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Abstract
This paper aimed at analytically investigating the simultaneous effects of the shear-lag and warping torsion on the perfor-
mance of non-rectangular reinforced concrete (RC) shear walls. Under the concurrent action of shear and axial loadings, 
the induced warping deformation due to the shear-lag as well as the warping torsion has been accounted for in the elastic 
region. On the strength of the minimum potential energy principle, a general formulation has been derived for the stress 
distribution of non-rectangular RC shear walls. By introducing the appropriate geometrical assumptions, the established 
formulations have then been re-written for conventional T-, U-, and L-shapes RC shear walls. The veracity of the results is 
ascertained through a comparative study employing finite element simulations for a U-shaped wall, and good agreement has 
been achieved to an extent that the proposed analytical formulation is capable to, respectively, predict the axial deformation 
and stress distribution with an accuracy of 95 and 90%. Also, the findings for the U-shaped wall indicate that the shear-lag 
can significantly affect the axial stress distribution and cracking load, and neglecting the influence of this phenomenon can 
lead to an inaccurate and a non-conservative design. Moreover, the contribution of the shear-lag and warping torsion has 
separately been highlighted for the U-shaped RC wall considered in this study.

Keywords Shear-lag · Non-rectangular RC shear wall · Analytical study · FE analysis · Minimum potential energy (MPE) · 
Warping torsion

List of symbols
αx, αy  Dimensionless coefficients in warping 

deformation resulting from the shear-
lag in x- and y-directions

βx, βy  Constants in warping deformation 
resulting from the shear-lag in x- and 
y-directions

γt  Product of αx and bt
ε50  Strain corresponding to the stress of 

0.50 f ′
c
 after attaining the maximum 

compressive strength of concrete
εsh  Strain at the onset of hardening stage
εsu  Strain corresponding to the ultimate 

strength of steel reinforcement
εsy  Strain corresponding to the yield 

stress of steel reinforcement

εt  Strain corresponding to the ultimate 
tensile strength of concrete

εtu  Ultimate tensile strain of concrete
λb, λc, λt  Constants corresponding to the shear-

lag effects in x- and y-directions, and 
torsional moment

μs  The ratio of the maximum tensile 
stress with shear-lag and warping tor-
sion to the maximum tensile stress of 
the Bernoulli–Euler assumption

μsb, μsc, μsd  Contribution of the shear-lag in x- and 
y-directions, and warping torsion to 
the additional tensile stress

ν  Poisson’s ratio of concrete
П  Total potential energy function
Пb, Пc  Total potential energy function corre-

sponding to the lateral loads in x- and 
y-directions

σ  Axial stress distribution function of 
RC shear wall
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σa, σb, σc, σd  Axial stress distribution function 
under the axial load, lateral load in 
x- and y-directions, and torsional 
moment

�  Stress distribution function with the 
Bernoulli–Euler assumption

�b, �c  Stress distribution function with the 
Bernoulli–Euler assumption in x- and 
y-directions

τ  Shear stress distribution function of 
RC shear wall

ϕ  Torsional moment-induced rotation 
angle

ψ  Warping function
A  Cross-sectional area of the wall
B  Bi-moment
bfbL, bfbR, bftL, bflR  Widths of the left-side bottom flange, 

right-side bottom flange, left-side top 
flange, and right-side top flange

bt  Horizontal component of the cen-
troid coordinate of the wall in ( ̂x, ŷ ) 
coordinate

Cw  Warping constant
dc  Confined length of the section
E  Equivalent modulus of elasticity of 

the wall
ec  Clear cover
ex, ey  Eccentricity of the lateral loads in y- 

and x-directions from the shear center
fu  Ultimate stress of steel reinforcement
fy  Yield stress of steel reinforcement
f ′
c
  Compressive strength of concrete

f ′
t
  Tensile strength of concrete

G  Shear modulus of the wall structure
H  Height of the wall
h  Shear wall section height
hb, ht  Centroid distance from the center of 

the bottom and top flanges
Ieb, Iwb, Iec, Iwc  Shear-lag constants in x- and 

y-directions
Ix, Iy  Moment of inertia about x- and y-axes
Ῑx, Ῑy  Moment of inertia about x - and y

-axes
J  Torsional moment of inertia
N  Applied axial loading
Mx,My  Moment of the section about x - and y 

-axes
q  Axial stress of RC shear wall
sx, sy  Shear-lag induced additional lateral 

deformation in x- and y-directions
tfbtft, tw  Thickness of the bottom flange, top 

flange, and web

UfbUft, Uw  Strain energy functions corresponding 
to the bottom flange, top flange, and 
web of the section

u  Axial deformation function of RC 
shear wall

ua, ub, uc, ud  Axial deformation function induced 
by axial load, lateral load in x- and 
y-directions, and torsional moment

uwb, uwc  Shear-lag constants in x- and 
y-directions

VL  Potential energy due to the external 
loads

VLb, VLc  Potential energy due to the external 
loadings in x- and y-directions

Vx, Vy  Lateral loadings in x- and y-directions
Vx (max), Vy (max)  Maximum calculated lateral load 

in x- and y-directions before crack-
ing, based on the Bernoulli–Euler 
assumption

V �
x(max)

,V �
y(max)

  Maximum calculated lateral load in 
x- and y-directions before cracking 
due to the shear-lag and warping 
torsion

wxwy  Lateral deformation of the wall in 
x- and y-directions before crack-
ing, based on the Bernoulli–Euler 
assumption

(xc,  yc)  Shear center coordinate of the section
(xG, yG)  Centroid coordinate of the section

1 Introduction

Non-rectangular reinforced concrete (RC) shear walls have 
increasingly been utilized in recent years due to the archi-
tectural limitations and structural efficiency reasons. Among 
the conventional non-rectangular RC shear walls are the I-, 
T-, U-, L-, C- and Z-shaped configurations.

