

N, N, N,, ‘I’11<¢ +%) q’u(‘lb + =" ) @y5( oy +6nu>
[M M, ijy]= ¢’21<¢ +— ) ‘Pzz<¢ + dwo) Dy Py + (MO)
P P (

(
(

g (. ) 0af0,+ 2) 0.0+ 2)
J

RS nl™

sv + veg 0.5(1 = v)y°

Xy

Qll QlZ Q13 8«‘ + VEY )
+ Qa1 0p 0oy [| K+ vk KD+ vkD 0.5(1 — k(D

031 O3 Q33 \ KD + vk kD + vk 0.5(1 - v)k<3
®
G- (EEGEE)
R, R, 0Os1 Os) ki? k2

oM, oM, 4 4 <aP oP >
- - R — 2
v " ox Qy+<h( T 3(hx)*\ 9y ox

= 7. oW
= Iy + 1, — 1] == a
(15)

The coefficients 1;, I, and [} % are determined in Appendix

B. Substituting Eq. (9) and Eq (10) into Egs. (11) to (15)
with the aid of Eq. (6) yields

H11(”0) +H12(V0) +H13(W0) +H14(¢x) +H15(¢y)

— oW, (16)
= Liig + L,¢, — 6_x0

Hyy (ug) + Hyy (vo) +H23(W0) + Hyy(¢,) + Has(¢,)

-~ - oW 17
=1lvg+ L, — 1] = ay an
Hy, (ug) + Hyy (vy) + Has (o) + Hay () +H35(¢ ) + Hg (g, wp)

—0ii
+H37(v0,w0) +H38(¢\,,w0) + Hyy (d)y,wo) +q =1, + 136—;

where coefficients @, (i=1-3j=1-3), 1/0"0 15¢ 79 g, 16 <02W0+52W0>
Q,;(i=1=3y=1=3), 04,04, 05, 05, are determined 39y O ox Is oy 9(h(x))4 o2 " 9y?
in Appendix A. (18)
The equathns of m(?tlo'n of the toroidal shell segmerzlt H,, (“o) + H42(v0) +H,, (Wo) + H44( ¢x) + H45( ¢y>
subjected to uniformly distributed external pressure g (N/m ) ..
. . e — 19)
are given by Reddy and Liu [46] = Liiy + 1,¢p, — 15()_
X
N, Ny + L, —1I; (11)
= =Ly v P, — I3——
ox Oy ox Hs, (ug) + Hs (vo) + Hsy (wo) + Hsy () + Hss (¢,)
-~ -~ oW, (20)
— 71/ / /270
N, ON, = —. =3y =Ly + ¢, — [[—— 5oy
E+d—y=llv0+12d)y—la— (12)
00, 99 4 <aR LR 0R P, PPy 0P,
0x ay  (h(x))? ay 3(h(x)) ax2 axdy y2
02w *w,
+1N+1N +N—+2Nx +N—+ (13)
0x? Y dxdy 7 0y?
—0il;, —0 oy, 709, 0%, 0%
= Loy + L,— + 1, 2 +1 =2+ =2 - 16 2y 2
0x 0x dy Sy 9hx) 0x? 0y?
oM, oM, 4 in which operators H,;,H,,Hy,H5;(i=1-5);
ox + ay -0, + WRx H;;(i =1 —9) are defined in Appendix C.
op.  oP Equations (16) to (20) are five governing equations
- Lz <_X + "-") (14)  in terms of five variables uy(x,y,1), vo(x,y,1), wo(x, y,1),
3(h(x))> \ Ox dy ¢,(x,y. 1), and ¢, (x,, 1). They are used to study the nonlinear
T + 1. b - % vibration of variable thickness FGM toroidal shell segments
270 T4 3 ox based on Reddy’s third-order shear deformation shell theory.
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3 Galerkin procedure

