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Abstract
The main purpose of the research, presented in this publication, was to develop methodology for the construction of predictive 
models which allow the selection of material production parameters for the material-technological conversion process. The 
development of prototype modules based on information-decision system allows an initial assessment of the level of feasibil-
ity of undertaking this type of operation. Algorithms 1, 2, 3 presented in the article were used to complete the missing data. 
The result of the algorithm enabled the creation of a data table that specifies the operation of the predictive models indicated 
in chapter 3 of this article. Entire work is presented with regard to the background of the ADI cast iron production process 
to locate the requirement where to apply the developed methods in the field of predictive algorithms and data completion 
algorithms. On the basis of developed methods and predictive algorithms, trial castings were operated.

1  Introduction

Predicting the mechanical properties of foundry products 
using machine learning methods has existed as a long field 
of machine learning itself. Already in one of the first sci-
entific papers on this topic [1] models in which more than 
one property is predicted experience problems with miss-
ing data for one of them. This problem, together with an 
example of a solution, is presented in the paper [2]. To fill 
in the missing values, one should find a subset of samples 
in which, for the dimension with missing data, there is a 
highly correlated other dimension, on the basis of which 
it is possible to determine the missing value, e.g. by linear 
regression. The paper concludes that the advantage of this 
approach is the possibility of obtaining new limit values for 
the data set. In case of no correlation between the attributes, 
the missing value can be computed by comparing selected 
records from the set containing the full data. One of the 
first works, which addressed the problem of predicting the 

mechanical properties of ADI, was work [3]. This paper 
describes various models based on fuzzy-based logic, which 
were implemented to predict the ADI impact strength from 
the temperature and duration of the ausferritization process, 
with the assumption that other parameters were constant. 
The dataset, which the model was trained on, contained only 
28 samples, of which 21 were selected as the training set and 
the remaining 7 samples, as the test set. The best result was 
obtained using the approach based on clustering, in which 
the coefficient of correlation between predicted and actual 
values was 0.9. The next paper [4] shows the prediction of 
ADI hardness using neural networks. It is the first of the 
works found in the literature addressing this problem. The 
use of this approach, model, based on Bayesian neural net-
works, was developed. These networks were built using one 
hidden layer, for which different numbers of neurons from 2 
to 20 were tested and different regularization constants (one 
related to each input, one with biases and one for weights 
connected to the output). Various numbers of the best net-
work configurations were also tested. The network learning 
process was carried out using a set of 1822 samples col-
lected from the literature. The set was randomly divided into 
training and testing in a 50/50 proportion. The input data 
for all networks was the chemical composition of the heats, 
their heat treatment parameters and the presentation of the 
ausferritization time using the logarithm of the time value 
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in seconds. Such an approach was developed in the work on 
the determination of the content of retained austenite in ADI 
[5]. The network input dimensions have been normalized 
to the range [− 0.5; 0.5]. Research has shown that the more 
neurons in the hidden layer, the lower noise level. Different 
regularization constants (the results of different configura-
tions are shown with pluses) also had a minor impact. Based 
on the aforementioned graph, it can be determined that the 
error value of the best models oscillates between 1.5 and 2. 
The network input dimensions have been normalized to the 
range [− 0.5; 0.5]. Research has shown that the more neu-
rons in the hidden layer, the lower the noise level. Different 
regularization constants (the results of different configura-
tions are shown with pluses) also had a minor impact. Based 
on the aforementioned graph, it can be determined that the 
error value of the best models oscillates between 1.5 and 2.

The construction of hardness predictive models has also 
been presented in [6–8], where the papers [7] and [8], by 
Savagounder, Patra and Bornand, were published in parallel, 
based on the data that was published presented in [6]. The 
aforementioned dataset contains the results obtained from 96 
samples varied in terms of chemical composition and heat 
treatment parameters. It was prepared on the basis of ADI 
hardness tests following the procedure thoroughly described 
in this article. In the work of Hamid and Hamed PourAsiabi 
et al. [6], the predictive model was developed on the basis 
of a neural network, in which the input layer consists of the 
percentage of copper and molybdenum as well as the ausfer-
ritization temperature and time. The hidden layer consists 
of 5 neurons in which the activation function is the tangen-
soidal function. The data set was divided into a training set 
and a test set in the proportion of 70/26. The mean square 
error method was used to minimize the lattice error, and the 
Levenberg–Marquardt algorithm, based on the second-order 
derivative of the error function, was used to obtain optimal 
weights. The input dimensions were normalized to values in 
the range [− 1,1]. The results of the trained neural network 
tests were presented using the correlation coefficient, the 
value of which was 0.9912. Such a high result proves a well-
trained network and the ability to correctly predict hardness.

