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Abstract
It has been confirmed that structures with micro dimensions display size-dependent thermomechanical behaviors. Moreover, 
according to the findings of empirical and theoretical researches, thermoelastic damping (TED) has been recognized as one of 
inescapable causes of energy dissipation in microstructures. The current article is an effort to provide a novel size-dependent 
framework for approximating the amount of TED in microring resonators with rectangular cross section. To include size 
effect into structural and thermal constitutive relations, the modified couple stress theory (MCST) and the Moore–Gibson–
Thompson (MGT) heat equation are utilized, respectively. By solving the coupled heat equation in the purview of MGT 
model, the fluctuation temperature throughout the ring is determined. By employing the obtained temperature distribution 
and constitutive relations of MCST, the peak values of strain and wasted thermal energies during one cycle of vibration are 
computed. Based on the description of TED in the energy dissipation (ED) method, a mathematical expression containing 
the scale parameters of MCST and MGT model is derived for estimating TED value. To ensure the correctness and veracity 
of the established solution, a comparative study is carried out on the basis of the data released by other researchers for more 
plain models. A section is also designated for an all-out study to ascertain the association between TED spectrum and some 
influential factors like scale parameters of MCST and MGT model, vibration mode number, one-dimensional (1D) and two-
dimensional (2D) heat conduction, geometry and material. The extracted data enlighten that the impact of applying MCST 
and MGT model on TED has a close relationship with the vibration mode number of the ring.
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1 � Background

Low weight, simplicity in manufacturing and application, 
swift response and extreme sensitivity of microelectrome-
chanical systems (MEMS) have led to the widespread use 
of these systems in the recently developed industrial tools. 
The mechanical section of these systems consists of funda-
mental structures like rods, beams, plates, shells and rings. 
Rectangular and circular cross-sectional microrings, as a 
type of principal micromechanical elements, are utilized 
over a large area of engineering affairs. The configuration 
of rings provides an inimitable opportunity as a rate sen-
sor or gyroscope, which can accurately measure the rotation 
velocity and rotation rate of MEMS devices. Among the uses 
of microrings in MEMS, one can mention force sensors [1], 
dual-mode COMS-MEMS resonators [2], label-free sensors 
[3, 4], pressure and temperature sensors [5, 6], multi-axis 
angular velocity sensors [7], vibrating ring gyroscopes [8, 
9], rate sensors [10, 11], diaphragm sensors [12], ultrasonic 
actuators [13, 14], electro-optical modulators [15], etc.

According to various experimental evidence, mechani-
cal elements with micron and submicron dimensions exhibit 
size-dependent static and dynamic behaviors, so that the 
classical continuum theory (CCT) is not competent to pro-
vide a rationale for this phenomenon in nano- and micro-
structures. Therefore, several attempts were made to put for-
ward elasticity theories comprising scale parameters. One of 
the higher-order elasticity theories is the couple stress theory 
(CST) developed by Mindlin and Tiersten [16] in which two 
additional scale parameters are exploited to accommodate 
small-scale effect into constitutive relations. Applying some 
changes in CST, Yang et al. [17] established the modified 
couple stress theory (MCST) in which the strain energy 
includes only a single length scale parameter. In this way, 
the couple stress tensor will be symmetric, which makes its 
use much easier. In addition to the mentioned theories, other 
higher-order elasticity theories such as nonlocal theory [18], 
strain gradient theory (SGT) [19] and nonlocal strain gradi-
ent theory (NSGT) [20] have been suggested to rationalize 
the size-dependent behavior in micro/nanostructures. In the 
last decade, many articles have been published in the field 
of the effect of size on the behavior of different mechani-
cal elements like linear and nonlinear flexural analysis of 
functionally graded composite microplates with variable 
thickness [21], vibration of intelligibly designed axially 
functionally graded (AFG) microtubes [22], free vibration 
and buckling analysis of FG porous sandwich curved micro-
beams in thermal environment [23], thermoelastic damping 
modeling in circular cylindrical nanoshells [24], dynamics 
of microtubes conveying fluid [25], static analysis of FG 
composite nanoshells on elastic foundations [26], nonlinear 
forced vibration analysis of microrotating shaft–disk systems 

[27], nonlinear buckling analysis of FG porous (FGP) lin-
ing reinforced by graphene platelets (GPLs) [28], thermoe-
lastic vibrations of Timoshenko nanobeams [29], quasi-3D 
nonlinear stability behavior of agglomerated nanocompos-
ite microbeams [30], dynamic analysis of spinning pipes 
conveying flow with elliptical cross section [31] and forced 
vibrational analysis of viscoelastic nanotubes conveying 
fluid subjected to moving load [32].

