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Abstract
In this paper, for the first time, the nonlinear vibration response of toroidal shell segments with varying thickness subjected 
to external pressure is investigated analytically using Reddy’s third-order shear deformation shell theory. The variable 
thickness shells are made of functionally graded material (FGM) that is created from ceramic and metal constituents. The 
material properties of FGM shells are assumed to be gradually graded in the thickness direction according to a simple power-
law distribution in terms of volume fractions of constituents. Equations of motion of variable thickness FGM toroidal shell 
segments are established based on Reddy’s third-order shear deformation shell theory with von Kármán nonlinearity. The 
Galerkin method and the Runge–Kutta method are used to solve the governing system of partial differential equations of 
motion, and then the nonlinear vibration response of variable thickness FGM toroidal shell segment is analyzed. A numerical 
analysis is also performed to show the effects of material and geometrical parameters on the nonlinear vibration response of 
variable thickness FGM toroidal shell segments.

Keywords Variable thickness FGM toroidal shell segment · Nonlinear vibration · Reddy’s third-order shear deformation 
shell theory · von Kármán nonlinearity

1 Introduction

In recent years, the study on the stability and vibration 
of thin structural components with variable thickness has 
attracted many researchers' interests. Irie et  al. [1] and 
Efraim and Eisenberger [2] studied vibration of variable 
thickness annular plate and variable thickness thick FGM 
plates, respectively. Based on classical shell theory, Koiter 
et al. [3] studied the buckling of cylindrical shells with 
small periodic axisymmetric thickness variations under 
axial compression using the energy criterion and a modi-
fied shooting method. The buckling of a cylindrical shell 
with small thickness variations subjected to external pres-
sure has been studied by Nguyen et al. [4] making use of the 

perturbation technique and the Bubnov–Galerkin method. 
Li et al. [5] investigated the effect of thickness variation 
on the stability of composite cylindrical shells subjected to 
axial compressive load using the perturbation technique and 
weighted residuals method based on classical shell theory. 
Also, based on classical shell theory, buckling of a cylindri-
cal shell with variable thickness under axial compression 
is investigated by Brar et al. [6] making use of the finite 
difference method. Chen et al. [7] and Feng et al. [8] made 
use of the perturbation technique, the Galerkin method, and 
classical shell theory to investigate the buckling of cylin-
drical shells with arbitrary axisymmetric variable thickness 
under axial compression and the buckling of pressure loaded 
cylindrical shells with arbitrary circumferential thickness 
variations, respectively. Zhou et al. [9] studied the buckling 
of a cylindrical shell with stepwise variable thickness under 
external pressure using the hybrid perturbation-Galerkin 
method. Free vibration characteristics of rotating cylindri-
cal shells with variable thickness is studied by Taati et al. 
[10] using Galerkin method. Duan and Koh [11] used an 
analytical approach to investigate free vibration of variable 
thickness cylindrical shells. A semi-analytical finite clement 
approach is used by Ganesan and Sivadas [12], and Sivadas 
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and Ganesan [13] to investigate the free vibration behav-
iour of isotropic circular cylindrical shells and cantilever 
isotropic circular cylindrical shells with thickness varied 
in the axial direction, respectively. Using wittrick williams 
algorithm, El-Kaabazi and Kennedy [14] studied free vibra-
tion of variable thickness cylindrical shell. Viswanathan 
et al. [15] made use of the Spline Function approximation 
and a point collocation method to study free vibration of 
layered circular cylindrical with variable thickness. Based 
on classical shell theory, Aksogan and Sofiyev [16] used 
the Galerkin method and the Ritz method to investigate the 
dynamic buckling of a cylindrical shell with variable thick-
ness loaded by a uniform external pressure. Jia-chu et al. 
[17], and Xin-zhi et al. [18] studied stability, and natural 
frequency of variable thickness conical shells, respectively.

All the above-mentioned studies are based on classical 
thin shell theory, usually used for static and dynamic anal-
ysis of thin-shell structures. Higher order shear deforma-
tion theory has been used for investigating the static and 
dynamic behaviour of thicker structures with variable thick-
nesses. Kalbaran and Kurtaran [19] based on the first-order 
shear deformation shell theory to study the nonlinear static 
response of laminated composite elliptic panels having vari-
able thickness using the generalized differential quadrature 
method and Newton–Raphson method. Also, based on the 
first-order shear deformation shell theory, Nasrekani and 
Eipakchi [20], and Eipakchi and Nasrekani [21] investigated 
the displacements of isotropic cylindrical shells and auxetic 
composite cylindrical shells with variable thickness under 
external pressure and axial compressive load using the per-
turbation technique, respectively. Duc et al. [22] made use of 
the first-order shear deformation shell theory to investigate 
vibration and dynamic response of sandwich panel with vari-
able thickness.

Functionally graded materials (FGMs) are known as 
advanced materials usually composed of metal and ceramic 
constituents, in which material properties gradually vary 
from one interface to the other. In recent years, static and 
dynamic behaviours of FGM structures, especially variable 
thickness FGM structures, have received attention. Shariyat 
and Alipour [23] presented an analytical approach to inves-
tigate the bending and stress of FGM auxetic conical/cylin-
drical shells with variable thickness based on the first-order 
shear deformation shell theory. Khoshgoftar [24] and Kho-
shgoftar et al. [25] used the total potential energy approach 
and perturbation method to analyze the static behaviour of 
cylindrical shells with variable thickness based on the first-
order shear deformation shell theory and the second-order 
shear deformation shell theory, respectively. Based on the 
first-order shear deformation shell theory and perturbation 
technique, Parhizkar Yaghoobi and Ghannad [26] studied 
static behaviour of variable thickness FGM cylindrical shell 

under thermal load. Kashkoli et al. [27] made use of multi-
layer method to study static response of FGM cylindrical 
shell with variable thickness loaded by thermo-mechanical 
loads. Saeedi et al. [28] investigated static response of long 
FGM cylindrical shell under thermomechanical loading 
using the differential quadrature method. Also, using the 
differential quadrature method, Behravan Rad and Shariyat 
[29] static response of variable thickness annular plates sub-
jected to magnetic, thermal, and mechanical loads.

Hayati and Atai [30] based on a third-order shear defor-
mation shell theory to study multiobjective mechanical 
buckling optimization FGM cylindrical shell with thick-
ness variation and initial imperfection, making use of energy 
approach and finite element modes. Also, using finite ele-
ment model, Minh and Duc [31] studied the effects of cracks 
on the stability of variable thickness FGM plates based 
on the phase-field theory and the new third-order shear 
deformation plate theory. Using the differential quadrature 
method, Akbari Alashti and Ahmadi [32] studied buckling 
of variable thickness FGM cylindrical shell loaded by axial 
compression and external pressure.