2 � Materials and methods

2.1 � Experimental procedure

The article uses heuristic algorithms to optimize ADI pro-
duction parameters. These are existing algorithms, but so 
far have not been used in the aspect presented in the article. 
These are the Hill Climbing Algorithm presented in [9], the 
Tabu Search Algorithm described in [10] and Metropolis 
Search presented in [3]. In the literature, you can find exam-
ples of the use of heuristic algorithms in the optimization 

of the production process. In the work [11], Pareto opti-
mization was applied using genetic algorithms based on a 
data set. The subject of optimization covered the mechanical 
properties of micro-alloyed steel, such as tensile strength, 
elongation and yield point. For optimization purposes, mod-
els of mechanical properties based on evolutionary neural 
networks (EvoNN) were created. The work presents multi-
criteria optimization based on the optimization of sets of 
criteria relating to the maximization of tensile strength and 
yield point, maximization of yield point and elongation, 
maximization of yield point and minimization of the ratio 
of yield point to tensile strength. The above three optimiza-
tion tasks were carried out with the use of a multi-criteria 
genetic algorithm. Pareto solutions for each of the optimiza-
tion tasks differed significantly from the solutions based on 
the data used to build the models. To test this very important 
observation, an alloy was prepared in close proximity to the 
composition obtained by this method, which, to the knowl-
edge of the researchers, has not been tested by anyone so far. 
The samples from the prepared alloy were tested and their 
properties (within the limits of experimental errors) were 
quite consistent with the Pareto front. Researchers estimated 
that the creation of steel with better properties than any of 
the elements in the dataset would be impossible to achieve 
by performing the experiments alone, while this combina-
tion was achieved by multi-criteria optimization. Another 
work on the optimization of the production process is the 
work of the author, R. Radis et al. [12], in which researchers 
have taken up the problem of optimizing the geometry of 
the feeder used to pour a Pelton turbine bucket. The created 
objective function was developed based on the heat trans-
fer requirements. In addition, 4 different requirements have 
been developed for the solutions returned by the optimiza-
tion algorithms. 4 different values (H, R, r, l) were opti-
mized using 4 different meta-heuristic algorithms: genetic, 
ant, simulated annealing and particle swarm optimization. 
The results obtained for each of the algorithms turned out 
to be very similar to each other. On their basis, the feeder 
was modelled for which numerical simulations were carried 
out to confirm the correctness of the solution. The required 
quality for a given order is specified in the EN-PN 1564: 
2012 standard [13]. The diagrams presented in Fig. 1 show 
how the production process in the foundry looks like. The 
execution of production orders starts with a client sending 
in request for quotation by the client, which includes the 
following elements:

•	 technical drawing, and on it:
•	 workpiece weight,
•	 roughness,
•	 alloy grade,
•	 applied standards, deviations.
•	 number of pieces/elements,
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•	 expected completion time,
•	 conditions of receipt,
•	 the scope of machining,

The focus was on:

•	 weight of the detail,
•	 alloy grade,
•	 applicable standards,
•	 number of pieces of a detail.

The above elements were selected being directly related 
to production costs and constraints that should be addressed 
during decision process. Before starting production, an offer 
is prepared based on an inquiry, which stems from:

•	 analysis of the processing capacity,
•	 analysis of the constructor and / or technologist or 

resources at the disposal of the foundry, enabling the 
execution of the casting in accordance with the guide-
lines and the provided drawing,

•	 cost estimation.

As part of the planned solution, the following stages of 
the production process will be supported:

•	 planning process → collecting information about the 
detail to be made,

•	 charge preparation process → determination of the wt.% 
of elements in the cast alloy,

•	 austenitization, austempering → process temperatures 
and times.