In this study, variable thickness FGM toroidal shell seg-
ments are assumed to be simply supported at two butt-ends
and subjected to external harmonic excitation. Thus, the
associated boundary condition is

wo =0, vy=0,¢,=0,M, =0,

P.=0,N,=0,N,=0atx=0andx=L @D
The approximate solutions are chosen as
mrx . ny
Ly, 1) = U(t —_— -
uy(x,y,1) (t) cos 7 sin R
. mnx ny
Ly, 1) = V(t —_— —
Volx, ¥, 1) (¢) sin 7 cos R
wo(x, v, £) = W(t) sin % sin ’% 22)

mrx . ny
¢, (x,y,1) = () cos T sin z

¢y (x, y, 1) = @(1) sin % cos %
where U(@), V(1), W(t), @,(1), D,(r) are unknown time-
dependent functions, m and n are the numbers of half-waves
in x and y directions, respectively. The boundary conditions
wo =0, vy =0, and ¢, = 0 are satisfied at x = Oand x = L.
The boundary conditions M., =0, P.=0,N,=0,N,=
Oatx=0and x=L are satisfied in avefage sense

1 2zR _ 1 2zR _ 1 27R N>
27R Mdy =0, 72 Pdy=0,5% Nydy =0
and 1 ,22R _natx=0andx = L.

mJo Nody=0

Substituting Eq. (22) into Egs. (16) to (20) then apply-
ing the Galerkin method leads to

WU+ 1V + 13W + 1, @, + Ls®y + LW = 1,0 + 1D+ [ W

(23)
LU+ LV + LW+ by ®, + Ls®, + LW = 1,V + bg®, + LW
24
LU+ 1V + I W+ L, @, + 135D,
+ LW + L UW + g VW + Ly ® W + L@ W 05

+ Iy WP+ Lypq = LU + 154V
+ L315D, + 516Dy + 57 W

LU+ 1V + LW+ 1y @, + Ls® + LW = 1, U + 15D, + LW
(26)

[5\U + 15,V + IW + I5, @, + [55®@ + [sg W =I5,V + [sg®, + L5 W,
27

where coefficients [,;, lp;, l;, Is;(i=1—=9); 15;,(i=1—17) are
demonstrated in Appendix D.
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On the whole, transverse nonlinear vibration is a pri-
mary motion for the FGM variable thickness toroidal
shell segments, thereby, we can suppose that the four
right sides of the four Eqgs. (23), (24), (26) and (27) to
be equal to zero. With this assumption, the system of
five Eqs. (23)—(27) can be converted into the following
equation:

(14 D,W)W +D,W +D;W? +D,W’ +Dsqg =0,  (28)

where coefficients D,(i = 1 — 6) are determined in Appendix
E.

3.1 Natural frequency

The natural frequencies of FGM variable thickness toroidal
shell segments with subscripts m and n are the mode shapes
in the x and y directions, respectively, can be determined
from Eq. (28) as

3.2 Nonlinear forced vibrations

Consider FGM variable thickness toroidal shell segments
subjected to external harmonic excitation g = Q sin Qr.
Q and Q are assumed to be time independent. Substitut-
ing g = Qsin Qr into Eq. (28) and using the Runge—Kutta
method, the nonlinear forced vibration of variable thickness
FGM toroidal shell segments is calculated and analyzed.

4 Numerical analysis
4.1 Comparisons

This part shows three comparisons to verify the accuracy of
the present approach. Firstly, consider an isotropic cylindri-
cal shell with linear asymmetric variation thickness along
the axial direction. Material parameters are taken as Sivadas
and Ganesan [13] E =2.035x10'""Pa, v =0.285,
p = 7846 kg/m>. The average thickness, equator radius, and
length of the shell is chosen as Sivadas and Ganesan [13]
h,, = 0.508 mm, R = 100h,,, L = 0.5R, respectively. The
thickness of the shell linearly varies from the value 4, to
the value h,,,. Thereby, the thickness is defined as

Y P i i = Pmax i
h(x) = T (ﬁ 7 > in which f = o Using Eq. (29)
(a — o0), the lowest natural frequencies (minimize the func-

tion “;—'7"[” with respect to m and n) are calculated and shown in
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Table 1 Comparison of lowest natural frequencies for material iso-
tropic, linear symmetric variation cylindrical shell