The Bernoulli–Euler assumption, i.e., the wall’s cross-
section remains plane and perpendicular to the neutral axis 
after bending, is the case for non-rectangular RC shear walls 
only when no shear load is applied to the section or the 
shear stiffness of the wall is infinite [1]. In fact, the sections 
of flanged walls may experience shear deformations due to 
the transfer of shear flow from the web to the flange. There-
fore, the axial stress and strain in the vicinity of the web-
flange connection are larger in comparison to other areas 
(see Fig. 1). This phenomenon is known as the shear-lag 
[1, 2], and its inevitable effects in the analysis and design 
of different structural elements have been addressed in the 
previous studies [3–9].
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In comparison with the Bernoulli–Euler assumption, 
considering the shear-lag increases the maximum induced 
axial stress of the section at the web-flange conjunctions, 
which can attenuate the flexural capacity of the wall. Indeed, 
negligence of the shear-lag effects in the analysis of non-
rectangular RC shear walls can lead to a non-conservative 
design [1, 2]. With this in mind, many studies attempted 
to evaluate the effects of the shear-lag on non-rectangular 
RC shear walls. However, in recent years, there are quite a 
few papers employing the experimental [10–16] or numeri-
cal [2, 17–19] approaches to evaluate the shear-lag effects, 
and limited investigations have been devoted to analytically 
address the shear-lag phenomenon on the response of non-
rectangular RC shear walls, of which a brief survey is pro-
vided herein.

As the initial contribution to the shear-lag effect, Reiss-
ner [20] analytically investigated the influence of the shear-
lag on box beams. A second-order function was adopted to 
account for the shear-lag induced axial deformations, and 
then, based on the minimum potential energy (MPE) prin-
ciple, four basic examples were analyzed. The results indi-
cated the significant contribution of the shear-lag to both the 
deflection and stress distribution of a box beam.

Implementing the finite element approach, Kwan [1] 
investigated the shear-lag phenomena on shear/core walls. 
By fine meshing the wall structures and conducting paramet-
ric study, some formulation has been established to calculate 
the axial stress and strain distribution at the core sections. 
In the Kwan’s proposed method, the core-shaped structure 
was divided into two U-shaped congruent walls to decrease 
the computation cost and simulation time by analyzing each 
section independently. It is to mention that the warping tor-
sion was not included in the finite element (FE) process due 
to the fact that the loading was applied parallel to each web 
of the U-shaped section.

By employing fundamental elasticity theory equations 
and Fourier series, Song and Scordelis [21] proposed an 
effective analytical approach to describe the shear-lag effect 
on the elastic behavior of T-section, I-section, and box 
beams. Haji-Kazemi and Company [22] incorporated the 
shear-lag into the Airy stress functions, and then, based on 

the power series, the equilibrium and compatibility equa-
tions of a high-rise tube structure have been established.

Due to the shear-lag effects, and in turn, the complexi-
ties do exist in the behavior of non-rectangular flanged RC 
shear walls; conventional design codes introduce an effective 
flange width ratio to further simplify the calculation process 
of flanged sections [23–27]. According to the recommenda-
tions of these codes, the shear-lag effects are ignored during 
the design and analysis process, and instead, the proposed 
effective width of flange is only considered. Furthermore, 
a wealth of studies [18, 28–31] reported that the effective 
width ratios proposed by the conventional design codes are, 
in many cases, inaccurate in assessing the shear-lag phenom-
enon. It is worthy of mention that, the main focus of all the 
mentioned studies are mainly on the shear-lag effects, and 
the influences of the warping torsion have essentially been 
ignored in the effective width estimation of non-rectangular 
flanged sections.

Shi and Wang [32] approximated the shear-lag induced 
warping deformation as a third-order function in order to 
derive an analytical formulation for the stress distribution 
and effective flange width of T-shaped walls in the elastic 
range, and the veracity of the approximation has then been 
examined through a finite element analysis. Moreover, Liu 
et al. [33] highlighted the strong influence of the shear-lag 
on the axial stress distribution as well as the deformation of 
T-shaped RC shear walls.

In addition, Ni and Cao [34] developed a general formula-
tion for the stress distribution of I-shaped Beams and shear 
walls with two asymmetric flanges, in which the contribu-
tion of the shear-lag induced warping deformation has been 
applied through a second-order function. In a comprehensive 
study, Lu and Li [35] proposed equations for the effective 
flange width calculation of T-section RC shear walls by 
considering the shear-lag phenomenon in this section. They 
calculated the effective section width in the elastic range 
employing the energy equations, and thereafter using FE 
modeling, a parametric study was carried out in the non-
linear region in order to estimate the effective flange width. 
Zhang et al. [18] adopted a theoretical solution to explore 
the shear-lag influence as well as the strain nonlinearity 

Fig. 1  Stress distribution: a 
without shear-lag, and b with 
shear-lag effect
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introduced in RC shear walls with different kind of flanged 
sections. Moreover, they proposed a semi-empirical equa-
tion to assess the lateral cyclic loading effect on the uneven-
ness of the compressive strains induced in the wall flanges. 
Furthermore, in recently published papers by the authors 
[36, 37], the shear-lag effects have been highlighted on the 
response of L-shaped RC shear walls, and then through the 
EPR algorithm, an applicable formulation was proposed for 
the effective width estimation of L-shaped RC shear walls.

A brief review of the literature clearly indicates that the 
analytical investigations are mainly focused on the specific 
cross-sections which are essentially symmetric and cannot 
be extended to all flanged sections. This is while particular 
attention should be given to asymmetric non-rectangular 
flanged sections which may find application depending on 
the structural and aesthetic considerations.

It should be noted that torsional moments are also intro-
duced into the RC shear walls with asymmetric sections due 
to the shear eccentricity. In that regard, in addition to the 
torsional deflections, warping deformation does occur in 
the section due to the shear-lag which can modify the axial 
displacement, and in turn, the axial stress distribution of 
the wall. Through the analytical and numerical approaches, 
a torsional analysis has also been performed in which the 
effects of warping torsion has separately been evaluated for 
a wide range of sections [38–41].

Nevertheless, to the best knowledge of the authors, the 
effects of warping torsion as well as shear-lag on non-rec-
tangular RC shear walls have rarely been simultaneously 
studied in the literature. Hence, the current study offers a 
general formulation wherein the shear-lag together with the 
warping torsion are introduced into the axial displacement 
and stress distribution of non-rectangular RC shear walls. 
Then, employing the FE analysis, the reliability and verac-
ity of the proposed formulation will be ascertained in the 
upcoming sections.

2  Stress distribution and deformation 
functions

2.1  Basic assumptions

As previously mentioned, the present study deals with the 
analysis of flanged RC shear walls with a general asym-
metric cross-section under the lateral and axial loadings. 
The geometrical characteristics of an arbitrary wall section 
is demonstrated in Fig. 2. In order to fill the gap addressed 
in the literature [42], the current study presents the axial 
stress distribution and deformation functions of non-rec-
tangular RC shear walls due to the both components of the 
in-plane lateral loading (Vx, Vy).