On the basis of numerous reports from experimental tests, 
the heat transfer process in certain cases such as the small-
ness of the structure under study or the short time of heat 
transfer, such as thermal shocks or laser pulse irradiation, 
cannot be interpreted through the classical formulation of 
heat conduction, i.e., the Fourier model. To better expound 
the heat transfer in such conditions, various nonclassical 
models have been proposed under the title of generalized 
thermoelasticity theories. As one of the most basic non-
Fourier models, one can refer to the Lord and Shulman 
(LS) model which consists of only one phase lag parameter 
or relaxation time [33]. Due to including only one phase 
lag parameter, this model is also known as single-phase-
lag (SPL) model. By incorporation of a term called thermal 
displacement in the Fourier model, Green and Naghdi estab-
lished another nonclassical model known as GN-III model 
[34]. Accounting for nonlocal effect on heat transport and 
supplementing SPL model, Guyer and Krumhansl [35] pro-
pounded nonlocal single-phase-lag (NSPL) thermoelasticity 
model. To capture the effect of size on the space, Tzou [36] 
added another phase lag parameter to SPL model, which is 
known as dual-phase-lag (DPL) model. Incorporating small-
scale effect on time into GN-III model, a modified equation 
called Moore–Gibson–Thompson (MGT) generalized ther-
moelasticity theory was formulated to give a description of 
heat transfer procedure in materials [37].

In MEMS resonators, the quality factor (QF) is a sen-
sitive index for estimating the operating efficiency. The 
higher QF of these small-scaled systems implies the higher 
sensitivity and lower energy loss during the oscillation. As 
a major source of energy dissipation at room temperature, 
thermoelastic damping (TED), which is approximated via 
the inverse of QF, limits the upper bound of quality factor 
of vibrating micro/nanostructures. Owing to strain-induced 
thermoelastic temperature variations in oscillating systems, 
irreversible heat currents between hot and cold zones are 
produced, which leads to TED. Thereby, accurate estimation 
of the magnitude of TED is momentous for optimized design 
of high QF miniaturized resonators. To establish a theoreti-
cal framework for TED in different mechanical elements, 
two complex frequency (CF) and energy dissipation (ED) 
methods are mainly used. In CF method, both the motion 
and heat conduction equations of the structure under inves-
tigation should be derived, so that by separating the real and 
imaginary parts of the complex frequency of the system, a 
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mathematical expression can be reached to describe TED. 
In ED method, there is no need to derive the equation of 
motion of the structure, but only by extracting its heat equa-
tion and constitutive relations, the amount of dissipated ther-
mal and stored energies in the system can be obtained and 
through this, the value of TED can be computed. Therefore, 
ED method has the advantage that it requires fewer calcula-
tions due to not needing to derive the equation of motion. 
The earliest theoretical investigation about TED has been 
made by Zener [38], who derived an analytical solution 
for assessment of TED in thin beams within the scope of 
ED method. Years later, by employing CF method, Lifshitz 
and Roukes [39] succeeded in providing an explicit solu-
tion with a higher accuracy to calculate the value of TED in 
Euler–Bernoulli beam resonators.

Until today, various analytical studies have been carried 
out on TED in different structures, which the selected publi-
cations in this field are reviewed in the following. Zhou et al. 
[40] employed CCT as well as SPL model to attain an ana-
lytical expression for TED in micro/nanobeams with circular 
cross section. By making use of ED method, Li et al. [41] 
evaluated TED in rectangular and circular microplate reso-
nators in the context of CCT and Fourier model. In similar 
articles, on the basis of CCT, TED in rectangular cross-sec-
tional micro/nanoring resonators within the purview of Fou-
rier model, SPL model and DPL model has been analyzed 
by Fang and Li [42], Zhou et al. [43] and Zhou and Li [44], 
respectively. According to CCT, TED in small-sized rings 
with circular cross section has been examined by Li et al. 
[45] and Kim and Kim [46] with the help of Fourier and SPL 
models, respectively. Gu et al. [47] used NSGT together with 
DPL model to propose a size-dependent model for TED in 
microbeams. Utilizing DPL model, Shi et al. [48] appraised 
surface effect on TED in nanobeam resonators in the frame-
work of CF method. In the research of Borjalilou et al. [49], 
small-scale effects on TED in nanobeams has been modeled 
by applying NT in conjunction with DPL model. By means 
of CF method, Singh et al. [50] achieved a closed-form 
solution for TED in microbeams according to MCST and 
MGT model. Yang et al. [51] exploited MCST and Fourier 
model to develop a three-dimensional (3D) model for TED 
in Kirchhoff rectangular micro/nanoplates. Within the scope 
of MCST and nonlocal DPL (NDPL) model, Ge and Sarkar 
[52] presented an analytical solution in the form of infinite 
series for TED in rectangular cross-sectional micro/nanor-
ings. With the aid of NT and NSPL model, Li et al. [53] 
provided a size-dependent and model and exact solution for 
TED in circular cylindrical nanoshells. In the study of Wang 
et al. [54], CF method has been applied to examine scale 
effect on TED in circular microplates on the basis of MCST 
and fractional DPL model.