Kim et al. [33] based on the first-order shear deformation 
shell theory to investigate vibration of FGM doubly curved 
shell of revolution by using a semi-analytical method. Phu 
et al. [34] studied nonlinear dynamics responses of vari-
able thickness FGM cylinder shell based on classical thin 
shell theory. Quoc et al. [35] based on the first-order shear 
deformation shell theory and Galerkin method investigated 
vibration of rotating FGM cylindrical shell with variable 
thickness. Miao et al. [36] investigated free vibration of 
variable thickness 2D-FGMs cylindrical shell making use 
of the Sanders’ shell theory, Chebyshev polynomials and 
the Rayleigh–Ritz method. Ahlawat and Saini [37] studied 
vibration and buckling of 2D-FGM circular plates with vari-
able thickness using Hamilton’s principle and the Harmonic 
differential quadrature method. Based on the first-order shear 
deformation shell theory, Kurpa et al. [38] investigated 
vibration of variable thickness FGM shallow shells making 
used of R-functions method.

Toroidal shell segments are special structures and have 
found applications in practical. Studies on the buckling, 
postbuckling, and vibration of toroidal shell segments in 
general, and toroidal shell segments with thickness variation, 
in particular, have attracted the attention of many authors. 
Based on classical shell theory, Stein and McElman [39] 
studied the buckling of isotropic toroidal shell segments 
under mechanical loads. Oyesanya [40] utilized an analyti-
cal approach to investigate the buckling of initial imperfec-
tion toroidal shell segments based on Donnell shell theory. 
Weingarten et al. [41] presented an investigation on finite 
element shell-buckling of thin isotropic toroidal shell seg-
ments using classical thin shell theory. Recently, there has 
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been some research on buckling and post-buckling of the 
FGM toroidal shell segment. Ninh and Bich [42] investi-
gated nonlinear vibration of simply supported FGM toroidal 
shell segment under mechanical load based on classical thin 
shell theory. Based on Reddy’s third-order shear deformation 
shell theory, Duc and Vuong [43] investigated the vibration 
behaviour of simply supported FGM toroidal shell segment 
with constant thickness under mechanical load. Long and 
Tung [44] studied buckling of FGM toroidal shell segment 
making use of Reddy’s higher order shear deformation shell 
theory. Thinh et al. [45] utilized the Galerkin method and 
the improved Donnell shell theory to investigate nonlinear 
buckling and postbuckling of FGM toroidal shell segments 
with thickness variation. In the above studies on isotropic 
and FGM toroidal shell segments, except for Thinh et al. 
[45], the main attention is focused on toroidal shell segments 
with constant thickness. Thinh et al. [45] utilized improved 
Donnell shell theory usually used for thin shells.

To the best of our knowledge, there are very rare stud-
ies focused on the variable thickness shell, and no works 
focused on the vibration of the thicker variable thickness 
FGM toroidal shell segment. Toroidal shell segment has 
been applied in practical fields such as oxygen tanks, rocket 
fuel tanks, underwater toroidal pressure hull, and satellite 
support structures. These structures may be made of FGM 
and have variable thickness. The study of vibration of vari-
able thickness functionally graded toroidal shell segments is 
necessary and has practical significance. Thus, in this paper, 
for the first time, the nonlinear vibration response of toroidal 
shell segments with varying thickness subjected to external 
pressure is studied. The governing equations are derived 
based on Reddy’s third-order shear deformation shell the-
ory with von Kármán nonlinearity. Galerkin method and 
Runge–Kutta method are used to solve the governing equa-
tions, and then the nonlinear vibration response of variable 
thickness FGM toroidal shell segment is analyzed.

2  Governing equations

A configuration of FGM toroidal shell segments of vari-
able thickness h(x) and length L used in the present study is 
depicted in Fig. 1. The middle surface of the shell is formed 
by rotation of a plane circular arc of radius a about an axis 
in the plane of the curve. If a is positive, the shell is convex. 
If a is negative, the shell is concave. If a → ∞ , the toroidal 
shell segment becomes a cylindrical shell. The x coordinate 
of the shell is taken along the longitudinal direction, y coor-
dinate along the circumferential direction and z along the 
thickness direction.

Suppose that the inner surface of the FGM shell is 
ceramic-rich and the outer surface is metal-rich, and the 
material composition of the shell varies smoothly along 
the thickness direction according to a simple power-law in 
terms of the volume fractions of the constituents as Ninh 
and Bich [42]

where m and c denote metal and ceramic, respectively. 
Em, �m,Ec, �c are Young modulus and mass density of metal 

(1)E(x, z) = Em +
(
Ec − Em

)(2z + h(x)

2h(x)

)k

(2)�(x, z) = �m +
(
�c − �m

)(2z + h(x)

2h(x)

)k

,
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Fig. 1  Geometry and coordinate system of variable thickness toroidal 
shell segments
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and ceramic constituents, respectively. E(x, z) and �(x, z) 
indicate the effective properties of FGM. The non-negative 
number k is the volume fraction index defining the distribu-
tion of material constituents in FGM. The Poisson’s ratio 
of material constituents is assumed to be equal and to be 
constant, i.e. �c = �m = const Ninh and Bich [42].

In the present study, Reddy’s third-order shear deforma-
tion shell theory developed by Reddy and Liu [46] is used 
to investigate the nonlinear vibration of variable thickness 
FGM toroidal shell segments subjected to mechanical loads. 
According to this theory, the displacement components 
(u, v,w) can be written as

(3)

u(x, y, z, t) = u0(x, y, t)
(
1 −

z

a

)
+

[
z − z3

4

3(h(x))2

]
�x(x, y, t) − z3

4

3(h(x))2

�w0

�x

v(x, y, z, t) = v0(x, y, t)
(
1 −

z

R

)
+

[
z − z3

4

3(h(x))2

]
�y(x, y, t) − z3

4

3(h(x))2

�w0

�y

w(x, y, z, t) = w0(x, y, t),

Substituting Eq. (3) into Eq. (4) and ignoring higher order 
terms on the assumption that 1 − z

a
≈ 1, 1 −

z

R
≈ 1 leads to 

strain–displacement relations as:

where

The strain–displacement relations taking von Kármán non-
linearity for variable thickness shell presented in Eq. (5) is a 
novelty of the present study.

The stress–strain relations for variable thickness FGM 
toroidal shell segments using Hooke’s law are

where � is Poisson’s ratio, 
(
�x, �y

)
 are normal stresses, �xy is 

in-plane shear stress, 
(
�xz, �yz

)
 are transverse shear stresses.