2.2 � Model

To reduce the number of trials related to the launch of the 
production of new castings, there is a need to create a predic-
tive model of the planned mechanical properties on the basis 
of the selected extraction method and chemical composition. 
The task of this model will be to predict the mechanical 
properties of the planned casting based on: ˙

•	 chemical composition of the casting, (elements defined 
as percentages have been selected)

•	 casting thickness (value in millimeters)
•	 heat treatment parameters:
•	 austenitization temperature (degrees Celsius),
•	 austenitization time (minutes),
•	 austempering temperature (degrees Celsius),
•	 austempering time (minutes)

Fig. 1   Diagram of the ADI foundry production line
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The values predicted by the model will be: ´

•	 UTS - tensile strength [MPa], ´
•	 YS - yield strength [MPa], ´
•	 A - elongation [%], ˙
•	 HB - Brinell hardness [HB], ´
•	 K - impact strength [J].

The model was designed on the basis of ADI data.
The data needed for the model comes partly from experi-

ments done as part of the work carried out at the former 
Foundry Research Institute in Kraków (currently the 
Łukasiewicz Research Network -Kraków Institute of Tech-
nology) and at the Bydgoszcz University of Science and 
Technology. Data was also collected from articles published 
in recognized scientific and trade journals. It is problem-
atic that in the literature sources, the test results are mostly 
presented as tables showing how the given melt composi-
tions and how their heat treatment influenced the mechanical 
properties. Some of the articles, which contain a very exten-
sive cross-section of various alloys and machining param-
eters, present only data in graphs, which makes it unhelpful 
to aggregate data in one place. In some cases, not complete 
data has been provided.

It has been agreed that the following information will be 
collected for the data set:

•	 chemical composition of the melt (percentage of ele-
ments):

•	 carbon (C),
•	 silicon (Si),
•	 manganese (Mn),

•	 magnesium (Mg),
•	 copper (Cu),
•	 nickel (Ni),
•	 molybdenum (Mo),
•	 sulfur (S),
•	 phosphorus (P),
•	 vanadium (V),
•	 chromium (Cr).
•	 carbon equivalent (CE) - calculated as [13]: CE = % 

C + 0: 33 (% Si + % P),
•	 heat treatment parameters:
•	 austenitization temperature and time (aust_temp, aust_

time),
•	 ausferitization temperature and time (ausf_temp, ausf_

time).
•	 mechanical properties:
•	 UTS,
•	 YS,
•	 A,
•	 HB,
•	 K
•	 casting thickness (mm),
•	 mechanical properties of the alloy in as-cast condition 

(before heat treatment).

Statistics were developed describing the number of arti-
cles analyzed, records collected, and records rejected on the 
basis of a negative assessment of specialists.

Statistics:

•	 number of collected articles / research papers: 66,

Fig. 2   Statistics of mechanical 
properties
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•	 number of records collected (without division into 
mechanical properties): 941 (including 252 records 
rejected),

•	 number of complete records (including all mechanical 
properties, without rejected ones): 137,

•	 number of records collected (without rejections and with 
division into mechanical properties): 1981,

•	 number of unique alloys: 94,
•	 number of missing values: 1464 (42% of all possible val-

ues for mechanical properties in the data set).

The statistics of the records collected, broken down by 
mechanical properties, are shown in Fig. 2. It shows that for 
two mechanical properties (yield strength and impact tough-
ness), the number of collected data in relation to all records 
is less than 50%. These data were the rarest in the found 
works. The most common data turned out to be hardness.

The method for determining the missing values is pre-
sented in [2]. A significant problem related to the data 
published in the articles was also the fact that the hardness 
measurement method was presented in various scales, i.e. 
the Brinell hardness scale, the Rockwell hardness scale and 
the Vickers hardness scale. Due to the majority of data pre-
sented in the form of the Brinell scale, data in other scales 
were converted to this scale. Impact strength turned out to 
be an additional problem, as it is also represented by two 
different markings:

•	 K–impact strength measured on unnotched samples,
•	 KV–impact strength measured on samples with a V–

notch.