As shown in Fig. 2c, the points G and C, respectively, 
denote the centroid and shear center of the section. Also, 
ey and ex are the eccentricities of the lateral loadings Vx 
and Vy in the positive directions, respectively, and the 
axial load, N, has been applied to the centroid of the sec-
tion. In order to simplify modeling of the section, the 
confined length, dc, and cover concrete thickness, ec, are 
assumed to be constant across the section.

The minimum potential energy (MPE) principle has 
been employed to find the stress distribution of the section. 
In that regard, the following assumptions will be intro-
duced into the problem formulation:

• A linear behavior is assumed for both steel reinforce-
ments and concrete materials.

• The superposition principle is applied due to the linearity 
of the materials.

• A second-order polynomial function has been adopted 
to approximate the shear-lag induced axial deformation 
[43].

Fig. 2  Schematic view of a non-rectangular RC shear wall (geometry and loading)
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• The vertical as well as the out-of-plane shear strains have 
been neglected in the calculation of the total potential 
energy function; and

• The equivalent elasticity modulus of the section (E) has 
been estimated by the approach proposed by Liu et al. 
[33].

Additionally, the shear modulus, G, is obtained as 
follows:

wherein v is Poisson’s ratio of concrete materials ranges 
between 0.15 and 0.20.

2.2  Determination of the deformation and stress 
distribution functions

On the strength of the superposition principle, the loads 
applied to the wall can be decomposed into an axial load 
imposed to the centroid of the section, two lateral loads 
applied to the shear center, and also a torsional moment 
about the z-axis. It is to mention that the torsional moment 
is calculated as follows:

Since the axial load is applied to the centroid of the sec-
tion, uniform axial deformation and compressive stress 
appear across the section (Fig. 3a) as follows:

In Fig. 3b, c, the structure is under the action of two 
lateral load applied to the shear center of the wall which 
it bends the structure without any torsion leading to shear 
stress in the section. Furthermore, due to the non-rectangular 

(1)G =
E

2(1 + �)

(2)T = Vxey − Vyex

(3)ua(x, y, z) =
N

AE
(H − z),

(4)�a(x, y, z) = −
N

A
.

shape of the section, the transfer of shear flow from the 
flange into the web induces shear-lag and also additional 
axial and lateral deformations.

In the elastic region, the lateral loads Vx and Vy induce 
lateral deformations wx (z) and wy (z), respectively. These 
deformations are obtained based on the Bernoulli–Euler 
assumption, as follows:

Let the additional shear-lag induced lateral deforma-
tions due to Vx and Vy be sx and sy (Fig. 3b, c), respectively. 
Moreover, uwb (x, y) and uwc (x, y) are the corresponding 
warping deformations. Thus, the axial deformations function 
are calculated as follows [44]:

As shown in Fig. 4, to introduce the functions uwb (x, y) 
and uwc (x, y), a coordinate system with the components of x̂ 
and ŷ is defined at the middle height of the section.

Quite a few studies have been conducted to investigate the 
stress and strain distribution functions in flanged sections due 
to the shear-lag effect [32–35]. Khaloo et al. [45, 46] con-
ducted an investigation to identify an appropriate function for 
the shear-lag induced warping deformation. The results of their 
studies indicated that, among the various proposed functions, 
the quadratic distribution function, which corresponds to the 
lateral loading in the x- and y- directions, is the best option for 
assessing the response of non-rectangular flanged RC shear 
walls. Therefore, within the framework of the current study, 

(5)wx(z) =
Vx

6EIy

(z3 − 3H2z + 2H3),

(6)wy(z) =
Vy

6EIx

(z3 − 3H2z + 2H3).

(7)
ub(x, y, z) = −x(w′

x(z) + s′x(z)) + uwb(x, y)s′x(z)
= −(x − xG)w′

x(z) + [uwb(x, y) − x + xG]s′x(z),

(8)
uc(x, y, z) = −y(w′

y(z) + s′y(z)) + uwc(x, y)s′y(z)

= −(y − yG)w′
y(z) + [uwc(x, y) − y + yG]s′y(z)

Fig. 3  Decomposition of the loads into a an axial load, b a lateral load in x-direction, c a lateral load in y-direction, and d a torsional moment



 Archives of Civil and Mechanical Engineering (2023) 23:138

1 3

138 Page 6 of 25

the quadratic distribution functions have been proposed in both 
the x- and y- directions. Therefore, the functions uwb(x̂, ŷ) and 
uwc(x̂, ŷ) can take the following form:

wherein < f > represents the Macaulay bracket. If f admits 
a negative value, the output of the bracket is zero; other-
wise, the bracket output is the absolute value of f. In the 
elastic region, the axial stress distributions are calculated 
as follows:

(9)uwb(x̂, ŷ) = 𝛽x − 𝛼xbt

⎛⎜⎜⎜⎝

���ŷ −
h

2
+ tfb��ŷ + h

2
− tft

����
h

2
− tfb

��
h

2
− tft

�
⎞⎟⎟⎟⎠
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�
ŷ +

h

2
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h

2
+ tfb

�

ŷ −
h

2
+ tfb

⎞⎟⎟⎟⎠
,

(10)

uwc(x̂, ŷ) = 𝛽y + 𝛼yhb

⎛⎜⎜⎝
1 −

�
x̂ −

tw

2

bfbR
− 1
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2
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�
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(11)

�b = E
�ub(x, y, z)

�z
= −E(x − xG)w

��
x
(z) + E[uwb(x, y) − x + xG]s

��
x
(z),

With the absence of the axial load, one can write as 
follows:

(12)
�c = E

�uc(x, y, z)
�z

= −E(y − yG)w′′
y (z) + E[uwc(x, y) − y + yG]s′′y (z).

(13)

∫
A

�bdA

= 0 → ∫
A

(−E(x − xG)w′′
x (z) + E[uwb(x, y) − x + xG]s′′x (z))dA = 0,

(14)
∫
A

�cdA =0 → ∫
A

(−E(y − yG)w′′
y (z)

+E[uwc(x, y) − y + yG]s′′y (z))dA = 0.

Additionally,

(15)∫
A

(x − xG)dA = 0,

(16)∫
A

(y − yG)dA = 0.

Fig. 4  Coordinate system of a general non-rectangular wall section
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Employing Eqs. (15) and (16) for simplification of Eqs. 
(13) and (14) admits the following:

Moreover, the bending moment about x - and y - axes can 
be found as follows:

Furthermore, it should be noted that:

Within the same approach, Eqs. (19) and (20) can take the 
following simplified forms:

or, equivalently:

The constants αx, βx, αy, and βy can be calculated using 
Eqs. (17), (18), (25), and (26). Also, the total potential 
energy function is found to be as follows:

(17)∫
A

uwb(x, y)dA = 0,

(18)∫
A

uwc(x, y)dA = 0.