The force and moment resultants of variable thickness FGM 
toroidal shell segment are defined as
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where t is time, 
(
u0, v0,w0

)
 are displacements of a point on 

the mid-surface, and �x,�y are the rotations of normal to the 
middle surface with respect to y- and x-axes, respectively. R 
is radius of equator.

Based on Reddy’s third-order shear deformation shell 
theory taking von Kármán nonlinearity into consideration, 
the normal strains ( �x, �y ), in-plane shear strain ( �xy ), and 
transverse shear strains ( �xz, �yz ) are expressed as Reddy and 
Liu [46]
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Setting Eq. (1), Eq. (5), and Eq. (6) into Eq. (7) and then 
putting the results into Eq. (8) yields

w h e r e  c o e f f i c i e n t s  Φij(i = 1 − 3;j = 1 − 3)  , 
Qij(i = 1 − 3;j = 1 − 3), Q41,Q42,Q51,Q52 are determined 
in Appendix A.

The equations of motion of the toroidal shell segment 
subjected to uniformly distributed external pressure q

(
N/m2

)
 

are given by Reddy and Liu [46]
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= I1ẅ0 + I3
𝜕ü0
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 are determined in Appendix 

B. Substituting Eq. (9) and Eq. (10) into Eqs. (11) to (15) 
with the aid of Eq. (6) yields

i n  w h i c h  o p e r a t o r s  H1i,H2i,H4i,H5i(i = 1 − 5)  ; 
H3i(i = 1 − 9) are defined in Appendix C.

Equations  (16) to (20) are five governing equations 
in terms of five variables u0(x, y, t) , v0(x, y, t) , w0(x, y, t) , 
�x(x, y, t) , and �y(x, y, t) . They are used to study the nonlinear 
vibration of variable thickness FGM toroidal shell segments 
based on Reddy’s third-order shear deformation shell theory.
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3  Galerkin procedure

In this study, variable thickness FGM toroidal shell seg-
ments are assumed to be simply supported at two butt-ends 
and subjected to external harmonic excitation. Thus, the 
associated boundary condition is

The approximate solutions are chosen as

where U(t),V(t),W(t),Φx(t),Φy(t) are unknown time-
dependent functions, m and n are the numbers of half-waves 
in x and y directions, respectively. The boundary conditions 
w0 = 0, v0 = 0 , and �y = 0 are satisfied at x = 0 and x = L . 
The boundary conditions Mx = 0, Px = 0,Nxy = 0 , Nx =

0 at x = 0 and x = L are satisfied in average sense 
1

2�R
∫ 2�R

0
Mxdy = 0,

1

2�R
∫ 2�R

0
Pxdy = 0,

1

2�R
∫ 2�R

0
Nxdy = 0

 , 

and 1

2�R
∫ 2�R

0
Nxydy = 0

 at x = 0 and x = L.

Substituting Eq. (22) into Eqs. (16) to (20) then apply-
ing the Galerkin method leads to

where coefficients l1i, l2i, l4i, l5i(i = 1 − 9) ; l3i(i = 1 − 17) are 
demonstrated in Appendix D.

(21)
w
0
= 0, v

0
= 0,�y = 0,Mx = 0,

Px = 0,Nxy = 0 , Nx = 0 at x = 0 and x = L

(22)

u0(x, y, t) = U(t) cos
m�x

L
sin

ny

R

v0(x, y, t) = V(t) sin
m�x

L
cos

ny

R

w0(x, y, t) = W(t) sin
m�x

L
sin

ny

R

�x(x, y, t) = Φx(t) cos
m�x

L
sin

ny

R

�y(x, y, t) = Φy(t) sin
m�x

L
cos

ny

R

(23)
l11U + l12V + l13W + l14Φx + l15Φy + l16W

2 = l17Ü + l18Φ̈x + l19Ẅ

(24)
l21U + l22V + l23W + l24Φx + l25Φy + l26W

2 = l27V̈ + l28Φ̈y + l29Ẅ

(25)

l
31
U + l

32
V + l

33
W + l

34
Φx + l

35
Φy

+ l
36
W2 + l

37
UW + l

38
VW + l

39
ΦxW + l

310
ΦyW

+ l
311

W3 + l
312

q = l
313

Ü + l
314

V̈

+ l
315

Φ̈x + l
316

Φ̈y + l
317

Ẅ

(26)
l41U + l42V + l43W + l44Φx + l45Φy + l46W

2 = l47Ü + l48Φ̈x + l49Ẅ

(27)
l51U + l52V + l53W + l54Φx + l55Φy + l56W

2 = l57V̈ + l58Φ̈y + l59Ẅ,

On the whole, transverse nonlinear vibration is a pri-
mary motion for the FGM variable thickness toroidal 
shell segments, thereby, we can suppose that the four 
right sides of the four Eqs. (23), (24), (26) and (27) to 
be equal to zero. With this assumption, the system of 
five Eqs. (23)–(27) can be converted into the following 
equation:

where coefficients Di(i = 1 − 6) are determined in Appendix 
E.

3.1  Natural frequency

The natural frequencies of FGM variable thickness toroidal 
shell segments with subscripts m and n are the mode shapes 
in the x and y directions, respectively, can be determined 
from Eq. (28) as

3.2  Nonlinear forced vibrations

Consider FGM variable thickness toroidal shell segments 
subjected to external harmonic excitation q = Q sinΩt . 
Q and Ω are assumed to be time independent. Substitut-
ing q = Q sinΩt into Eq. (28) and using the Runge–Kutta 
method, the nonlinear forced vibration of variable thickness 
FGM toroidal shell segments is calculated and analyzed.

4  Numerical analysis

4.1  Comparisons

This part shows three comparisons to verify the accuracy of 
the present approach. Firstly, consider an isotropic cylindri-
cal shell with linear asymmetric variation thickness along 
the axial direction. Material parameters are taken as Sivadas 
and Ganesan [13]  E = 2.035 × 1011Pa, � = 0.285, 
� = 7846 kg/m3 . The average thickness, equator radius, and 
length of the shell is chosen as Sivadas and Ganesan [13] 
hav = 0.508mm, R = 100hav, L = 0.5R , respectively. The 
thickness of the shell linearly varies from the value hmin to 
the value hmax . Thereby, the thickness is defined as 
h(x) =

2hav

1+�

(
� −

�−1

L
x
)
 , in which � =

hmax

hmin

 . Using Eq. (29) 
( a → ∞ ), the lowest natural frequencies (minimize the func-
tion �mn

2�
 with respect to m and n ) are calculated and shown in 

(28)
(
1 + D1W

)
Ẅ + D2W + D3W

2 + D4W
3 + D5q = 0,

(29)�mn =
√
D2.
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Table 1 in comparison with the results given by Sivadas and 
Ganesan [13] using Love’s first approximation shell theory 
and semi-analytical finite element approach. As can be seen, 
a good agreement is obtained in this comparison.