Due to a lack of additional information on how these two 
values are related (no data describing the impact toughness 
for both notched and unnotched samples at the same time), 
it was assumed on the basis of the expert knowledge that 
K = 11 kV based on the tables in PN-EN 1564: 2012 stand-
ard. Due to the greater share of notch toughness records for 
unnotched specimens, the toughness records measured on 
notched specimens were converted to unnotched specimen 
values using the relationship indicated. The data found in 
the articles were also analyzed. Charts have been prepared 
for each of the dimensions for better analysis. In the case of 
the results for the chemical composition, there are outliers 
in every dimension except for copper and nickel. In most 
cases, these are small deviations from the average value in 
a given dimension, so it can be concluded that these are the 
ranges of values that are not well covered. However, there 

are dimensions where these deviations are very large, which 
may indicate errors in the articles from which the data was 
used from. An additional disadvantage of removing outliers 
in the case of chemical composition would be throwing away 
a significant number of records from the set, as there are on 
average more than 9 records for each melt. In the case of 
diagrams for dimensions describing thermal treatment, the 
austenitizing temperature is the dimension that is striking. 
The value of this dimension fluctuates around 900 degrees 
Celsius, as it is the standard temperature for the austenitiza-
tion process. Values shown as outliers have been deliberately 
left in the dataset to investigate how other values of this tem-
perature will affect the mechanical properties. A similar situ-
ation occurs in the dimension describing the ausferritization 
temperature, there are 3 values that differ significantly from 
the rest of the data, but they were also preserved in the data 
set. The outliers can be seen in the dimensions of K (impact 
toughness) and in the dimension describing the thickness of 
the casting. Outliers for the impact dimension were taken 
from one study which accurately presented the data and 
there is no indication that they could be incorrect. For the 
thickness dimension, the outliers result from the fact that 
25 mm thick cast ingots were tested in most of the works.

2.3 � Analysis of correlations occurring in a data set

To better analyze the data, using the pandas library a cor-
relation matrix was prepared. It was generated between the 
dimensions describing the chemical composition and heat 
treatment parameters and the mechanical properties. The val-
ues of the correlation matrix were mapped to absolute values, 
and such a matrix with absolute values was used as an argu-
ment of the heatmap function from the seaborn library, which 
returns a heatmap based on the value in the matrix passed. 
The correlation matrix (Fig. 3) has not been presented for 
all dimensions due to their large number and the willing-
ness to investigate the correlation between the dimensions 
describing the relationships between the production process 
and mechanical properties and mechanical properties. The 
values visible in the matrix are the absolute values to see the 
dimensions most correlated with each other. The matrix will 
be used to analyze the correlation in the data set.

The conducted analysis indicates the possibility of sup-
plementing the missing data using other dimensions for 
which values exist. The correlation matrix from Fig. 2 
shows:
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•	 Strong correlation between the dimensions of UTS and 
YS (0.91),

•	 The dimensions of UTS and YS are also highly correlated 
with the HB dimension (0.78 and 0.77),

•	 The dimension describing the ausferritization tempera-
ture is to some extent correlated with the dimensions 
UTS, YS, A, HB (approx. 0.6),

•	 The K dimension describing the impact toughness looks 
less significantly correlated with the other dimensions 
describing the physical properties.

The results of the application of correlation have been 
confirmed by the expert knowledge in this area. The con-
clusions drawn during the correlation analysis clearly show 
that the dimensions UTS, YS, A, HB, ausf_temp are signifi-
cantly correlated with each other and it can be assumed that 
it is possible to supplement missing data in these dimen-
sions using other existing data. Due to the low degree of 
correlation of the K dimension with other dimensions, it 
will be omitted for the period of supplementing the above-
mentioned dimensions.

2.4 � Completing the missing data

The problem of "missing data" has been discussed in [2]. 
Based on this diagram, assumptions were made for the own 
method of completing the missing data:

•	 the size of a subset of samples should be specified, e.g. 
10 samples,

•	 there may be more than one correlated dimension, 
the number of such dimensions that will be taken into 
account should be specified, e.g. 2 dimensions,

•	 due to the large dispersion of data in the set, the subset of 
samples should be selected in such a way that the data in 
the uncorrelated dimensions and dimensions not related 
to the mechanical properties of cast iron are their closest 
neighbors,

•	 the use of linear regression will be adequate for subsets 
with a very high correlation coefficient, i.e. above 0.8, 
for subsets with a smaller coefficient, another method 
of determining the value should be used (e.g. decision 
trees),

•	 the higher the correlation coefficient in a given subset and 
the samples from the subset are as close as possible to the 
sample for which the missing value will be completed, 
the more likely it will be that the determined value will 
be correct.