Table 3 Comparison of the lowest natural frequencies for FGM toroi-
dal shell segment

g = D Sivadas and Gane- Present study Errors (%)
i san [13]
1 7730.8 7765.6 0.45
2 8025.4 7930.3 1.19
3 8238.6 8111.8 1.54
4 8397.1 8228.0 2.01
5 8517.6 8316.0 2.36
6 8611.4 8383.9 2.64
7 8685.9 8437.5 2.86
8 8746.0 8480.7 3.03
9 8795.3 8516.2 3.17

Table 1 in comparison with the results given by Sivadas and
Ganesan [13] using Love’s first approximation shell theory
and semi-analytical finite element approach. As can be seen,
a good agreement is obtained in this comparison.

Secondly, consider an FGM cylindrical shell with lin-
ear asymmetric variation thickness along the axial direc-
tion. The material parameters are chosen as Phu et al.
[34] E, =70GPa, p, =2702kg/m’, E,=380GPa,
p. = 3800kg/m®, v,, = v. = 0.3. The thickness of FGM
shell varies linearly along the axial direction from a value
Nenin = 0.004m to a value h,,,, = 0.006 m. The radius and
length of shell are chosen as R = 2004,,,;,, L = 2R. The natu-
ral frequencies are calculated and compared with the results
reported by Phu et al. [34] in Table 2 using classical thin
shell theory and Galerikin method. Again, a good agreement
is obtained.

Thirdly, an FGM toroidal shell segment is considered
with material and geometrical parameters as Ninh and Bich
[42]:E, = 70 x 10°Pa,p,, = 2702 kg/m*,E, = 380 x 10°Pa,
p. = 3800 kg/m3, V,=v,=03, h=00lm, a/R =10,
L/R =0.5, k=15. The external harmonic excitation is
choosen as g = 1000 sin 6000t Pa. The lowest natural fre-
quencies are calculated by minimizing the function (;—':r with
respect to m and n of the present study and compared with
those calculated by Eq. (21) of Ninh and Bich [42]. The
results are listed in Table 3. The vibration response is

Table2 Comparison of natural frequencies for variable thickness
FGM cylindrical shell

@pin Phu et al. [34] Present study Errors (%)
w0y, 4932.38 4933.41 0.021

03 1487.72 1494.45 0.45

;s 641.99 659.59 2.74

w7 502.50 524.81 4.40

@9 676.96 688.78 1.75

Ninh and Bich [42] Present study Errors (%)

Convex shell a/R = 10

R/h =30 20056.04 19927.49 0.64
R/h =40 13196.48 13140.29 0.43
R/h =50 9545.28 9524.68 0.22
R/h =100 3512.21 3508.65 0.1

R/h =150 1970.59 1969.72 0.05

Concave shell a/R = —10

R/h =30 18914.27 18778.26 0.72
R/h =40 12159.17 12098.39 0.5

R/h =50 8618.54 8595.85 0.26
R/h=100  2925.33 2922.62 0.09
R/h =150 1536.82 1535.71 0.07

compared on Fig. 2. Obviously, a good agreement is
obtained in this comparison. Moreover, the lowest natural
frequencies of FGM toroidal shell segment calculated in the
present study using the Reddy’s third-order shear deforma-
tion shell theory (f7PT) are smaller than corresponding
values calculated by Eq. (21) of Ninh and Bich [42] using

the classical thin shell theory (f“7). The error
(fcsr_frsm

oSt .100%) decreases as the R/h ratio increases. The

information in Fig. 2 reveals that the difference between two
. . 4.0273¢-8-3.837¢-8

amplitudes is s & 4.7%.

4.2 Nonlinear vibration analysis of FGM variable

thickness toroidal shell segments

This section considers FGM variable thickness toroidal shell
segments with the material properties are as
E, =105.6960 GPa, E, =154.3211 GPa, v =0.2980,
p,, = 4429 kg/m>,p, = 5700 kg/m>. The thickness of the
shell is assumed to be linearly varied along the axial direc-
tion from the value A, to the value h and defined as

h) =

max?