Secondly, consider an FGM cylindrical shell with lin-
ear asymmetric variation thickness along the axial direc-
tion. The material parameters are chosen as Phu et  al. 
[34]  Em = 70GPa  ,  �m = 2702 kg/m3 ,  Ec = 380GPa  , 
�c = 3800 kg/m3 , �m = �c = 0.3 . The thickness of FGM 
shell varies linearly along the axial direction from a value 
hmin = 0.004m to a value hmax = 0.006m . The radius and 
length of shell are chosen as R = 200hmin , L = 2R . The natu-
ral frequencies are calculated and compared with the results 
reported by Phu et al. [34] in Table 2 using classical thin 
shell theory and Galerikin method. Again, a good agreement 
is obtained.

Thirdly, an FGM toroidal shell segment is considered 
with material and geometrical parameters as Ninh and Bich 
[42]: Em = 70 × 109Pa, �m = 2702 kg/m3, Ec = 380 × 109Pa,

�c = 3800 kg/m3, �m = �c = 0.3, h = 0.01m, a∕R = 10,

L∕R = 0.5 , k = 5 . The external harmonic excitation is 
choosen as q = 1000 sin 6000t Pa . The lowest natural fre-
quencies are calculated by minimizing the function �mn

2�
 with 

respect to m and n of the present study and compared with 
those calculated by Eq. (21) of Ninh and Bich [42]. The 
results are listed in Table  3. The vibration response is 

compared on Fig.  2. Obviously, a good agreement is 
obtained in this comparison. Moreover, the lowest natural 
frequencies of FGM toroidal shell segment calculated in the 
present study using the Reddy’s third-order shear deforma-
tion shell theory ( f TSDT ) are smaller than corresponding 
values calculated by Eq. (21) of Ninh and Bich [42] using 
the classical thin shell theory ( f CST  ). The error (
f CST−f TSDT

f CST
.100%

)
 decreases as the R∕h ratio increases. The 

information in Fig. 2 reveals that the difference between two 
amplitudes is 4.0273e−8−3.837e−8

4.0273e−8
≃ 4.7%.

4.2  Nonlinear vibration analysis of FGM variable 
thickness toroidal shell segments

This section considers FGM variable thickness toroidal shell 
segments with the mater ial  proper ties are as 
Em = 105.6960 GPa  ,  Ec = 154.3211 GPa  ,  � = 0.2980 , 
�m = 4429 kg/m3,�c = 5700 kg/m3 . The thickness of the 
shell is assumed to be linearly varied along the axial direc-
tion from the value hmin to the value hmax , and defined as 
h(x) =

2hav

1+�

(
� −

�−1

L
x
)
 , in which hav is average thickness, and 

� =
hmax

hmin

 is variation parameter. Using the Runge–Kutta 
method to solve Eq. (28), the effects of variation parameter, 
volume fraction index, and geometrical parameters on natu-
ral frequencies and nonlinear vibration response are 
investigated.

4.2.1  Natural frequencies

Effect of variation parameter � on natural frequencies of 
FGM variable thickness toroidal shell segments is illustrated 
in Table  4. Parameters are chosen as hav = 0.02 m , 

Table 1  Comparison of lowest natural frequencies for material iso-
tropic, linear symmetric variation cylindrical shell

� =
h
max

h
min

Sivadas and Gane-
san [13]

Present study Errors (%)

1 7730.8 7765.6 0.45
2 8025.4 7930.3 1.19
3 8238.6 8111.8 1.54
4 8397.1 8228.0 2.01
5 8517.6 8316.0 2.36
6 8611.4 8383.9 2.64
7 8685.9 8437.5 2.86
8 8746.0 8480.7 3.03
9 8795.3 8516.2 3.17

Table 2  Comparison of natural frequencies for variable thickness 
FGM cylindrical shell

�mn Phu et al. [34] Present study Errors (%)

�
11

4932.38 4933.41 0.021
�
13

1487.72 1494.45 0.45
�
15

641.99 659.59 2.74
�
17

502.50 524.81 4.40
�
19

676.96 688.78 1.75

Table 3  Comparison of the lowest natural frequencies for FGM toroi-
dal shell segment

Ninh and Bich [42] Present study Errors (%)

Convex shell a∕R = 10

 R∕h = 30 20056.04 19927.49 0.64
 R∕h = 40 13196.48 13140.29 0.43
 R∕h = 50 9545.28 9524.68 0.22
 R∕h = 100 3512.21 3508.65 0.1
 R∕h = 150 1970.59 1969.72 0.05

Concave shell a∕R = −10

 R∕h = 30 18914.27 18778.26 0.72
 R∕h = 40 12159.17 12098.39 0.5
 R∕h = 50 8618.54 8595.85 0.26
 R∕h = 100 2925.33 2922.62 0.09
 R∕h = 150 1536.82 1535.71 0.07
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R∕hav = 100 , L∕R = 1 , a∕R = 10 , k = 2 . It can be seen that 
with the same mode numbers, the shell with a constant thick-
ness corresponding to � =

hmax

hmin

= 1 has the lowest frequency 
in comparison with variable thickness shells. In addition, the 
natural frequency slightly increases as the variation param-
eter increases. For example, as variation parameter increases 
from value � = 1 to the value � = 5 , the natural frequency 
increases by 1.4%, 2.8%, 4.7%, 6.5%, 7.9%, and 8.7% cor-
responding to mode numbers (m, n) = (1, 5) , (1,6), (1,7), 
(1,8), (1,9), and (1,10), respectively.

Effects of the volume fraction index and L∕R ratio 
on natural frequencies of FGM variable thickness toroi-
dal shell segments are shown in Table 5. Parameters are 
taken as hav = 0.02 m , R = 100hav , a = 10R , � = 2 , k = 1 , 
(m, n) = (1, 1) . It can be seen that for all cases of L∕R ratio, 
there is a decreasing trend of natural frequencies as the 
volume fraction index k increases. This can be explained 
by the fact that as the volume fraction index k increases, 
the percentage of ceramic in FGM decreases, and the shell 
will be softer, leading to the decrease of natural frequency. 