•	 Additional assumptions about the refilling method:
•	 due to the different number of missing data and different 

degrees of correlation between the dimensions with miss-
ing data, the user should specify the order in which the 
dimensions will be completed (e.g. in the first 3 places 
there should be the most numerous dimensions that are 
strongly correlated with each other - UTS, HB, YS),

Fig. 3   Matrix of correlation of all dimensions to dimensions describing mechanical properties
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•	 it is assumed that supplementing the missing values may 
be performed with the use of samples for which the val-
ues were completed in the earlier stages of supplementa-
tion,

•	 it will be advantageous first to complete the samples for 
which the correlation coefficient in the found subsets is 
higher than in the remaining ones—for this purpose it 
is assumed that at a given stage of data completion only 
those samples for which the correlation coefficient for the 
subset will be higher or equal to the threshold will apply 
at a given stage of supplementation,

•	 due to the possibility of using supplemented data when 
supplementing others, it is assumed that the completion 
process for a specific correlation coefficient threshold 
will be carried out as long as there are samples with sub-
sets that meet a given threshold (this approach will allow 
the use of samples supplemented in the previous steps 
that will meet a given threshold),

•	 due to the expected different correlation coefficients in 
the subsets, it is assumed that samples with high corre-
lation coefficients among the subsets will be completed 
first, and then those with smaller ones,

•	 due to the fact that for some data the subsets found may 
have very small correlation values, it is assumed that the 
maximum number of steps of data completion is set, after 
which the completion process will be interrupted.

•	 On the basis of the above, a method of supplementing the 
missing values in the data set describing the mechanical 
properties of ADI was prepared. In order to complete the 
missing data, the user should determine:

•	 order of completed dimensions,
•	 the initial threshold of the correlation coefficient (men-

tioned in the assumptions),
•	 number of samples in the subset,
•	 the boundary of the correlation coefficient to which the 

linear regression will be applied,
•	 the number of dimensions from which the missing value 

will be predicted, a machine learning algorithm used out-
side of linear regression.

The method of completion consists in finding a subset of 
samples that are the closest neighbors of the sample to be 
replenished for dimensions identified as uncorrelated and not 
related to the physical properties of cast iron. Determination 

of the missing value consists in predicting this value using a 
model built from the data in the subset found. First, the sam-
ples for which the average correlation coefficient in a defined 
subset will exceed a given threshold are completed. The 
threshold, together with the lack of change in the number 
of missing values, is decreased by a fixed value, e.g. 0.05. 
Samples up to a fixed value of the correlation coefficient in 
a subset (e.g. 0.8) are completed with linear regression, then 
another machine learning algorithm is used, e.g. a decision 
tree. For a given threshold of the correlation coefficient, a 
number of steps are taken to supplement the missing values 
by using the data that has been completed in the previous 
steps. Lowering the threshold is when the number of miss-
ing data does not decrease. The finalization of completion 
occurs when all missing values have been supplemented or 
the number of steps exceeds the predetermined maximum 
number of steps.

The mathematical model and flow chart of the algorithm 
is presented in three parts, the first of which (Algorithm 1) 
presents the main steps of the algorithm. Input data for 
Algorithm 1:

•	 X - data set,
•	 order - order of completed dimensions,
•	 corr_cutoff_bound - initial correlation threshold,
•	 req_neighs - number of samples in the subset,
•	 linear_reg_to - the boundary of the correlation coefficient 

to which the linear regression will be applied,
•	 amount_of_feats_to_predict - number of dimensions 

based on which the missing value is predicted,
•	 max_steps - the maximum number of steps,
•	 next_predictor_provider - an object used to return the 

machine learning algorithm used after crossing the limit 
of using linear regression. ˙

Result: a set of data supplemented in the dimensions 
specified by a given order.