( p— %x), in which £, is average thickness, and

p= " is variation parameter. Using the Runge—Kutta

min

method to solve Eq. (28), the effects of variation parameter,
volume fraction index, and geometrical parameters on natu-
ral frequencies and nonlinear vibration response are
investigated.

4.2.1 Natural frequencies
Effect of variation parameter § on natural frequencies of

FGM variable thickness toroidal shell segments is illustrated
in Table 4. Parameters are chosen as h,, =0.02 m,
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Fig.2 Comparison of forced X 10°
1 1 Q S T
v1brf1t10n response of FGM (0.00024187, 4.0273¢-08)
toroidal shell segment Y ROy oo NS TVl TSI SRR
2 00024185, 3.837e-08)

Amplitude of deflection W(m)

-5 1

h=0.01 m, Rh=30, LIR = 0.5, a/R = 10, k = 5, g=1000sin(60008), (m,n) = (1,5)
| | |

T
[ P present study

~|===Ninhand Bich [42] | ... .../

0 05 1 15 2 25 3
Time (s) x10°

o POV toroidal shel seement " " S )

with different variation p=1 p=2 p=3 p=4 p=5

parameter (h,, = 0.02 m,

R/h,, = 100, L/R = 1, 1 1 357.0417 357.0847 357.1192 357.1440 357.1624

a/R=10,k=2) 2 284.8968 284.9592 285.0359 285.0964 285.1429
3 221.0859 221.2078 221.3722 221.5038 221.6053
4 174.9403 175.1940 175.5312 175.8003 176.0074
5 144.8768 145.3776 146.0255 146.5395 146.9337
6 127.9007 128.7968 129.9324 130.8276 131.5113
7 121.7341 123.1673 124.9569 126.3583 127.4241
8 124.5932 126.6545 129.2017 131.1850 132.6874
9 134.8084 137.5327 140.8762 143.4689 145.4273
10 150.8745 154.2690 158.4178 161.6269 164.0467

2 1 391.8222 392.2042 392.5788 392.8620 393.0751

2 367.5272 367.9571 368.4167 368.7702 369.0382
3 334.7282 335.2694 335.9008 336.3942 336.7705
4 300.2056 300.9630 301.8973 302.6335 303.1968
5 268.8250 269.9558 271.3830 272.5098 273.3720
6 243.4554 245.1728 247.3463 249.0584 250.3657
7 225.5763 228.1369 231.3562 233.8795 235.7992
8 215.7957 219.4642 224.0298 227.5855 230.2781
9 214.1014 219.1041 225.2641 230.0285 233.6193
10 219.9879 226.4825 234.4032 240.4909 245.0592

R/h,, =100,L/R =1,a/R = 10, k = 2. It can be seen that
with the same mode numbers, the shell with a constant thick-
ness corresponding to f = Z’“—“ = 1 has the lowest frequency
in comparison with variable rﬁ;ickness. shells. In addition, the
natural frequency slightly increases as the variation param-
eter increases. For example, as variation parameter increases
from value § = 1 to the value § =5, the natural frequency
increases by 1.4%, 2.8%, 4.7%, 6.5%, 7.9%, and 8.7% cor-
responding to mode numbers (m,n) = (1,5), (1,6), (1,7),
(1,8), (1,9), and (1,10), respectively.