Fig. 2  Comparison of forced 
vibration response of FGM 
toroidal shell segment

Table 4  Natural frequencies 
of FGM toroidal shell segment 
with different variation 
parameter ( hav = 0.02 m , 
R∕hav = 100 , L∕R = 1 , 
a∕R = 10 , k = 2)

m n
�mn

2�
(Hz)

� = 1 � = 2 � = 3 � = 4 � = 5

1 1 357.0417 357.0847 357.1192 357.1440 357.1624
2 284.8968 284.9592 285.0359 285.0964 285.1429
3 221.0859 221.2078 221.3722 221.5038 221.6053
4 174.9403 175.1940 175.5312 175.8003 176.0074
5 144.8768 145.3776 146.0255 146.5395 146.9337
6 127.9007 128.7968 129.9324 130.8276 131.5113
7 121.7341 123.1673 124.9569 126.3583 127.4241
8 124.5932 126.6545 129.2017 131.1850 132.6874
9 134.8084 137.5327 140.8762 143.4689 145.4273
10 150.8745 154.2690 158.4178 161.6269 164.0467

2 1 391.8222 392.2042 392.5788 392.8620 393.0751
2 367.5272 367.9571 368.4167 368.7702 369.0382
3 334.7282 335.2694 335.9008 336.3942 336.7705
4 300.2056 300.9630 301.8973 302.6335 303.1968
5 268.8250 269.9558 271.3830 272.5098 273.3720
6 243.4554 245.1728 247.3463 249.0584 250.3657
7 225.5763 228.1369 231.3562 233.8795 235.7992
8 215.7957 219.4642 224.0298 227.5855 230.2781
9 214.1014 219.1041 225.2641 230.0285 233.6193
10 219.9879 226.4825 234.4032 240.4909 245.0592
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Numerical values in Table 5 also show that there is also 
a decreasing trend of natural frequencies as the L∕R ratio 
increases. For example, as the L∕R ratio increases from 
0.5 to 1, the natural frequency decreases by 8.85%, 8.86%, 
and 8.87% corresponding to k = 0 , k = 0.1 , and k = 0.2, 
respectively.

Table 6 depicts how the values of a∕L and R∕hav ratios 
affect the natural frequency of FGM variable thickness 
toroidal shell segment. It is seen from the table that for 
all cases of convex shells and concave shells, there is a 
decreasing trend of natural frequencies as the R∕hav ratio 
increases. For example, in the case of convex shells and 
a∕L = 5 , as the R∕hav ratio increases from 50 to 100, 150, 
200, and 500 the natural frequency of the shell decreases 
by 1.33%, 1.59%, 1.68%, and 1.78%, respectively. In the 
case of concave shells and a∕L = −5 , the natural frequency 
of the shell decreases by 2.66%, 3.16%, 3.34%, and 3.53%, 
respectively, as the R∕hav ratio increases from 50 to 100, 
150, 200, and 500. The result in Table 6 also shows that 
in the case of convex shells, as the a∕L ratio increases 
the natural frequency of FGM variable thickness toroidal 
shell segments decreases. However, there is a trend in the 
opposite direction for the case of the concave shell. The 
natural frequency of the concave shell decreases as the a∕L 
ratio decreases. For example, in the case of convex shells 
and R∕hav = 50 , the natural frequency decreases by 7.6%, 
10.14%, 11.41%, and 15.22%, respectively, as the a∕L ratio 
increases from 5 to 10, 15, 20, and ∞ . In the case of concave 
shells and R∕hav = 50 , as the a∕L ratio increases from − 5 

Table 5  Natural frequencies of FGM toroidal shell segment with dif-
ferent volume fraction index and different L∕R ratio ( hav = 0.02 m , 
R = 100hav , a = 10R , � = 2 , (m, n) = (1, 1))

k
�
11

2�
(Hz)

L∕R = 0.5 L∕R = 1 L∕R = 1.5 L∕R = 2 L∕R = 3

0 406.6032 370.6200 317.3324 260.8906 178.4305
0.1 404.9239 369.0486 315.9767 259.7704 177.6608
0.2 403.4597 367.6817 314.7984 258.7972 176.9925
0.5 400.0162 364.4743 312.0368 256.5182 175.4287
1 396.2358 360.9583 309.0147 254.0277 173.7218
5 387.3850 352.7886 302.0204 248.2813 169.7945
10 385.0004 350.6703 300.2185 246.8065 168.7899
∞ 381.7438 347.9606 297.9309 244.9400 167.5214

Table 6  Natural frequencies of 
convex and concave shells with 
different a∕L and L∕R ratios 
( R = 2m , L = 2m , � = 2 , 
k = 1 , (m, n) = (1, 3))

Type of shells a∕L �
13

2�
(Hz)

R∕hav = 50 R∕hav = 100 R∕hav = 150 R∕hav = 200 R∕hav = 500

Convex shells ∞ 208.3914 204.5827 203.8635 203.6095 203.3311
20 217.7473 214.0863 213.3938 213.1487 212.8786
15 220.8669 217.2524 216.5683 216.3260 216.0584
10 227.1057 223.5807 222.9126 222.6756 222.4130
5 245.8012 242.5186 241.8938 241.6711 241.4215

Concave shells – 5 171.1461 166.5923 165.7359 165.4358 165.1132
– 10 189.7168 185.5709 184.7901 184.5155 184.2175
– 15 195.9334 191.9068 191.1479 190.8806 190.5897
– 20 199.0453 195.0756 194.3271 194.0633 193.7757

Fig. 3  The effect of L∕R ratio 
on nonlinear vibration responses 
of FGM variable thickness 
toroidal shell segments with 
mode numbers (m, n) = (1, 1)
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to − 10, − 15, and − 20 the natural frequency increases by 
10.85%, 14.48%, and 16.3%, respectively. In addition, the 
natural frequencies of convex shells are greater than the 
ones of concave shells.

4.2.2  Nonlinear vibration responses

Figures 3, 4 and 5 depict the nonlinear vibration responses 
of FGM variable thickness toroidal shell segments corre-
sponding to mode numbers (m, n) = (1, 1) , (m, n) = (1, 3) , 

Fig. 4  The effect of L∕R ratio 
on nonlinear vibration responses 
of FGM variable thickness 
toroidal shell segments with 
mode numbers (m, n) = (1, 3)

Fig. 5  The effect of L∕R ratio 
on nonlinear vibration responses 
of FGM variable thickness 
toroidal shell segments with 
mode numbers (m, n) = (3, 3)

Fig. 6  The effect of R∕hav ratio 
on nonlinear vibration responses 
of FGM variable thickness 
toroidal shell segments with 
mode numbers (m, n) = (1, 1)
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and (m, n) = (3, 3) , respectively. In each figure, four cases 
of L∕R ratio ( L∕R = 0.5, 1, 1.5 and 2 ) are considered. Other 
parameters are indicated in the figures. It can be seen from 
these figures that for all cases of mode numbers (m, n) , the 
vibration amplitude of FGM variable thickness toroidal shell 
segment increases as the L∕R ratio increases. This indicates 
that a longer shell has greater vibration amplitude than that 
of a shorter one.