Based on the above literature review, it was found that 
thermoelastic damping (TED) is one of the certain causes 

of energy loss in small-sized structures such as microrings 
and disruption of their favorable performance. It was also 
revealed that to scrutinize thermoelastic behavior of micro-
structures as accurately as possible, size-dependent theo-
ries in both structural and thermal areas must be employed. 
Consequently, theoretical modeling of TED phenomenon 
in miniaturized mechanical elements like microrings must 
be performed by accommodating the size effect into both 
constitutive relations and heat conduction equation. The 
main objective of the paper at hand is to render a novel 
size-dependent formulation for TED in rectangular cross-
sectional microrings by simultaneous use of MCST and 
MGT model, something that is lacking in the literature. For 
fulfillment of this target, the first stage is to extract the non-
classical constitutive relations and heat equation by means 
of MCST and MGT model. By deriving the temperature 
field through solving the heat conduction equation, the 
wasted thermal energy and maximum stored elastic energy 
are specified. Exploiting the definition of TED correspond-
ing to energy dissipation method, an analytical relationship 
encompassing the scale parameters of MCST and MGT 
model is given to anticipate the value of TED. Comparing 
the results of this model with the ones provided by previous 
simpler models, the model validation study is done. Prepar-
ing a diverse set of graphical data, the impact of some fac-
tors like scale parameters of MCST and MGT model, mode 
number, 1D and 2D models of heat conduction, geometrical 
parameters and material on TED value is examined.

Fig. 1   Schematic view of a part of a rectangular cross-sectional ring
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2 � Determination of fluctuation temperature 
in the ring in the context of MGT model

Consider a ring with rectangular cross section similar to 
that shown in Fig. 1. In this figure, parameters R , h and b are 
symbols of mean radius, radial thickness, and depth of the 
ring, respectively. The displacement field of the ring can be 
expressed as follows [55]:

in which r , � and z refer to the radial, peripheral and lateral 
directions, respectively. Also, x represents the radial distance 
of any arbitrary point from the mean radius of the ring. The 
variables ur , u� and uz define the displacements of ring in the 
radial, peripheral and lateral directions, respectively. Moreo-
ver, u(�, t) and v(�, t) stand for the radial and peripheral dis-
placements of a point located on the centerline of ring. In 
addition, x refers to the radial distance of a point from the 
neutral axis of cross section. Assuming that the peripheral 
centreline of the ring is inextensible (i.e., u = −�v∕�� ), the 
normal peripheral strain ��� can be written as [55]:

According to coupled thermoelastic constitutive rela-
tion of elasticity, one can write [42]:

where ��� is the normal peripheral stress. Parameters E and 
� denote the elasticity modulus and thermal expansion coef-
ficient of the material, respectively. Variable T  represents 
the difference of current temperature with the reference 
temperature Ta . On the basis of Hooke's law, for two other 
normal strains one can write [43]:

in which �rr and �zz represent the normal strains in the radial 
and lateral directions. Additionally, � is the Poisson ratio. 
Substitution of Eqs. (2) and (3) into Eq. (4) yields:

Within the framework of Moore–Gibson–Thompson 
(MGT) thermoelasticity theory, the heat conduction is 
formulated via the following relation [37]:

(1)

⎧
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x

R
v −

x

R

�u

��

uz = 0,
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in which q represents the vector of heat flux. The variable 
t stands for time. Symbol ∇ refers to the gradient operator. 
Parameter � is known as relaxation time. Furthermore, k and 
k∗ denote the thermal conductivity of the material and ther-
mal conductivity rate, respectively. Additionally, variable � 
is called thermal displacement, which follows the relation-
ship T = ��∕�t . The energy equation for a thermoelastic 
solid is expressed by [36]:

in which material constants � and cv refer to the mass density 
and specific heat per unit mass, respectively. Parameter �V 
is also the volumetric strain, which is equal to the trace of 
strain tensor. Combination of Eqs. (6) and (7) results in the 
following equation:

where ∇2 = ∇.∇ represents the Laplace operator. Using Eqs. 
(2) and (5), one can derive the volumetric strain as follows:

Placing the above equation in Eq. (8) and sorting the terms, 
one can get the following equation:

in which

At room temperature, in general 
[
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]
ΔE ≪ 1 

[44]. Therefore, Eq. (10) can be replaced by the following 
equation:
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Supposing harmonic oscillations of the ring, functions u 
and T can be expressed as follows [42]:

where Un and T0 are the amplitudes of fluctuations of radial 
displacement and temperature increment, respectively. 
Moreover, �n addresses the nth vibrational frequency of the 
ring within the scope of MCST, the value of which can be 
computed through the following equation for a rectangular 
cross-sectional ring [56]:

in which I = bh3∕12 and A = bh . Substituting Eqs. (13a) and 
(13b) into Eq. (12) and arranging the obtained equation, the 
heat equation becomes:

Considering that the principal vibrations occur in in-plane 
directions, heat conduction in the lateral direction z can be 
overlooked [42]. Accordingly, one can write:

According to Fig. 1, one can write r = R + x . On the other 
hand, in thin rings R ≫ x . Taking into account these two 
points, Eq. (16) can be rewritten in a simpler way as below:

Wong et al. [57] proved that the term (1∕R)
(
�T0∕�x

)
 in 

above equation has a minor role in calculating the value 
of TED compared to the other two terms. Subsequently, 
Eq. (17) takes the following form:
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Adiabatic thermal boundary conditions are adopted at the 
inner and outer sides of ring. These boundary conditions can 
be mathematically expressed as �T0∕�x = 0 at x = ±h∕2 . 
Considering these conditions as well as Eqs. (15) and (18), 
the general solution of T0 can be written as [42]:

where

Substitution of Eqs. (18) and (19) into Eq. (15) gives:
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)
 , integrat-

ing the outcome in the range x = −h∕2 to x = +h∕2 and 
� = 0 to � = 2� , and using the orthogonality property of 
trigonometric functions, one can attain the coefficient Ajn 
as follows:

with

Inserting Eqs. (20) and (22) into Eq. (19), temperature 
distribution in the ring can be expressed via the following 
relation:
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3 � Approximating the amount of couple 
stress‑based TED through energy 
dissipation method

Based on the modified couple stress theory (MCST) developed 
by Yang et al. [17], the total strain energy U of an isotropic 
elastic body occupying region Ω in the space is computed by:

Here, variables �ij and mij define the components of the 
Cauchy stress tensor � and deviatoric part of couple stress 
tensor m , respectively. Parameters �ij and �s

ij
 are also the com-

ponents of strain tensor � and the symmetric part of rotation 
gradient tensor �s , respectively. The components �s

ij
 are calcu-

lated via the following relation [17]:

in which u denotes the displacement vector. The higher-order 
constitutive relations within the framework of MCST are 
expressed by [17]:

where l illustrates the characteristic length of MCST. Addi-
tionally, material constant � is the shear modulus calculated 
by � = E∕2(1 + �).

Use of Eqs. (2) and (3) yields:

Furthermore, substituting Eq. (1) into Eq. (26) and con-
sidering the inextensionality condition of the ring (that is 
u = −�v∕�� ), one can achieve the relation below:

Substitution of above equation into Eq. (27) gives:

Within the scope of energy dissipation (ED) method, 
TED value is given by the following relation [58, 59]:

where ΔU and Umax denote the energy dissipation due 
to thermoelastic coupling and the peak value of strain 
energy per cycle of oscillation, respectively. In general, the 
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mentioned variables are calculated through the following 
relationships [60]:

in which the hat symbol represents the maximum value in a 
cycle of vibration. In addition, Im

(
�th
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)
 stands for the imagi-

nary part of thermal strain. For a ring, Eqs. (32a) and (32b) 
take the following forms:

Inserting Eqs. (13a) and (13b) into Eqs. (2), (28), (29) 
and (30), and disregarding thermal stress due to its slight 
value, one can get:

Additionally, separating the real and imaginary parts of 
T0 in Eq. (24), the relation below can be obtained:

In rectangular cross-sectional rings, the relation 
dΩ = b.(R + x)d�.dx is established. Therefore, since in thin 
rings we have R ≫ x , the following approximation is valid:

Substitution of Eqs. (34a), (35) and (36) into Eq. (33a) 
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(33a)ΔU = −�
∭ Ω

�̂��Im
(
�̂th
��

)
dΩ,

(33b)Umax =
1

2∭ Ω

(
�̂���̂�� + m̂�z�̂

s
�z
+ m̂z��̂

s
z�

)
dΩ.