@ Springer

Effects of the volume fraction index and L/R ratio
on natural frequencies of FGM variable thickness toroi-
dal shell segments are shown in Table 5. Parameters are
taken as #,, = 0.02 m, R = 100h,,,a = 10R, f =2,k =1,
(m,n) = (1, 1). It can be seen that for all cases of L/R ratio,
there is a decreasing trend of natural frequencies as the
volume fraction index k increases. This can be explained
by the fact that as the volume fraction index k increases,
the percentage of ceramic in FGM decreases, and the shell
will be softer, leading to the decrease of natural frequency.
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Table 5 Natural frequencies of FGM toroidal shell segment with dif-
ferent volume fraction index and different L/R ratio (h,, = 0.02 m,

R =100h,,,a=10R, f =2, (m,n) = (1,1))
ko 2u(Hz)

L/R=05 L/R=1 L/R=15 L/R=2 L/R=3
0 406.6032  370.6200 317.3324  260.8906  178.4305
0.1 4049239  369.0486 3159767  259.7704  177.6608
0.2 4034597 367.6817 314.7984  258.7972  176.9925
0.5 4000162 3644743 312.0368  256.5182  175.4287
1 3962358 3609583 309.0147  254.0277 173.7218
5 3873850  352.7886 302.0204 2482813  169.7945
10 385.0004  350.6703 300.2185  246.8065 168.7899
o 3817438 3479606 297.9309  244.9400 167.5214

Numerical values in Table 5 also show that there is also
a decreasing trend of natural frequencies as the L/R ratio
increases. For example, as the L/R ratio increases from
0.5 to 1, the natural frequency decreases by 8.85%, 8.86%,
and 8.87% corresponding to k =0, k = 0.1, and k = 0.2,
respectively.

Table 6 depicts how the values of a/L and R/h,, ratios
affect the natural frequency of FGM variable thickness
toroidal shell segment. It is seen from the table that for
all cases of convex shells and concave shells, there is a
decreasing trend of natural frequencies as the R/h,, ratio
increases. For example, in the case of convex shells and
a/L =5, as the R/h,, ratio increases from 50 to 100, 150,
200, and 500 the natural frequency of the shell decreases
by 1.33%, 1.59%, 1.68%, and 1.78%, respectively. In the
case of concave shells and a/L = -5, the natural frequency
of the shell decreases by 2.66%, 3.16%, 3.34%, and 3.53%,
respectively, as the R/h,, ratio increases from 50 to 100,
150, 200, and 500. The result in Table 6 also shows that
in the case of convex shells, as the a/L ratio increases
the natural frequency of FGM variable thickness toroidal
shell segments decreases. However, there is a trend in the
opposite direction for the case of the concave shell. The
natural frequency of the concave shell decreases as the a/L
ratio decreases. For example, in the case of convex shells
and R/h,, = 50, the natural frequency decreases by 7.6%,
10.14%, 11.41%, and 15.22%, respectively, as the a/L ratio
increases from 5 to 10, 15, 20, and 0. In the case of concave
shells and R/h,, = 50, as the a/L ratio increases from — 5

Table 6 Natural frequencies of

convex and concave shells with Type of shells a/L %(HZ)

different a/L and L/R ratios R/h,, =50 R/h, =100 R/h,, =150 R/h,, =200 R/h,, =500

(R=2m,L=2m, =2,

k=1,(m,n) =(1,3)) Convex shells © 208.3914 204.5827 203.8635 203.6095 203.3311
20 217.7473 214.0863 213.3938 213.1487 212.8786
15 220.8669 217.2524 216.5683 216.3260 216.0584
10 227.1057 223.5807 2229126 222.6756 222.4130
5 245.8012 242.5186 241.8938 241.6711 241.4215

Concave shells -5 171.1461 166.5923 165.7359 165.4358 165.1132

-10  189.7168 185.5709 184.7901 184.5155 184.2175
—-15 1959334 191.9068 191.1479 190.8806 190.5897
-20  199.0453 195.0756 194.3271 194.0633 193.7757

Fig.3 The effect of L/R ratio g 10°

on nonlinear vibration responses ' ——LR=05==+L/R=1 " LR=15 ===L/R=2 '

of FGM variable thickness
toroidal shell segments with
mode numbers (m,n) = (1,1)

Amplitude of deflection (m)

h,=002m,p=2k=1,Rh=100,aR=10,m=1,n= 1, g=1000sin(500t)
1 | 1 1

012 0.13 0.14 0.15 0.16
Time (s)
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to — 10, — 15, and — 20 the natural frequency increases by
10.85%, 14.48%, and 16.3%, respectively. In addition, the
natural frequencies of convex shells are greater than the
ones of concave shells.