The effect of R∕hav ratio on vibration response of 
FGM variable thickness toroidal shell segment is illus-
trated in Figs. 6, 7 and 8 corresponding to mode numbers 
(m, n) = (1, 1) , (m, n) = (1, 3) , and (m, n) = (3, 3) , respec-
tively. Each figure draws four curves of vibration response 
corresponding to R∕hav = 50 , R∕hav = 100 , R∕hav = 150 , 
and R∕hav = 200 . Other parameters are indicated in each 
figure. The result in these figures shows that the vibration 
amplitude of FGM variable thickness toroidal shell seg-
ments decreases significantly as the R∕hav ratio decreases 
for all three cases of mode numbers. It means that the 

vibration response of FGM variable thickness toroidal 
shell segment is very sensitive to the change of the R∕hav 
ratio.

The volume fraction index k is a parameter that defines 
the contribution of material constituents in FGM. It can 
be seen from Eq. (1) that as the volume fraction index 
k increase, the volume fraction of ceramic constituent 
decreases, and the volume fraction of metal constituent 
increases in FGM. Therefore, the volume fraction index k 
affects effective Young modulus and effective mass den-
sity of FGM, leading to the effect on vibration response 
of FGM variable thickness toroidal shell segment. This 
effect is illustrated in Figs. 9, 10, 11 and 12 correspond-
ing to mode numbers (m, n) = (1, 1) ,  (m, n) = (1, 3) , 
(m, n) = (3, 1) , and (m, n) = (3, 3) , respectively. In each 
figure, three cases ( k = 0.1 , k = 1 , and k = 10 ) are con-
sidered. It can be seen that the metal-rich shell ( k = 10 ) 
has a larger vibration amplitude in comparison with that 
of the other cases.

Fig. 7  The effect of R∕hav ratio 
on nonlinear vibration responses 
of FGM variable thickness 
toroidal shell segments with 
mode numbers (m, n) = (1, 3)

Fig. 8  The effect of R∕hav ratio 
on nonlinear vibration responses 
of FGM variable thickness 
toroidal shell segments with 
mode numbers (m, n) = (3, 3)
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5  Conclusions

An analytical investigation of the vibration of the FGM vari-
able thickness toroidal shell segment is presented in this 

study. Firstly, based on Reddy’s third-order shear deforma-
tion shell theory, the governing partial differential equations 
of motion of FGM variable thickness toroidal shell seg-
ment are obtained. Secondly, the Galerkin method is used 

Fig. 9  The effect of volume 
fraction index on nonlinear 
vibration responses of FGM 
variable thickness toroidal shell 
segments with mode numbers 
(m, n) = (1, 1)

Fig. 10  The effect of volume 
fraction index on nonlinear 
vibration responses of FGM 
variable thickness toroidal shell 
segments with mode numbers 
(m, n) = (1, 3)

Fig. 11  The effect of volume 
fraction index on nonlinear 
vibration responses of FGM 
variable thickness toroidal shell 
segments with mode numbers 
(m, n) = (3, 1)
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to convert the system of partial differential equations into 
nonlinear differential equations. Lastly, the Runge–Kutta 
method is used to solve the nonlinear differential equation 
of motion, and then the vibration response is studied. The 
effects of geometric, material, and variation parameters on 
natural frequency and vibration response are analyzed and 
discussed. It is revealed that shell with a constant thickness 
has the lowest frequency in comparison with variable thick-
ness shells. The natural frequency increases as the volume 
fraction index decreases. Geometrical parameters have sig-
nificant effect on natural frequency and vibration response 
of variable thickness toroidal shell segment.

Appendix A

Φ11 =
8E4

3
(
1 − �2

)h(x)h�(x), Φ12 =
8�E4

3
(
1 − �2

)h(x)h�(x), Φ13 =
4E4

3(1 + �)
h(x)h�(x)

Φ21 =
8E5

3
(
1 − �2

) (h(x))2h�(x), Φ22 =
8�E5

3
(
1 − �2

) (h(x))2h�(x), Φ23 =
4E5

3(1 + �)
(h(x))2h�(x)

Φ31 =
8E7

3
(
1 − �2

) (h(x))4h�(x), Φ32 =
8�E7

3
(
1 − �2

) (h(x))4h�(x),

Φ33 =
4E7

3(1 + �)
(h(x))4h�(x), Q11 =

E1

1 − �2
h(x), Q12 =

E2

1 − �2
(h(x))2, Q13 =

E4

1 − �2
(h(x))4,

Q21 =
E2

1 − �2
(h(x))2, Q22 =

E3

1 − �2
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Fig. 12  The effect of volume 
fraction index on nonlinear 
vibration responses of FGM 
variable thickness toroidal shell 
segments with mode numbers 
(m, n) = (3, 3)
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E3 − cE5

2(1 + �)
(h(x))3

�2�y

�x�y

− c�
E5 − cE7

1 − �2

�
[
(h(x))5

��y

�y

]

�x
+

cE5

1 + �
(h(x))2

�h(x)

�x

��y

�y
−

c2E7

1 + �
(h(x))4

�h(x)

�x

��y

�y
.
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H51

(
u0
)
=

E2

2(1 + �)

�
[
(h(x))2

�u0

�y

]

�x
+

�E2

1 − �2
(h(x))2

�2u0
�x�y

−
cE4

2(1 + �)

�
[
(h(x))4

�u0

�y

]

�x

−
c�E4

1 − �2
(h(x))4

�2u0
�x�y

.

H52

(
v0
)
=

E2

2(1 + �)

�
[
(h(x))2

�v0

�x

]

�x
+

E2

1 − �2
(h(x))2

�2v0

�y2
−

cE4

2(1 + �)

�
[
(h(x))4

�v0

�x

]

�x

−
cE4

1 − �2
(h(x))4

�2v0

�y2
H53

(
w0

)
= H53a

(
w0

)
+ H53b

(
w0

)
.