(19)∫
A

�b(x − xG)dA = My,

(20)∫
A

�c(y − yG)dA = Mx.

(21)∫
A

−E(x − xG)
2w��

x
(z)dA = My,

(22)∫
A

−E(y − yG)
2w��

y
(z)dA = Mx.

(23)∫
A

E[uwb(x, y) − x + xG]s
��
x
(z)(x − xG)dA = 0,

(24)∫
A

E[uwc(x, y) − y + yG]s
��
y
(z)(y − yG)dA = 0

(25)∫
A

uwb(x, y)(x − xG)dA =∫
A

(x − xG)
2dA = Iy,

(26)∫
A

uwc(x, y)(y − yG)dA = ∫
A

(y − yG)
2dA = Ix.

(27)

Π = Uft + Ufb + Uw + VL = ∫
H

0 ∫
A

(
�2

2E
+

�2

2G

)
dAdz + VL.

Furthermore, Iwb, Iwc, Ieb, and Iec are introduced herein 
as follows:

As a result, the total potential energy function of the wall is 
obtained as [47] as follows:

where VLb and VLc are the potential energy values corre-
sponding to the external loadings applied to the section in 
the x- and y-directions, respectively. These values are identi-
cal to the work accomplished by the external loads with the 
opposite sign (V = − W), calculated as follows:

In order to minimize the total potential energy functions Πb 
and Πc, it is suffice to set δΠb and δΠc equal to zero:

(28)Iwb = ∫
A

(uwb(x, y) − x + xG)
2dA,

(29)Iwc = ∫
A

(uwc(x, y) − y + yG)
2dA,

(30)Ieb = ∫
A

(
�uwb(x, y)

�y

)2

dA,

(31)Iec = ∫
A

(
�uwc(x, y)

�x

)2

dA.

(32)

Πb = ∫

H

0 ∫
A

(

1
2
E
(

�ub
�z

)2

+ 1
2
G
(

�ub
�y

)2
)

dAdz + VLb

= ∫

H

0

1
2
EIy(w′′

x (z))
2dz + ∫

H

0

1
2
EIwb(s′′x (z))

2dz

+ ∫

H

0

1
2
GIeb(s′x(z))

2dz + VLb,

(33)

Πc = ∫

H

0 ∫
A

(

1
2
E
(

�uc
�z

)2

+ 1
2
G
(

�uc
�x

)2
)

dAdz + VLc

= ∫

H

0

1
2
EIx(w′′

y (z))
2dz + ∫

H

0

1
2
EIwc(s′′y (z))

2dz

+ ∫

H

0

1
2
GIec(s′y(z))

2dz + VLc,

(34)VLb = −Vx(wx(0) + sx(0)),

(35)VLc = −Vy(wy(0) + sy(0)).
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As a result, the additional shear-lag induced displace-
ments in x- and y-directions are, respectively, derived as 
follows:

For �b =
√

GIeb
/
EIwb and �c =

√
GIec

/
EIwc:

The general solutions of Eqs. (40) and (41) are as follows:

Furthermore, both the initial and boundary conditions in x- 
and y-directions of the wall are, respectively, given as follows:

Thus, the additional lateral deformations due to the shear 
deformation are obtained as follows:

(36)

�Πb = ∫

H

0
EIyw′′′′

x (z)�wx(z)dz + EIyw′′
x (z)�w

′
x (z)|

H
0

− EIyw′′′
x (z)�wx (z)|

H
0 + ∫

H

0
(EIwbs′′′′x (z)

−GIebs′′x (z))�sx(z)dz + EIwbs′′x (z)�s
′
x (z)|

H
0

− EIwbs′′′x (z)�sx (z)|
H
0 + GIebs′x(z)�sx (z)|

H
0

− Vx[�wx(0) + �sx(0)] = 0,

(37)

�Πc = ∫
H

0

EIxw
����
y

(z)�wy(z)dz + EIxw
��
y
(z)�w�

y
(z)|H

0
− EIxw

���
y
(z)�wy (z)|H0

+ ∫
H

0

(EIwcs
����
y

(z) − GIecs
��
y
(z))�sy(z)dz + EIwcs

��
y
(z)�s�

y
(z)|H

0

− EIwcs
���
y
(z)�sy (z)|H0 + GIecs

�
y
(z)�sy (z)|H0 − Vy[�wy(0) + �sy(0)] = 0.

(38)EIwbs
����
x

(z) − GIebs
��
x
(z) = 0,

(39)EIwcs
����
y

(z) − GIecs
��
y
(z) = 0.

(40)s����
x

(z) − �2
b
s��
x
(z) = 0,

(41)s����
y

(z) − �2
c
s��
y
(z) = 0.

(42)sx(z) = k1x + k2xz + k3x cosh(�bz) + k4x sinh(�bz),

(43)sy(z) = k1y + k2yz + k3y cosh(�cz) + k4y sinh(�cz).

(44)

s��
x
(0) = 0 , s���

x
(0) − �2

b
s�
x
(0) =

Vx

EIwb
, sx(H) = s�

x
(H) = 0,

(45)

s��
y
(0) = 0 , s���

y
(0) − �2

c
s�
y
(0) =

Vy

EIwc
, sy(H) = s�

y
(H) = 0.

(46)sx(z) =
VxH

EIwb�2b
−

Vx

EIwb�3b
tan h(�bH) −

Vxz
EIwb�2b

+
Vx

EIwb�3b cosh(�bH)
sin h(�bz),

Substituting Eqs. (46) and (47) into Eqs. (11) and (12) 
gives the axial stress distribution function. Then, the axial 
deformation and stress distribution under the action of 
torsional moment (Fig. 3d) are computed. Based on the 

Vlasov’s torsion theory [48], the rotation ϕ of the section 
due to the torsional moment T admits the following:

where Cw is the warping constant defined as follows:

in which Ψ is the warping function defined for open sections 
as follows:

where h is the vertical distance of an arbitrary point in the 
section from the shear center. By substituting 
�t =

√
GJ

/
ECw , Eq. (48) can be simplified as follows:

and then, the integration of Eq. (51) along the height of the 
wall gives the following:

Therefore, the general solution of Eq. (52) is given as 
follows:

(47)

sy(z) =
VyH
EIwc�2c

−
Vy

EIwc�3c
tan h(�cH) −

Vyz
EIwc�2c

+
Vy

EIwc�3c cos h(�cH)
sin h(�cz).