(34a)
�̂�� = −

x

R2

(
1 − n

2
)
U

n
sin(n�) and �̂��

= −
Ex

R2

(
1 − n

2
)
U

n
sin(n�),

(34b)
�̂s
�z
= �̂s

z�
= −

1

2R2

(
1 − n

2
)
U

n
sin(n�) and m̂�z

= m̂
z� = −�

l
2

R2

(
1 − n

2
)
U

n
sin(n�).

Im
(
�̂th
��

)
= Im

(
�T0

)
=

(35)

ΔE

�

Un

h

(
1 − n2

)
sin(n�)

∞∑
j=1

4(−1)j+1

R2�2
j(

1 + �2
jn

)
�j�k

(
�k − �

)
�3
n

(
1 + �2

jn
− �j�k�

2
n

)2

+
[(

1 + �2
jn

)
�k�n − �j�k��

3
n

]2 sin
(
�jx

)
.

(36)dΩ ≈ b.Rd�.dx.
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Moreover, placing Eqs. (34a), (34b) and (36) into 
Eq. (33b) and integrating the result over −h∕2 ≤ x ≤ h∕2 
and 0 ≤ 𝜃 < 2𝜋 , one can attain the relation below:

Given that � = E∕2(1 + �) , Eq. (38) can be written in the 
following form:

Inserting Eqs. (37) and (39) into Eq. (31), one can achieve 
the relation below for estimation of TED value in rings with 
rectangular cross section according to MCST and 2D MGT 
heat equation:

in which the weighting factor Wj is calculated by:

It is worth noting that to arrive at the relation of TED 
according to CCT, the characteristic length l must be set to 
zero. Moreover, in SPL model, the value of k∗ is equal to 
zero, which according to Eq. (11b) is mathematically equiva-
lent to �k ≃ ∞ . Considering these two cases (i.e., l = 0 and 
�k ≃ ∞ ) in Eq. (40) and simplifying it, the relation derived in 
this article is reduced to that reported in the research of Zhou 
et al. [43], which has been performed in the framework of 
CCT and SPL model. Additionally, putting l = 0 , � = 0 and 
�k ≃ ∞ in Eq. (40), a relation is obtained that corresponds 
to that extracted by Fang and Li [42] in the context of CCT 
and the Fourier model.

Another point that should be mentioned here is that in 1D 
model of heat conduction, temperature changes in peripheral 
direction are ignored. Therefore, according to Eq. (18), one 
can write ∇2T0 = �2T0∕�x

2 . In this way, based on the 

(37)

ΔU =ΔE�
2E

8bU2
n

hR3

(
1 − n2

)2 ∞∑
j=1

1

�4
j(

1 + �2
jn

)
�j�k

(
�k − �

)
�3
n

(
1 + �2

jn
− �j�k�

2
n

)2

+
[(

1 + �2
jn

)
�k�n − �j�k��

3
n

]2 .

(38)Umax =

[
1 + 12

(
�

E

)(
l

h

)2
]
�Ebh3

24R3

(
1 − n2

)2
U2

n
.

(39)Umax =

[
1 +

6

1 + �

(
l

h

)2
]
�Ebh3

24R3

(
1 − n2

)2
U2

n
.

(40)

Q−1
TED

=ΔE

∞∑
j=1

Wj

1

1 +
6

1+�

(
l

h

)2

(
1 + �2

jn

)
�j�k

(
�k − �

)
�3
n

(
1 + �2

jn
− �j�k�

2
n

)2

+
[(

1 + �2
jn

)
�k�n − �j�k��

3
n

]2 ,

(41)Wj =
96

�4(2j − 1)4
.

solution obtained for temperature distribution in Eq. (24), to 
reach the TED relation in 1D heat conduction model, the 
terms including n2 (and in other words, the terms including 
�2
jn

 ) should be eliminated from Eq. (40).