H53a

(
w0

)
= −

cE5

1 + �

�
[
(h(x))3

�2w0

�x�y

]

�x
−

E2

1 − �2

(
1

R
+

�

a

)
(h(x))2

�w0

�y

−
cE5

1 − �2
(h(x))3

(
�3w0

�y3
+ �

�3w0

�x2�y

)
+

[
−
E1 − 3cE3

2(1 + �)
h(x) + 3c

E3 − 3cE5

2(1 + �)
(h(x))3

]
�w0

�y

+
c2E7

1 + �

�
[
(h(x))5

�2w0

�x�y

]

�x
+

cE4

1 − �2

(
1

R
+

�

a

)
(h(x))4

�w0

�y
+

c2E7

1 − �2
(h(x))5

(
�3w0

�y3
+ �

�3w0

�x2�y

)

+
cE5

1 + �

�
[
(h(x))2

�h(x)

�x

�w0

�y

]

�x
+

2c�E5

1 − �2
(h(x))2

�h(x)

�x

�2w0

�x�y

−
c2E7

1 + �

�
[
(h(x))4

�h(x)

�x

�w0

�y

]

�x
−

2�c2E7

1 − �2
(h(x))4

�h(x)

�x

�2w0

�x�y
.

H53b

(
w0

)
=

E2

2(1 + �)

�
[
(h(x))2

�w0

�x

�w0

�y

]

�x
+

E2(h(x))
2

2
(
1 − �2

)
�

((
�w0

�y

)2

+ �
(

�w0

�x

)2
)

�y

−
cE4(h(x))

4

2(1 + �)

�

((
�w0

�y

)2

+ �
(

�w0

�x

)2
)

�y
, H54

(
�x

)
=

E3 − cE5

2(1 + �)

�
[
(h(x))3

��x

�y

]

�x

+ �
E3 − cE5

1 − �2
(h(x))3

�2�x

�x�y
− c

E5 − cE7

2(1 + �)

�
[
(h(x))5

��x

�y

]

�x
− c�

E5 − cE7

1 − �2
(h(x))5

�2�x

�x�y

+
2�cE5

1 − �2
(h(x))2

�h(x)

�x

��x

�y
.
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Appendix D

l11U =
L∫
0

2�R∫
0

H11

(
u0
)
cos

m�x

L
sin

ny

R
dxdy , 

l12V =
L∫
0

2�R∫
0

H12

(
v0
)
cos

m�x

L
sin

ny

R
dxdy , 

l13W =
L∫
0

2�R∫
0

H13a

(
w0

)
cos

m�x

L
sin

ny

R
dxdy , 

l14Φx =
L∫
0

2�R∫
0

H14

(
�x

)
cos

m�x

L
sin

ny

R
dxdy , 

l15Φy =
L∫
0

2�R∫
0

H15

(
�y

)
cos

m�x

L
sin

ny

R
dxdy , 

l16W
2 =

L∫
0

2�R∫
0

H13b

(
w0

)
cos

m�x

L
sin

ny

R
dxdy , 

l17Ü =
L∫
0

2𝜋R∫
0

I1ü cos
m𝜋x

L
sin

ny

R
dxdy , 

l18Φ̈x =
L∫
0

2𝜋R∫
0

I2�̈�x cos
m𝜋x

L
sin

ny

R
dxdy , 

l19Ẅ = −
L∫
0

2𝜋R∫
0

I3
𝜕ẅ0

𝜕x
cos

m𝜋x

L
sin

ny

R
dxdy , 

l21U =
L∫
0

2�R∫
0

H21

(
u0
)
sin

m�x

L
cos

ny

R
dxdy , 

l22V =
L∫
0

2�R∫
0

H22

(
v0
)
sin

m�x

L
cos

ny

R
dxdy , 

l23W =
L∫
0

2�R∫
0

H23a

(
w0

)
sin

m�x

L
cos

ny

R
dxdy , 

l24Φx =
L∫
0

2�R∫
0

H24

(
�x

)
sin

m�x

L
cos

ny

R
dxdy , 

l25Φy =
L∫
0

2�R∫
0

H25

(
�y

)
sin

m�x

L
cos

ny

R
dxdy , 

l26W
2 =

L∫
0

2�R∫
0

H23b

(
w0

)
sin

m�x

L
cos

ny

R
dxdy , 

l27V̈ =
L∫
0

2𝜋R∫
0

I
∕

1
v̈0 sin

m𝜋x

L
cos

ny

R
dxdy , 

l28Φ̈y =
L∫
0

2𝜋R∫
0

I
∕

2
�̈�y sin

m𝜋x

L
cos

ny

R
dxdy , 

H55

(
�y

)
=
E3 − cE5

2(1 + �)

�
[
(h(x))3

��y

�x

]

�x
+

E3 − cE5

1 − �2
(h(x))3

�2�y

�y2

+

[
−
E1 − 3cE3

2(1 + �)
h(x) + 3c

E3 − 3cE5

2(1 + �)
(h(x))3

]
�y − c

E5 − cE7

2(1 + �)

�
[
(h(x))5

��y

�x

]

�x

+
cE5

1 + �

�
[
(h(x))2

�h(x)

�x
�y

]

�x
− c

E5 − cE7

1 − �2
(h(x))5

�2�y

�y2
−

c2E7

1 + �

�
[
(h(x))4

�h(x)

�x
�y

]

�x
. c =

4

3
.