Fig.4 The effect of L/R ratio

4.2.2 Nonlinear vibration responses

Figures 3, 4 and 5 depict the nonlinear vibration responses
of FGM variable thickness toroidal shell segments corre-
sponding to mode numbers (m,n) = (1, 1), (m,n) = (1, 3),

on nonlinear vibration responses
of FGM variable thickness
toroidal shell segments with
mode numbers (m, n) = (1, 3) 2
=
S
3
=
[}
T
‘G
@
T
2
2
£
<
Sr h,=0.02m,p=2k=1,RM=100, &R =10, m= 1, n =3, g=1000sin(500t) I
. | | | | |
8.1 0.11 0.12 0.13 0.14 0.15 0.16
Time (s)
Fig.5 The effect of L/R ratio x107
on nonlinear vibration responses sl ’ —LR=05=="LR=1"""LR=15 ===LR=2 |
of FGM variable thickness
toroidal shell segments with
mode numbers (m, n) = (3, 3)
€
c
S
3
2
[
T
k]
@
T
2
2
£
<
8- h,=0.02m, p=2k=1,Rh=100,aR =10, m = 3, n = 3, g=1000sin(500¢) .
1 1 | | 1
0.1 0.11 0.12 0.13 0.14 0.15 0.16
Time (s)
Fig.6 The effect of R/h,, ratio 5 10°
. . ) T : I " T
on nonhneal.* v1brat1.on responses ——Rh=50 ===Rh =100 ==+R/ = 150 R/ = 200
of FGM variable thickness
toroidal shell segments with
mode numbers (m,n) = (1, 1)
E
c
S
3
=
[}
T
k]
@
T
2
=
£
<
h,=0.02m,p=2k=1,L/IR=1,aR=10,m=1,n=1, g=1000sin(500t)
| | | |
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Fig.7 The effect of R/h,, ratio 5X 10°
. . v : . : : T
on nonhnealf V1brat1.0n responses ——RMh=50 ===R/h=100 = =R/ =150 R/h = 200
of FGM variable thickness 4 B
toroidal shell segments with 5
mode numbers (m, n) = (1, 3)
E 2 4
[
S
©
&
[
T
k]
@
T -
2
=
£ -2 =
<
3L wf
4+ hav=0.02 m,p=2k=1,L/R=1,aR =10, m=1, n=3, g=1000sin(500t) =
| I | | I
%.1 0.1 0.12 0.13 0.14 0.15 0.16
Time (s)
Fig. 8 The effect of R/h,, ratio x10°
on nonlinear vibration responses sk ' ——Rh=50 ———Rh=100 - = -RIh=150 ~R/h = 200 |
of FGM variable thickness
toroidal shell segments with
mode numbers (m, n) = (3, 3)
E
=
S
3
2
[}
T
k]
@
©
2
2
£
<
s h,=0.02m, p=2k=1,L/R=1,aR=10,m=3,n=3, q=1000sin(500t)
| 1 | 1

and (m,n) = (3, 3), respectively. In each figure, four cases
of L/Rratio (L/R = 0.5,1, 1.5 and 2) are considered. Other
parameters are indicated in the figures. It can be seen from
these figures that for all cases of mode numbers (m, n), the
vibration amplitude of FGM variable thickness toroidal shell
segment increases as the L/R ratio increases. This indicates
that a longer shell has greater vibration amplitude than that
of a shorter one.

The effect of R/h,, ratio on vibration response of
FGM variable thickness toroidal shell segment is illus-
trated in Figs. 6, 7 and 8 corresponding to mode numbers
(m,n) = (1,1), (m,n) = (1,3), and (m,n) = (3,3), respec-
tively. Each figure draws four curves of vibration response
corresponding to R/h,, = 50, R/h,, = 100, R/h,, = 150,
and R/h,, = 200. Other parameters are indicated in each
figure. The result in these figures shows that the vibration
amplitude of FGM variable thickness toroidal shell seg-
ments decreases significantly as the R/h,, ratio decreases
for all three cases of mode numbers. It means that the

1
0.12 013 0.14 0.15 0.16
Time (s)

vibration response of FGM variable thickness toroidal
shell segment is very sensitive to the change of the R/h,,
ratio.