(48)ECw�
����(z) − GJ���(z) = 0,

(49)Cw = ∫
A

Ψ2dA,

(50)Ψ = ∫
s

hds −
1

A ∫
A

∫
s

hdsdA,

(51)�����(z) − �2
t
���(z) = 0

(52)����(z) − �2
t
��(z) =

T

ECw

.

(53)�(z) = k1 + k2z + k3 cos h(�tz) + k4 sin h(�tz).
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Based on the boundary conditions of the wall and a 
fixed support at z = H, the solution of Eq. (54) yields the 
following:

With the known value of ϕ, the axial deformation and 
stress distribution due to the warping torsion can be cal-
culated as follows:

The bi-moment B is defined as follows:

Therefore, employing Eq. (58), the axial stress distribu-
tion function takes the following form:

Hence, with the known functions of ua, ub, uc, ud, σa, 
σb, σc, and σd, the axial deformation and stress arising 
from the shear-lag and warping torsion can be obtained 
as follows:

(54)
�(z) = −T

ECw�3t
(tan h(�tH) cos h(�t(H − z))

− tan h(�tH) − sin h(�t(H − z)) + �t(H − z)).

(55)ud(x, y, z) = −
d�

dz
Ψ,

(56)�d(x, y, z) = −E
d2�

dz2
Ψ.

(57)B = −ECw

d2�

dz2
.

(58)�d(x, y, z) =
B

Cw

Ψ.

(59)
u(x, y, z) = ua(x, y, z) + ub(x, y, z) + uc(x, y, z) + ud(x, y, z),

Provided in Fig. 5 are the conventional non-rectangular 
sections, including Z-, T-, I-, C- and L-shaped sections 
which can be attained introducing appropriate geometrical 
properties into the general section defined in this study.

2.3  Discussion of the coefficients and constants

The axial stress distribution along with the pre-cracking 
deformation functions can be calculated under the simulta-
neous action of the shear-lag and warping torsion employing 
the coefficients established in the previous sub-section. Fur-
ther details on the definition and calculation of the above-
described parameters such as warping constant, Bi-moment, 
and shear center can be found in a number of studies [38, 
49–54]. For the purpose of convenience, the coefficients 
of the shear-lag and their corresponding expressions are 
provided in the Appendix of the paper. It should be noted 
that, in the special case of bt equal to zero, αx has not been 
defined which means that the shear-lag may not even take 
place for the section (i.e., a rectangular section). Neverthe-
less, in other cases in which the shear-lag influence can be 
meaningful, it is required to incorporate αxbt into γt. It is 
worth noting that βx is assumed to be zero about the verti-
cal axis of symmetric sections ( ̂y in Fig. 4). In the case of 
ambiguity for the other coefficients, the basic definitions of 
the previous section should be utilized.

In general, based on the importance and type of the 
structure and in order to restrict its lateral deformation, RC 
shear wall can be an efficient option, whose dimension and 
reinforcement detailing are oftentimes determined with 
a conservation in the design process. Therefore, in many 
cases, the RC wall remains within the elastic region, i.e., 

(60)
�(x, y, z) = �a(x, y, z) + �b(x, y, z) + �c(x, y, z) + �d(x, y, z).

Fig. 5  The geometrical characteristics of a Z-shaped, b T-shaped, c I-shaped, d U-shaped, and e L-shaped sections
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before onset of cracking, under different lateral loading sce-
narios. With this in view, the equations described in Sect. 2.2 
can essentially be applied in these scenarios to control the 
stresses and lateral deformation of the walls.

Nevertheless, in real earthquakes, the seismic wave 
can essentially reach structures from any direction, which 
necessitates examining the seismic performance of non-
rectangular flanged RC shear walls subjected to the action 
of various lateral loading directions [14, 55, 56]. In some 
cases, in which the seismic loading is less than the crack-
ing load of the non-rectangular flanged RC shear walls, the 
equations established in the Sect. 2.2, and those provided in 
the Appendix section can be employed to control the above-
mentioned criterion. Therefore, the succeeding sub-section 
is devoted to evaluate the cracking load of non-rectangular 
flanged RC shear walls.

2.4  Cracking load

For the case of the Bernoulli–Euler assumption, wherein 
the shear-lag and warping torsion have not been involved 
in the formulation, the stress distribution of the section is 
calculated as follows:

For positive values of Vx and Vy, and also for the lack of 
cracks under the applied loadings, the following is required:

in which f ′
t
 is the tensile strength of concrete, h1 and  h2 have 

been defined as depicted in Fig. 6. Therefore, for Vx and Vy 

(61)�(x, y, z) = −
Vxzx

Iy

−
Vyzy

Ix

−
N

A
.

(62)
VxHh1

Iy

+
VyHh2

Ix

−
N

A
< f �

t

values under cracking condition, a linear curve is achieved 
(Fig. 7), wherein Vx (max) and Vy (max) are obtained as follows:

However, when the shear-lag and warping torsion are 
considered in the calculation of cracking loads, this curve 
may be nonlinear depending on the location where the loads 
are applied to the section. In this case, the curve is deter-
mined employing Eq.  (60) and also the inequality of 
𝜎(x, y, z) < f �

t
 . Furthermore,V �

x(max)
 and V �

y(max)
 are calculated 

using the former inequality. It should be noted that, in the 
example provided below, the cracking curve of a U-shaped 
section is numerically and analytically derived, and the dif-
ference between the results of those and the linear curve 
obtained from Eq. (62) has been evaluated.

3  Validation of the analytical formulation

3.1  Numerical example

This section numerically investigates a non-rectangular RC 
shear wall to validate the proposed analytical formulations. 
Previous studies employed T- and I-shaped sections for vali-
dation of the analytical equations addressed in the literature 
[33–35]; However, in this study, a U-shaped section has 
numerically been examined.

In the experimental investigation performed by Beyer 
et  al. [30], two U-shaped walls were studied under the 
quasi-static loading. In addition, Constantin and Beyer [13] 
evaluated the seismic performance of U-shaped RC shear 
walls under diagonal quasi-static loadings. It is to mention 
that the walls had been reinforced with asymmetric longi-
tudinal reinforcements. In the current study, the geometry 

(63)Vx(max) =
Iy

Hh1

(
f �
t
+

N

A

)
,

(64)Vy(max) =
Ix

Hh2

(
f �
t
+

N

A

)
.