Auxiliary functions and complex lines of code used in 
Algorithm 1:

•	 line 2 - get_missing_values_count function that takes a 
set of samples and returns the total number of missing 
values in the UTS, YS, HB, A, K,

•	 line 10 is responsible for calling the fill_missing proce-
dure described in algorithm 2
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Description of the input data of the fill_missing procedure 
(algorithm 2):

•	 row–row from the set of X samples, in which the missing 
value will be completed

•	 feature–name of the currently completed dimension (e.g. 
UTS),

•	 amount_of_feats_to_predict,
•	 req_neighs, • corr_cutoff - the current threshold of the 

value of the correlation coefficient,
•	 linear_reg_to,
•	 next_predictor_provider,

Description of the helper functions and more complex 
lines of code used in Algorithm 2: ˙

•	 line 4–get_features_with_null function accepting the cur-
rently considered row and returning a set of all dimen-
sions from this row that lack values,

•	 line 7–the most_corr_feats function taking values of cor-
relation coefficients for the dimension under considera-
tion (feature), constant amounts_of_feats_to_predict and 
a set of dimensions with missing values and returning 
the n most correlated dimensions to the dimension under 
consideration (feature), where n is equal to amounts_of_
feats_to_predict,

•	 line 11–the remove_features_with_nulls function that 
takes a sample set of X and a set of not_correlated dimen-
sions and returns a set of not_correlated dimensions with 
dimensions with missing values removed,

•	 line 13 and 14–the min_max_scaler function returning 
the scaler object and when calling the scale function on 
this object, it returns a set of samples X 'scaled to the 
value [−1, 1],

•	 line 15–overwriting the feature component of the row 
from the set of row samples with the value returned by 
the predict_value function, which was presented in algo-
rithm 3.
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Description of the input data of the function ´ predict_
value (algorithm 3):

•	 X '- a set of scaled samples with uncorrelated dimen-
sions,

•	 not_correlated–a set of uncorrelated dimensions,
•	 correlated–a set of correlated dimensions,
•	 scaler–an object that enables scaling values to the range 

[−1, 1], ´
•	 req_neighs
•	 amount_of_feats_to_predict
•	 corr_cutoff - the current threshold of the value of the 

correlation coefficient,
•	 next_predictor_provider,
•	 linear_reg_to,
•	 Description of the helper functions and more complex 

lines of code used in Algorithm 3: ˙

•	 line 4–find_nearest_neighs function matching the set X ', 
the scaled vector of values from the textitrow line for the 
not_correlated dimension set and the number of neigh-
bors to find,

•	 line 5–the remove_neighs_with_nulls function that takes 
a set of nns closest neighbors and a set of correlated 
dimensions and returns only those neighbors for which 
there are values in all correlated dimensions,

•	 line 9–features_above_corr_cutoff function taking the 
vector of correlation coefficients for the feature dimen-
sion from the correlation matrix corr_matrix, constant 
amount_of_feats_to_predict and constant corr_cutoff and 
returning the n most correlated dimensions that meet the 
condition of a correlation coefficient greater than or equal 
to corr_cut_feats_ amount_of redict_ (n).
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The implementation of the described algorithm has 
been supplemented with the collection of information on 
the method of completing the missing data:

•	 dimensions used to build a subset of the so-called sample 
neighbors,

•	 dimensions selected as correlated in the subset on the 
basis of which the model for prediction is built,

•	 correlation coefficients of the above-mentioned dimen-
sions to the dimension in which the missing value was 
present,

•	 minimum and maximum value of the dimension with the 
missing data in the subset of neighbors,

•	 indexes of samples from a subset of neighbors that have 
been selected to build the model,

the number of the step where the missing value was 
predicted.

3 � Results and discussion

3.1 � Study of the data completion algorithm

The tests were carried out on parameters with the following 
values:

•	 amount_of_feats_to_predict - [1, 2],
•	 corr_cutoff_bound - [0.85, 0.9, 0.95],
•	 linear_reg_to - [0.7, 0.85],
•	 next_predictor_provider - ['lin', 'dec_tree'] (where 'lin' 

means linear regression,

'Dec_tree' means a decision tree),

•	 o r d e r – [ [ ‘ H B ’ , ‘ U T S ’ , ‘ Y S ’ , ‘ A ’ , ‘ K ’ ] , 
[’YS’,’HB’,’UTS’,’K’,’A’]],

•	 req_neighs - [5, 10, 20].
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In the case of the max_steps parameter, it was decided 
that it would not be tested with different values. For each of 
the runs, it was set to the value of 15. This was to limit the 
time needed to run all parameter configurations. From the 
combination of all possible parameter values, 144 unique 
sets were obtained.