The volume fraction index k is a parameter that defines
the contribution of material constituents in FGM. It can
be seen from Eq. (1) that as the volume fraction index
k increase, the volume fraction of ceramic constituent
decreases, and the volume fraction of metal constituent
increases in FGM. Therefore, the volume fraction index k
affects effective Young modulus and effective mass den-
sity of FGM, leading to the effect on vibration response
of FGM variable thickness toroidal shell segment. This
effect is illustrated in Figs. 9, 10, 11 and 12 correspond-
ing to mode numbers (m,n)=(1,1), (m,n)=(1,3),
(m,n) = (3,1), and (m,n) = (3,3), respectively. In each
figure, three cases (k=0.1, k =1, and k = 10) are con-
sidered. It can be seen that the metal-rich shell (k = 10)
has a larger vibration amplitude in comparison with that
of the other cases.
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Fig.9 The effect of volume
fraction index on nonlinear
vibration responses of FGM
variable thickness toroidal shell
segments with mode numbers
(m,n)=(1,1)

Fig. 10 The effect of volume
fraction index on nonlinear
vibration responses of FGM
variable thickness toroidal shell
segments with mode numbers
(m,n) =(1,3)

Fig. 11 The effect of volume
fraction index on nonlinear
vibration responses of FGM
variable thickness toroidal shell
segments with mode numbers
(m,n)=(3,1)

5 Conclusions

N

Amplitude of deflection (m)
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ES
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h =0.02m,p=2 Rh=100,L/R=1,a/R =10, m=1,n=3, q=1000sin(500t)
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1 1 | 1 1 1 1 1 1
0.1 0.105 0.11 0.115 012 0.125 013 0.135 0.14 0.145 0.15
Time (s)

study. Firstly, based on Reddy’s third-order shear deforma-
tion shell theory, the governing partial differential equations

An analytical investigation of the vibration of the FGM vari-  of motion of FGM variable thickness toroidal shell seg-
able thickness toroidal shell segment is presented in this ~ ment are obtained. Secondly, the Galerkin method is used
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Fig. 12 The effect of volume g 10°
fraction index on nonlinear ' '
vibration responses of FGM 6l

variable thickness toroidal shell
segments with mode numbers
(m,n) =(3,3)

Amplitude of deflection (m)

—k=0.1
-=-k=1
-------- k=10

o h_=0.02m, =2 Rh=100, LR =1,aR = 10,m =3, n = 3, g=1000sin(500) ]
KX 610 o o118 012 0125 013 013 014 0145 0.15
Time (s)

to convert the system of partial differential equations into  with

nonlinear differential equations. Lastly, the Runge—Kutta E ok

method is used to solve the nonlinear differential equation E,=E,+ — E, = o ,

of motion, and then the vibration response is studied. The k+1 2k + 1)k +2)

effects of geometric, material, and variation parameterson ~ p _ E, [ 1 + 1 ]

. . 3= cm ’
natural frequency and vibration response are analyzed and 12 k+3 k+2 4k+1)
discussed. It is revealed that shell with a constant thickness
has the lowest frequency in comparison with variable thick- 1 3 3 1
ness .sheus. The natural frequency' increases as the Volume E,=E,, [k T4 2k+3) " Ak+2) - B+ 1)] )
fraction index decreases. Geometrical parameters have sig-
nificant effect on natural frequency and vibration response
of variable thickness toroidal shell segment.

Appendix A
) S oo, @ VB omx), @ B ono
= ——hXx)h/(x), = ——hXx)h/(x), = ———h@h/(x
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@ i (h(x)*hr(x), @ v ————(h(x))*h1(x)
=—(h(x X X X),
1T 3(1-2) 2= 3(1— V2)
4E,
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