4 � Validation, numerical examples 
and discussion

In this section, first, by conducting a comparative study, 
the validity and accuracy of the developed formulation 
are examined. For this purpose, the results of this work in 
specific situations are compared with those published by 
Zhou et al. [43]. Thus, to make such a comparison, param-
eters l and k∗ in the model provided in this article should be 
omitted. The properties of the studied material at the refer-
ence temperature Ta = 300K are as follows: E = 160GPa , 
� = 2300kg∕m3 , �cv = 1.6 ∗ 10

6J∕m3K  , k = 150W∕mK  , 
� = 2.6 ∗ 10

−6
1∕K and � = 4.04ps . In Fig. 2, TED versus 

Fig. 2   Validation study by comparing the results of this research with 
the ones available in the literature

Table 1   Material constants of gold (Au), silicon (Si) and copper (Cu) 
at reference temperature T

a
= 300K [61, 62]

Property Au Si Cu

E(GPa) 79 169 110
� 0.4 0.22 0.35
�(kg∕m3) 19,300 2330 8940
cv(J∕kgK) 129.1 713 385.9
k(W∕mK) 315 70 386
�(10−6∕K) 14.2 2.6 16.5
k∗(W∕mKs) 150 157 70
�(ps) 93.5 3.95 27.3



	 Archives of Civil and Mechanical Engineering (2023) 23:151

1 3

151  Page 8 of 14

geometrical ratio h∕R based on the formulation provided by 
Zhou et al. [43], as well as the formulation derived in this 
research is displayed. The curves are plotted for a ring with 
radial thickness h = 1�m and mode number n = 20 . Consid-
ering the perfect compatibility of results extracted from the 
model presented in the current research with those reported 
by Zhou et al. [43], it can be concluded that the formulation 
derived in the framework of MGT model is authoritative.

In the rest of this section, various graphical data are pro-
vided to ascertain the relationship between TED value and 
nonclassical constants in MCST and MGT model. Apart 
from the cases in which the role of the type of ring material 
in TED alterations is investigated, other results are extracted 
for a gold ring at Ta = 300K  . Material constants of gold 
(Au), silicon (Si) and copper (Cu) at this temperature are 
given in Table 1 [61, 62]. For different amounts of char-
acteristic length l , the variations of TED according to 2D 

model with radial thickness h are illustrated in Fig. 3. To 
extract these curves, vibration mode number n is considered 
equal to 2. Moreover, Figs. 3a, b are drawn for geometrical 
ratios R∕h = 20 and R∕h = 100 , respectively. As it is clear, 
in case n = 2 , MCST estimates a higher value than CCT for 
TED. In addition, for larger values of characteristic length 
l , a greater amount of TED is predicted. This is because 
with the inclusion of higher-order kinematic variables and 
stresses in MCST, the amount of energy stored in the sys-
tem ascends and hence the ratio of wasted thermal energy 
to strain energy of the system is reduced. It is also evident 
in both Figs. 3a, b that when the radial thickness of ring 
enlarges, the estimations of MCST become closer and closer 
to the predictions of CCT. This outcome is due to the fact 
that as the dimensions of ring become greater, the size effect 
gradually disappears.

Fig. 3   Effect of characteristic length l on TED value as a function of 
the ring thickness h in vibration mode n = 2 a R∕h = 20 b R∕h = 100

Fig. 4   Effect of characteristic length l on TED value as a func-
tion of the ring thickness h in vibration mode n = 100 a R∕h = 20 b 
R∕h = 100
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Figure 4 is depicted under the assumptions of Fig. 3, with 
the only difference that n = 100 is considered. As can be 
seen, with the increase of vibration mode number n com-
pared to Fig. 3 (i.e., case n = 2 ), the impact of characteristic 
length l on TED value alters absolutely, so that by increasing 
the value of l , the amount of TED declines. Of course, in 
this figure, as in Fig. 3, it is evident that with the increase in 
radial thickness h , the impact of size and subsequently the 
difference between the results of MCST and CCT dimin-
ishes. In the case of n = 100 , unlike the case of n = 2 , TED 
graph is not completely ascending in terms of h , and the 
maximum value of TED occurs at a thickness known as the 
critical thickness, which is a key factor in the optimal design 
of small-sized basic mechanical elements.

In Fig.  5, by assuming R∕h = 20 , TED calculated 
based on 1D and 2D models versus vibration mode num-
ber n is shown for different values of characteristic length 

l  . Figures 5a, b is plotted for thicknesses h = 1�m and 
h = 10�m , respectively. According to the curves of Fig. 5, 
the peak value of TED occurs in a vibration mode located 
in the middle of the interval under investigation (i.e., 
2 ≤ n ≤ 1000 ). This outcome can be justified by this fact that 
the temperature across the thickness of ring reaches equilib-
rium in a characteristic time teq . At small vibration modes 
which are equivalent to low frequencies, we have teq ≪ 𝜔−1

n
 . 