Fig. 6  Tensioned area of the section

Fig. 7  Comparison of the shear-lag effect on the cracking curves
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and reinforcement detailing of the numerical example were 
adopted from the TUD sample of the above-mentioned study 
to assess the effects of asymmetry reinforcements on the 
accuracy of the proposed analytical equations. It should be 
noted that the configuration of the transverse reinforcements 
in the confined area, boundary conditions, and also the load-
ing pattern slightly differ from Ref. [13]. In what follows, the 
present study attempts to evaluate the U-shaped wall before 
the onset of cracking (Fig. 8).

Tables 1 and 2, respectively, summarize the mechanical 
properties of concrete materials and steel reinforcements.

As shown in Fig. 9, in order to simulate the confined 
concrete under compression, Roy and Sozen’s model [57] 
has been adopted. Also, the strain corresponding to 0.5f ′

c
 

Fig. 8  Geometry and rein-
forcement configurations of 
the numerical example: a 
configurations of longitudinal 
and transverse reinforcement 
bars, b lateral loads, and c axial 
distributed load (All dimensions 
are in cm) [13]

Table 1  Mechanical properties of TUD [13]

Parameter Value

Characteristic strength, f ′
c

37.0 ± 1.3 MPa
Modulus of elasticity, Ec 30.3 ± 0.8 GPa
Tensile strength, f ′

t
3.0 ± 0.2 MPa

Table 2  Mechanical properties of reinforcement bars in TUD [13]

Bar diameter εsu(%) fy (MPa) fu (MPa) fu/fy

�6 6.8 ± 0.9 492 ± 5.1 623 ± 8.7 1.26 ± 0.02
�8 7.9 ± 0.8 563 ± 26.6 663 ± 6.5 1.18 ± 0.05
�12 9.6 ± 1.2 529 ± 4.7 633 ± 3.9 1.19 ± 0.01

Fig. 9  Stress–strain curve of the confined concrete
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was utilized proportional to the transverse reinforcement. 
Furthermore, the bilinear model is employed to model the 
tensile behavior of concrete materials.

To simulate the behavior of the steel reinforcements, the 
tri-linear curve has been adopted in both tension and com-
pression regions which is shown in Fig. 10 [58].

Also, based on the previously established formulations, 
the coefficients of the U-shaped wall are summarized in 
Table 3.

The distribution of the axial stress in the elastic region is 
the same as the case where a concentrated load Vx is applied 
to the section at the axis of symmetry of the section. To 
evaluate behavior of the shear wall under different loading 
conditions, the numerical example has been simulated in 
ABAQUS software. First, the geometry and material prop-
erties are introduced into ABAQUS, and then, the fixed-
support boundary conditions are employed to one end. In 
the next step, the lateral loads have been applied to the wall. 
Figure 11 depicts the configuration of the steel reinforce-
ment along with the mesh of the wall.

Moreover, the eight-node hexahedral element (C3D8R) 
has been employed for the modelling of concrete materials. 
For steel reinforcements (longitudinal and transverse), three-
dimensional two nodes truss element (T3D2) is assigned in 
the FE analyses and all the reinforcements have been embed-
ded in the concrete materials. In order to identify appropri-
ate mesh properties, extensive mesh studies were performed 
which indicated that assigning element size of 10 cm for 
simulation of the concrete materials and steel reinforcements 
in the elastic region is satisfactory with due attention to the 
accuracy of the results and running time.

Figure 12 illustrates the axial stress distribution and axial 
deformation contour for the U-shaped RC shear wall under 
examination subjected to the axial and lateral loadings in 
the x- and y-directions. As the results presented in this fig-
ure suggest, the distribution of axial stress as well as axial 
deformation is essentially nonlinear. The reason behind this 
observation stems from the nonlinearity effects introduced 
by the shear-lag phenomenon along the height of the wall 
due to the action of lateral loadings Vx and Vy.

Fig. 10  Stress–strain curve of the steel reinforcement

Table 3  Coefficients of the U-shaped wall

Parameter Value Parameter Value Parameter Value

E (GPa) 33.300 ht(m) 0.6 αy 1.905
G (GPa) 14.400 hb(m) 0.6 Iwb(m4) 0.066
λb (1/m) 2.775 Ῑx  (m4) 0.087 Iwc(m4) 0.046
λc (1/m) 1.867 Ῑy  (m4) 0.036 Ieb(m4) 1.181
λt (1/m) 0.226 J (m4) 0.001 Iec(m4) 0.367
Cw(m6) 0.009 βx(m) 0.358 x̂c(m) − 0.367
xG(m) 0.312 βy(m) 0 ŷc (m) 0
yG(m) 0 αx 5.006 A (m2) 0.320

Fig. 11  Simulation of the 
U-shaped RC shear wall in 
ABAQUS software: a con-
figuration of the steel reinforce-
ments, and b wall meshes
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In this study, the U-shaped shear wall was subjected to 
six different load combinations with different values of Vx 
and Vy up to the onset of cracking to investigate the axial 
deformation and stress distribution. The results attained by 
the FE method has then been compared with those of the 
analytical one.

3.2  Comparison of the results

In this sub-section, to further evaluate the efficiency of the 
proposed analytical solution, response parameters in terms 
of the cracking loads, axial deformation, and axial stress dis-
tribution are obtained. Then, the results attained by the pro-
posed analytical formulation are compared with the FE sim-
ulation as well as the solution based on the Bernoulli–Euler 
assumption. Figure 13 depicts the variation of the cracking 
loads through applying the above-mentioned methods.

According to Fig. 13, the numerical results are signifi-
cantly different from those obtained employing the Ber-
noulli–Euler assumption. Moreover, this difference can be 
negligible, i.e., less than 0.5%, only when Vx is applied to 
the wall. However, the discrepancy increases when Vy has 
been applied to the wall. This observation can be addressed 
to the fact that the shear-lag and warping torsion occur in 
both directions. Also, the numerical value of Vy (max) is less 
than half of the value achieved based on the Bernoulli–Euler 
assumption under cracking conditions. However, the numeri-
cal results are in good agreement with those of the proposed 
analytical approach, and average difference of less than 8% 
has been achieved. It should be noted that, all the curves 
plotted in Fig. 13 are linear due to the point that, for these 
cases, the maximum tensile stress takes place at an identical 
position on the section.

Figure 14 compares the results estimated by the Ber-
noulli–Euler assumption, proposed analytical equations, 
and numerical simulation in terms of the axial stress dis-
tribution and axial deformation for six load combinations. 
On the basis of the Saint–Venant’s principle and in order to 
avoid stress concentration, the stress distribution and axial 
deformation have been measured on sections with adequate 
distances from the two ends of the wall.