l29Ẅ = −
L∫
0

2𝜋R∫
0

I
∕

3

𝜕ẅ0

𝜕y
sin

m𝜋x

L
cos

ny

R
dxdy , 

l31U =
L∫
0

�R∫
0

H31

(
u0
)
sin

m�x

L
sin

ny

R
dxdy , 

l32V =
L∫
0

�R∫
0

H32

(
v0
)
sin

m�x

L
sin

ny

R
dxdy , 

l33W =
L∫
0

�R∫
0

H33a

(
w0

)
sin

m�x

L
sin

ny

R
dxdy , 

l34Φx =
L∫
0

�R∫
0

H34

(
�x

)
sin

m�x

L
sin

ny

R
dxdy , 

l35Φy =
L∫
0

�R∫
0

H35

(
�y

)
sin

m�x

L
sin

ny

R
dxdy , 

l36UW =
L∫
0

�R∫
0

H36

(
u0,w0

)
sin

m�x

L
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R
dxdy , 

l37VW =
L∫
0

�R∫
0

H37

(
v0,w0
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m�x

L
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R
dxdy , 

l38ΦxW =
L∫
0

�R∫
0

H38

(
�x,w0
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m�x

L
sin
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R
dxdy , 

l39ΦyW =
L∫
0

�R∫
0

H39

(
�y,w0
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m�x

L
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ny

R
dxdy , 

l310W
2 =

L∫
0

�R∫
0

H33b

(
w0

)
sin

m�x

L
sin

ny

R
dxdy , 

l311W
3 =

L∫
0

�R∫
0

H33c

(
w0

)
sin

m�x

L
sin

ny

R
dxdy , 

l312 =
L∫
0

�R∫
0

sin
m�x

L
sin

ny

R
dxdy

l313Ü =
L∫
0

𝜋R∫
0

I3
𝜕ü0

𝜕x
sin

m𝜋x

L
sin

ny

R
dxdy , 

l314V̈ =
L∫
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𝜋R∫
0

I
∕

3

𝜕v̈0

𝜕y
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m𝜋x

L
sin

ny

R
dxdy , 

l315Φ̈x =
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0

𝜋R∫
0

I5
𝜕�̈�x

𝜕x
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m𝜋x

L
sin

ny

R
dxdy , 

l316Φ̈y =
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0

𝜋R∫
0

I
∕

5

𝜕�̈�y

𝜕y
sin

m𝜋x

L
sin

ny

R
dxdy , 

l
317

Ẅ =
L∫
0

𝜋R∫
0

[
I
1
h(x)ẅ0

−
16h3(x)

9
I
7

(
𝜕2ẅ0

𝜕x2
+

𝜕2ẅ0

𝜕y2
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m�x

L
sin

ny

R
dxdy

 , 

l318Ẇ =
L∫
0

𝜋R∫
0
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L
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ny

R
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2�R∫
0
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R
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0
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(
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0
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(
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0
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0
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R
dxdy , 
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0
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m𝜋x

L
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R
dxdy , 

l48Φ̈x =
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0
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0

I4�̈�x cos
m𝜋x

L
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R
dxdy , 

l49Ẅ = −
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0
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0
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𝜕ẅ0

𝜕x
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m𝜋x

L
sin
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R
dxdy , 

l51U =
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0
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0
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(
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L
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R
dxdy , 

l52V =
L∫
0

2�R∫
0

H52

(
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)
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m�x

L
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R
dxdy , 

l53W =
L∫
0
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0
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(
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)
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m�x

L
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R
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0
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0
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L
cos

ny

R
dxdy , 
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0
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dxdy , 
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0
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L
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R
dxdy , 

l57V̈ =
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0
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0
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2
v̈0 sin

m𝜋x

L
cos

ny

R
dxdy , 

l58Φ̈y =
L∫
0
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0
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�̈�y sin
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dxdy , 
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Appendix E

in which

H11 =

− det

⎛⎜⎜⎜⎜⎜⎝

l13 l12 l14 l15
l23 l22 l24 l25
l43 l42 l44 l45
l53 l52 l54 l55

⎞⎟⎟⎟⎟⎟⎠
Δ

 , H12 =

− det

⎛⎜⎜⎜⎜⎜⎝

l16 l12 l14 l15
l26 l22 l24 l25
l46 l42 l44 l45
l56 l52 l54 l55

⎞⎟⎟⎟⎟⎟⎠
Δ

 , 

H13 =

det

⎛⎜⎜⎜⎜⎜⎝

l19 l12 l14 l15
l29 l22 l24 l25
l49 l42 l44 l45
l59 l52 l54 l55

⎞⎟⎟⎟⎟⎟⎠
Δ

 ,  H21 =

− det

⎛⎜⎜⎜⎜⎜⎝

l11 l13 l14 l15
l21 l23 l24 l25
l41 l43 l44 l45
l51 l53 l54 l55

⎞⎟⎟⎟⎟⎟⎠
Δ

 , 

H22 =

− det

⎛⎜⎜⎜⎜⎜⎝

l11 l16 l14 l15
l21 l26 l24 l25
l41 l46 l44 l45
l51 l56 l54 l55

⎞
⎟⎟⎟⎟⎟⎠

Δ
 ,  H23 =

det

⎛⎜⎜⎜⎜⎜⎝

l11 l19 l14 l15
l21 l29 l24 l25
l41 l49 l44 l45
l51 l59 l54 l55

⎞
⎟⎟⎟⎟⎟⎠

Δ
 , 

H31 =

− det

⎛⎜⎜⎜⎜⎜⎝

l11 l12 l13 l15
l21 l22 l23 l25
l41 l42 l43 l45
l51 l52 l53 l55

⎞
⎟⎟⎟⎟⎟⎠

Δ
 ,  H32 =

− det

⎛⎜⎜⎜⎜⎜⎝

l11 l12 l16 l15
l21 l22 l26 l25
l41 l42 l46 l45
l51 l52 l56 l55

⎞
⎟⎟⎟⎟⎟⎠

Δ
 , 

D1 =
l37H13 + l38H23 + l39H33 + l310H43

l31H13 + l32H23 + l34H33 + l35H43 − l317
,

D2 =
l31H11 + l32H21 + l33 + l34H31 + l35H41

l31H13 + l32H23 + l34H33 + l35H43 − l317
,

D3 =
l31H12 + l32H22 + l34H32 + l35H42 + l37H11 + l38H21 + l39H31 + l310H41

l31H13 + l32H23 + l34H33 + l35H43 − l317
,

D4 =
l37H12 + l38H22 + l39H32 + l310H42 + l311

l31H13 + l32H23 + l34H33 + l35H43 − l317
,

D5 =
l312

l31H13 + l32H23 + l34H33 + l35H43 − l317
,
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H33 =

det

⎛⎜⎜⎜⎜⎜⎝

l11 l12 l19 l15
l21 l22 l29 l25
l41 l42 l49 l45
l51 l52 l59 l55

⎞⎟⎟⎟⎟⎟⎠
Δ

 ,  H41 =

− det

⎛⎜⎜⎜⎜⎜⎝

l11 l12 l14 l13
l21 l22 l24 l23
l41 l42 l44 l43
l51 l52 l54 l53

⎞⎟⎟⎟⎟⎟⎠
Δ

 , 

H42 =

− det

⎛⎜⎜⎜⎜⎜⎝

l11 l12 l14 l16
l21 l22 l24 l26
l41 l42 l44 l46
l51 l52 l54 l56

⎞⎟⎟⎟⎟⎟⎠
Δ

 , H43 =

det

⎛⎜⎜⎜⎜⎜⎝

l11 l12 l14 l19
l21 l22 l24 l29
l41 l42 l44 l49
l51 l52 l54 l59

⎞⎟⎟⎟⎟⎟⎠
Δ

.

Δ = det

⎛
⎜⎜⎜⎝

l11 l12 l14 l15
l21 l22 l24 l25
l41 l42 l44 l45
l51 l52 l54 l55

⎞
⎟⎟⎟⎠
.
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