In this case, since the oscillation period is long enough, the 
vibrating structure is in isothermal state and remains in equi-
librium. Thus, the value of energy dissipation is little. At 
large vibration modes or high frequencies (i.e., in the case 
teq ≫ 𝜔−1

n
 ), a period of vibration takes a small amount of 

time, and the system has not adequate time to relax. Conse-
quently, similar to the case teq ≪ 𝜔−1

n
 , a negligible value of 

thermal energy is wasted. Hence, the peak value of energy 
loss or TED takes place in the case teq ≅ �−1

n
 , corresponding 

Fig. 5   Impact of characteristic length l on 1D and 2D TED value 
as a function of vibration mode n in a ring with geometrical ratio 
R∕h = 20 a h = 1�m b h = 10�m

Fig. 6   Impact of characteristic length l on 1D and 2D TED value 
as a function of vibration mode n in a ring with geometrical ratio 
R∕h = 100 a h = 1�m b h = 10�m
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to vibration modes that are neither too large nor too small. 
These curves also corroborate that the influence of charac-
teristic length l on TED is deeply dependent on the vibration 
mode number n , so that in low mode numbers, for larger 
magnitudes of l , a higher TED value is estimated, while 
in higher mode numbers, as l enlarges, the amount of TED 
abates. Another point that is evident in these curves is that 
as the value of l gets greater, the peak value of TED happens 
at a lower mode number. It is also manifest that in low mode 
numbers, the difference between predictions of 1D and 2D 
models is trifling, but by increasing n , this difference grows 
and TED value computed by 2D model becomes higher than 
that anticipated by 1D model.

The graphs in Fig. 6 are drawn with the same conditions 
as Fig. 5, with the only difference being that the ratio R∕h is 
supposed to be equal to 100. Compared to Fig. 5, it can be 

seen that with the increase of the ratio R∕h , the peak value of 
TED emerges in a higher mode number. Besides, the results 
of 1D and 2D models are almost identical in a wider range of 
vibration mode numbers. Also, the comparison of Figs. 6a, 
b indicates that with the increase in the dimensions of ring, 
the impact of characteristic length l on TED weakens, so 
that the difference between the results of MCST and CCT is 
conspicuously reduced.

For a ring with specifications l = 1�m and R∕h = 20 , 
Fig. 7 displays the alterations of TED with respect to the 
vibration mode number in the framework of GN-III and 
MGT models. It is to be noted that Figs. 7a, b are drawn 
with the assumption of h = 1�m and h = 10�m , respectively. 
According to these curves, in lower mode numbers, the two 
mentioned models have almost equal estimates of TED, but 
in higher mode numbers, GN-III model predicts a larger 

Fig. 7   Comparison of predictions of GN-III and MGT models for 
variations of TED changes with respect to vibration mode with the 
assumption of l = 1�m and a ring with a geometric ratio of R∕h = 20 
a h = 1�m b h = 10�m

Fig. 8   Comparison of predictions of GN-III and MGT models 
for variations of TED changes with respect to vibration mode with 
the assumption of l = 1�m and a ring with a geometric ratio of 
R∕h = 100 a h = 1�m b h = 10�m
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amount for TED than MGT model. The physical interpre-
tation of this result can be that the propagation speed of 
thermal signals in GN-III model is higher than that in MGT 
model. Accordingly, heat generated by the nonuniform stress 
distribution in the context of MGT model has less time to 
propagate per cycle, which lessens energy loss induced by 
thermoelastic damping mechanism. In this way, TED value 
predicted by MGT model is lower than that anticipated by 
GN-III model. It is also obvious that TED value obtained 
from 2D model is higher than that estimated by 1D model. 
The only difference between Fig. 8 and Fig. 7 is that it is 
drawn for a ring with a geometrical ratio of R∕h = 100 . 
As it is apparent, in this case as well, with the increase in 
vibration mode number, the discrepancy between the results 
of GN-III and MGT models intensifies. In addition, it is 
clear that as the size of the ring in Fig. 8b becomes larger 

compared to Fig. 8a, the difference between the predictions 
of GN-III and MGT models exhibits a noticeable reduction, 
which emanates from the diminution in size effect.