As can be seen in Fig. 14, the analytical equations exhibit 
favorable accuracy in the estimation of the values and vari-
ations of the axial stress as well as the axial deformation 
under different loadings. Furthermore, by comparing the 
analytical axial deformation with the FE results, less than 5% 
error can be observed. Similarly, corresponding error for the 
estimation of the axial stress is approximately 10%. These 
errors can be attributed to the assumption of a homogene-
ous wall structure and also employing the last assumption 
introduced in Sect. 2. The equivalent modulus of elasticity 

Fig. 12  Contours of the following: a axial stress distribution, and b axial deformation of the U-shaped RC shear wall

Fig. 13  Comparison of the cracking load curves
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Fig. 14  Axial stress distribution and deformation comparison of the Bernoulli–Euler assumption, proposed analytical method, and FE results
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Fig. 14  (continued)
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of the wall in the elastic range is estimated through the trans-
formed section analysis. It should be noted that, the shear 
wall was assumed to be symmetric in the analysis; however, 
the two flanges possess different configurations of the steel 
reinforcements. According to Fig. 14, and by recourse to 
the assumption made in Refs. [33–35], to predict the axial 
deformation and stress distribution of a RC shear wall in 
the linear region, it is reasonable to employ the equivalent 
modulus of elasticity and analyze the effects of the shear-lag, 
assuming a homogenous section before onset of cracking.

4  Discussion of the analytical results

The analytical formulation established in this study was 
demonstrated to offer favorable performance in the response 
prediction of non-rectangular RC shear walls under bi-
directional loadings. In this section, the contribution of 
the induced shear-lag and warping torsion is discussed in 
detail into the axial deformation and stress distribution of a 
U-shaped RC shear wall.

In that regard, to investigate the simultaneous effects of 
the shear-lag and warping torsion on U-shaped RC shear 
walls, the non-dimensional parameter, μs, is defined herein 
as the ratio of the maximum tensile stress stems from the 
simultaneous actions of the shear-lag and warping torsion 
to the maximum induced tensile stress due to the Ber-
noulli–Euler assumption. Figure 15 demonstrates the varia-
tion of μs for different lateral loadings applied to the section 
and different levels along the height of wall in the absence 
of the axial loading.

As shown in Fig.  8b, the lateral loadings have been 
imposed to the wall. As Fig. 15 suggests, when the lateral 

loading is applied only in x-direction, the maximum tensile 
stress experienced by the structure has been increased up to 
10% owing to the shear-lag effect. However, in the case that 
the lateral load has been applied in y-direction, due to the 
simultaneous effect of the shear-lag and warping torsion, the 
maximum induced tensile stress becoms more than twice of 
that of the Bernoulli–Euler assumption.

In what follows, the contribution of the shear-lag in addi-
tion to the warping torsion into the augmented values of 
axial stress is evaluated. It is worthy of mention that the 
degree of participation essentially depends on the load 
eccentricity, lateral load ratio, and height of the structure. In 
order to better address this point, the coefficients μsb, μsc, and 
μsd denoting, respectively, the contributions of the shear-lag 
in the x- and y-directions, and warping torsion, are defined 
herein as follows:

where �b , �c and � are given as follows:

Figure 16 depicts the plots of μsb, μsc, and μsd for differ-
ent values of ey and also lateral load ratios at z = 3 m for the 
U-shaped RC wall.

As Fig. 16a suggests, the shear-lag effect originating from 
the lateral loading in x-direction can be ignored under differ-
ent loading conditions. The shear-lag effect should be con-
sidered only when a lateral load is applied to the structure 
in x-direction. Therefore, in most cases, the exclusion of the 
shear-lag effect cannot influence the accuracy of the results.

Moreover, a comparison of Fig. 16b, c clearly indicates 
that the contribution of the shear-lag to the shear stress is 
larger than that of warping torsion when a lateral loading is 
applied at a small distance from the shear center (approxi-
mately 0.1 m in this case). However, the more  the eccentric-
ity of the load in y-direction, the more the participation of 
the warping torsion in the increased axial stress. It is worth 
noting that both the shear-lag resulting from the lateral load 
in y-direction and warping torsion have significant contri-
bution and cannot be ignored in the eccentricity range of 

(65)�sb =
�b − �b

� − �
,

(66)�sc =
�c − �c

� − �
,

(67)�sd =
�d

� − �
,

(68)�b = −E(x − xG)w
��
x
(z),

(69)�c = −E(y − yG)w
��
y
(z),

(70)� = �b + �c = −E[(x − xG)w
��
x
(z) + (y − yG)w

��
y
(z)].

Fig. 15  Variation of μs for different lateral loads and levels along the 
height of the wall
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0.1–0.5 m. Therefore, the exclusion of the above-mentioned 
components can significantly reduce the accuracy of the 
results.

Furthermore, it is required to highlight the effect of the 
shear-lag on the induced additional lateral deformation in 
the loading direction. In this regard, Fig. 17 exhibits the 
variations of the additional deformation function along the 
height of the wall under the action of six load combinations 
for the U-shaped RC wall.

Figure 18 demonstrates the variation of the rotation angle 
versus the torsional moment along the height of the struc-
ture. A comparison of Figs. 17 and 18 reveals that the gen-
eral trend of the additional lateral deformations and torsional 
moment-induced rotation are comparable.

In the following, the shear-lag effect has been highlighted 
on the drift response of the U-shaped RC shear wall exam-
ined in the current study. As the shear-lag can induce addi-
tional lateral deformation in the structure, it is important to 
consider this phenomenon in the drift response of non-rec-
tangular RC shear walls. Hence, Fig. 19 compares the drift 

values of the U-shaped wall (Fig. 8) in which the shear-lag 
effect has been included/excluded under a lateral loading 
of 100 kN. Comparing two sets of the curves plotted in this 
figure yields that the shear-lag contribution is not meaning-
ful in the elastic region; however, this effect may be more 
significant after onset of cracking.