Figure 9 is dedicated to investigating the extent and 
manner of the impact of the material of ring on TED in 
the context of 2D model. For this purpose, three materials 
gold (Au), silicon (Si) and copper (Cu) are considered. 
In this figure, TED as a function of dimensionless ratio 
h∕l is shown. All the curves in Fig. 9 are extracted for a 
ring with thickness h = 2�m . Besides, in Figs. 9a, b the 
vibration mode number n is considered equal to 2 and 100, 
respectively. Note that in these curves, increasing the ratio 
of h∕l means decreasing the magnitude of characteristic 
length l  . Hence, Fig. 9a reveals that by decreasing the 
amount of l  , TED value tapers off for all three studied 

Fig. 9   Effect of the material of the ring on the amount of TED in 
it based on 2D model for a ring with thickness h = 2�m a n = 2 b 
n = 100

Fig. 10   Effect of the material of the ring on the amount of TED in 
it based on 1D model for a ring with thickness h = 2�m a n = 2 b 
n = 100
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substances. Therefore, in the vibration mode number 
n = 2 , including the effect of couple stress in governing 
equations heightens TED value in all three materials. It 
can also be observed that in this mode number, the high-
est amount of TED occurs in Cu-ring and the lowest in 
Au-ring, although to meticulously compare the amount of 
TED, it is needful to know the real value of characteristic 
length l for each of these materials. It is also manifest in 
this figure that with the increase of ratio h∕l , the small-
scale effect gradually shrinks and TED value converges 
to the estimation of CCT. Figure 9b again signifies that 
in high vibration modes, the impact of MCST on TED 
value changes completely, so that the magnitude of TED 
ascends with the increase of ratio h∕l or the decrease of 
the value of l . In this figure, it is also clear that to compare 
the influence of material on the amount of TED (especially 
for Au and Cu), the actual amount of l for these materials 
should be available.

By adopting the 1D model formulation, Fig. 10 is depicted 
with the same conditions as Fig. 9. In Fig. 10a, b, the vibra-
tion mode number n is assumed to be 2 and 100, respectively. 
As can be seen, the curves in Fig. 10 are qualitatively similar 
to the curves in Fig. 9, and the only difference is that the pre-
dicted value of TED in 2D model is higher than that in 1D 
model (especially in the case of n = 100 ). Furthermore, it is 
evident that in the case of R∕h = 100 , because the ring has 
a larger size than in the case of R∕h = 20 , the impact of size 
fades in smaller ratios h∕l , and the results of MCST converge 
to those of CCT sooner.

5 � Concluding remarks

In the present research, by incorporating scale effect 
into both mechanical and thermal scopes, a novel size-
dependent formulation has been derived to scrutinize 
thermoelastic damping (TED) in microring resonators 
with rectangular cross section. At the first step, the non-
classical constitutive relations and heat equation have 
been obtained in the purview of modified couple stress 
theory (MCST) and Moore–Gibson–Thompson (MGT) 
heat transfer model. By solving heat equation and extract-
ing the fluctuation temperature, the relations of wasted 
thermal energy and maximum stored elastic energy have 
been provided. With the help of the relationship defined 
for TED in the energy dissipation (ED) method, a math-
ematical formula encompassing the nonclassical param-
eters of MCST and MGT model has been prepared to 
determine the amount of TED. Comparing the outcomes 
of present model with those published in the literature in 
the framework of simpler models, the validation study has 
been accomplished. Providing a diverse set of examples, 
the relationship between TED and some factors such as 

nonclassical parameters of MCST and MGT model, vibra-
tion mode number, 1D and 2D models of heat conduc-
tion, geometrical parameters and material value have been 
clarified. Based on these examples, the following can be 
enumerated as the key findings of this article:

•	 Characteristic length of MCST can have a dual effect 
on TED, in such a way that it augments TED in low 
vibration modes and attenuates it in high vibration 
modes.

•	 While the discrepancy between the outputs of 1D and 
2D models is trifling in low vibration modes, TED 
value predicted by 2D model is noticeably higher than 
that computed by 1D model in high vibration modes.

•	 In low vibration modes, the prediction of MGT model 
for TED value is slightly higher than that of GN-III 
model, but in high vibration modes, the amount of TED 
obtained by GN-III model is much higher than that esti-
mated by MGT model.

•	 By increasing the dimensions of the ring, the influence 
of both MCST and MGT model on the magnitude of 
TED wanes and the results obtained in the framework 
of the provided formulation converge to those of the 
classical model.

•	 To favorably compare the amount of TED in investi-
gated rings in this study (i.e., gold, silicon and copper), 
one should know the real value of characteristic length 
of each material. In addition, in the vibration mode 
n = 2 ( n = 100 ), MCST has an increasing (decreasing) 
impact on TED value in all three of these materials.
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