5  Conclusion

This paper analytically investigated the simultaneous effects 
of the shear-lag and warping torsion on the behavior of non-
rectangular RC shear walls. First, a non-rectangular wall 
with an arbitrary geometry was subjected to the axial as well 
as the lateral loading, and torsional moment. Thereafter, the 
axial deformation and stress distribution were formulated 
within the elastic region with emphasis on the contribution 
of the shear-lag in conjunction with the warping torsion. In 
the next step, to validate the analytical equations established 
in this study, FE simulations of a U-shaped RC shear wall 

Fig. 16  Variations of: a μsb, b μsc, and c μsd for different values of ey and lateral load ratios at z = 3 m
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were carried out in the ABAQUS software. The following 
findings can be drawn through comparing the analytical for-
mulations with the numerical modeling:

1. The Bernoulli–Euler assumption was not capable to 
accurately estimate the axial stress distribution of the 
section, to an extend that, the cracking load was pre-
dicted to be up to twice as the case in which the simul-
taneous effect of shear-lag and warping torsion has been 
considered.

2. Comparison between the values of cracking load 
obtained through the analytical and numerical 
approaches indicated an average of 10% error.

3. The results for the axial deformation and stress distri-
bution reveal that the discrepancy between analytical 
and computational simulation is approximately 5 and 
10%, respectively. The reason behind these disparities 
can be attributed to the heterogeneity of RC members 

Fig. 18  Variation of the rotation angle due to the applied torsional 
moments

Fig. 19  Shear-lag effect on the drift response of the U-shaped shear wall: a x-direction and b y-direction

Fig. 17  Additional lateral deformation due to the shear-lag resulting from the lateral loading in a x-direction and b y-direction
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due to the presence of steel reinforcements. In addition, 
the asymmetric configuration of the reinforcements was 
not incorporated into the basic assumptions of the ana-
lytical equations.

4. The findings of this study demonstrate the inevitable 
contribution of concurrent effects of the shear-lag and 
torsional warping on the response of RC shear walls with 
non-rectangular flanged sections. In addition, ignoring 
the cumulative effects of the above-mentioned param-
eters in the study of these structural elements, particu-
larly in RC shear walls with asymmetric cross-section, 
can offer inaccurate and unreliable results in many cases. 
Therefore, due to the widespread usage of T-, U-, and 
L-shaped sections in practice, expressions provided in 
the Appendix can be employed in the preliminary design 
of RC shear walls possessing non-rectangular flanged 
sections.

Moreover, further scrutiny on the analytical formula-
tions for the U-shaped section examined in the current study 
divulges the following:

1. The shear-lag and warping torsion could significantly 
alter the stress distribution of non-rectangular RC walls, 
and the exclusion of those might lead to the underesti-
mation of the maximum tensile stress by up to half.

2. Depending on the load eccentricity, the participation of 
the shear-lag and warping torsion to the axial stress dis-
tribution could be different. For the range of the eccen-
tricities considered in this study, both contribution of the 

shear-lag and warping torsion was significant and cannot 
be ignored in the analysis of U-shaped RC walls.

3. Consideration of the shear-lag can alter the axial defor-
mation as well as the stress distribution of the structure, 
and also the lateral deformations, and in some cases, the 
degree of modification was remarkable.

4. The additional lateral deformations introduced by the 
shear-lag before cracking has insignificant effect on 
the drift response of U-shaped RC walls; however, it is 
expected to be more crucial in the inelastic region.

Finally, as there are no specific recommendations in cur-
rent design codes, wherein the simultaneous impacts of 
the shear-lag and torsional warping have been taken into 
account, recourse can be made to adopt a numerical model 
employing the commercial FE tools in order to provide more 
accurate response assessment in the analysis and design of 
RC shear wall with non-rectangular flanges sections.

Appendix

The geometrical properties of a flanged RC shear wall with 
an arbitrary section are listed in Table 4. Moreover, as 
RC shear walls with T-, U-, and L-shaped sections are 
more commonly utilized in comparison with other non-
rectangular sections, Tables 5, 6, 7 respectively summa-
rize the coefficients required for computation of the axial 
deformation and stress distribution of the above-described 
sections.
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Table 4  Coefficients of a 
general flanged section

*In (x̂, ŷ) coordinate system

Section Parameter Expression

General section A (h − tft − tfb)tw + (bftL + bftR + tw)tft + (bfbL + bfbR + tw)tfb

xG(bt)* (bftL+bftR+tw)(bftR−bftL)tft+(bfbL+bfbR+tw)(bfbR−bfbL)tfb

2A
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12
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3
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3
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]
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(
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2
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)2
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(
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;
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Table 5  Coefficients of T-shaped sections

Section Parameter Expression

T-section A 2btf + htw

xG(bt) 0

yG −btf (h − tf )∕(2btf + htw)

ht htw(h − tf )∕(4btf + 2htw)
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)∕(4btf + 2htw)

Ix (4b2t4
f
+ 8bh3tf tw − 12bh2t2

f
tw + 8bht3

f
tw + h4t2

w
)∕(24btf + 12htw)

Iy (tf (2b + tw)
3)∕12 + (t3

w
(h − tf ))∕12

J (t3
f
(2b + tw))∕3 + (t3

w
(h − tf ))∕3

�x 0

�y (4b2t4
f
+ 8bh3tf tw − 12bh2t2

f
tw + 8bht3

f
tw + h4t2

w
)∕(6htw(h − tf )(2btf + htw))

�t 0

�y ((4btf + 2htw)(6btf + 3htw)(4b
2t4
f
+ 8bh3tf tw − 12bh2t2

f
tw + 8bht3

f
tw + h4t2

w
))

∕(4bh2tf t
2
w
(h − tf )

2(12btf + 6htw))

Iwb (tf (2b + tw)
3)∕12 + (tw3(h − tf ))∕12

Iwc (8b4t8
f
+ 32b3h3t5

f
tw − 48b3h2t6

f
tw + 52b3ht7

f
tw + 32b2h6t2

f
t2
w
− 96b2h5t3

f
t2
w
+ 190b2h4t4

f
t2
w

−156b2h3t5
f
t2
w
+ 72b2h2t6

f
t2
w
+ 28bh7tf t

3
w
− 42bh6t2

f
t3
w
+ 33bh5t3

f
t3
w
+ 3h8t4

w
)

∕(180bh2tf t
2
w
(h − tf )

2)

Ieb 0

Iec 8�2
y
h2
t
tf ∕3b

x̂c 0

ŷc −(h − tf )∕2

Cw (2b − tw)
3t3
f
∕144 +

(
h −

tf

2

)3

t3
w
∕36



 Archives of Civil and Mechanical Engineering (2023) 23:138

1 3

138 Page 22 of 25

Table 6  Coefficients of U-shaped sections

Section Parameter Expression

U-section A 2btf + htw

xG(bt) btf (b + tw)∕(2btf + htw)
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