3.2 � Method of testing the quality of supplemented 
data

To check how a given configuration of parameters will 
behave when completing the data set, validation sets were 
randomly selected for each of the dimensions of mechanical 
properties with the size of 5% of the available values in a 
given dimension. The extraction was carried out carefully to 
leave each sample with at least one value in the dimensions 
of the mechanical properties (UTS, YS, A, HB, K). To clar-
ify the method of selecting data, a table has been prepared 
with sample data for dimensions of mechanical properties. 
The values are selected in the order of the columns.

Summary of validation set sizes:

•	 UTS–21 values,
•	 YS–15 values,
•	 A–21 values,
•	 HB–18 values,
•	 K–11 values.

After extracting these values, the dataset passed to the 
algorithm contains 1550 missing values. The quality of the 
obtained restorations was measured using the following 
metrics:

•	 R2- coefficient of determination,
•	 MAPE - mean percentage absolute error,
•	 number of missing values in the entire data set,
•	 percentage of values missing from validation sets.

The choice of the R2 and MAPE metrics was dictated by 
the willingness to present the results as an average value 
for each of the supplemented dimensions of mechanical 
properties.

3.3 � Scheme for presenting the results

The results were presented in the form of a ranking of the 
best configurations in terms of the metric under considera-
tion. Each of the rankings contains 15 different configura-
tions of the parameters of the completion algorithm. To 
limit the width of the column for the 'order' parameter, value 
[‘HB’,‘UTS’,‘YS’,‘A’,‘K’] has been replaced with a value’1’, 
and value [‘YS’,‘HB’,‘UTS’,‘K’,‘A’] has been replaced with 

a value’2’. Additionally, due to long parameter names, map-
ping has been introduced.

3.4 � Building a training and test set

There is a need to build a model that will represent the 
solution space of the described problem. However, it was 
not possible to build a common model for all mechanical 
properties due to undertaking this part of the implementa-
tion before completing the data completion process, which 
had not gone according to plan. Independent models were 
built for each of the mechanical properties using different 
datasets that shared common parts due to the presence of 
records with all properties. Machine learning algorithms are 
successfully used to build such models. In the case under 
consideration, regression models that model relationships 
between two or more variables were used.

Due to the small number of samples (689) in relation to 
the number of dimensions (14), it is not possible to draw a 
random set of samples for the test set without losing impor-
tant information from the training set. To prevent this, five-
fold cross-validation was used with the same proportion 
of samples from each class. Due to the fact that the output 
dimensions are numbers, 5 classes (1, 2, 3, 4, 5) have been 
created, which divide the values into 5 sets of similar size, 
by determining the range of values included in a given set. 
The ranges of values for each class for each of the mechani-
cal properties were as follows:

UST: 1 − [USTmin, 960), 2 − [960, 1045), 3 − [1045, 
1127), 4 − [1127, 1264), 5 − [1264, USTmax], YS: 
1 − [Rp02min, 696), 2 − [696, 813), 3 − [813, 900), 4 
− [900, 1100), 5 − [1100, YSmax], HB: 1 − [HBmin, 286),2 
− [286,325), 4 − [370,415), 5 − [415,HBmax], A: 1 − [Amin, 
2.7), 2 − [2.7,4.5),3 − [4.5,6.5), 4 − [6.5,8.4), 5 − [8.4,A], 
K: 1 − [Kmin,52), 2 − [52,75), 3 − [75,90), 4 − [90,110), 
5 − [110,Kmax].

The model training process was carried out as follows: 

•	 training of each model was carried out using cross-vali-
dation, ˙

•	 for each of the algorithms, different values of parameters 
controlling their operation have been selected.

•	 parameter tuning was performed by training models for 
each permutation of algorithm parameters,

•	 metrics used to evaluate the quality of the trained models: 
´

•	 MAE (mean absolute error),
•	 R2 (determination coefficient).
•	 the model, after the evaluation of the metrics, is trained 

on the test set,
•	 one best model for each of the metrics was used for com-

parative research.
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The tests were carried out on parameters with the fol-
lowing values.

•	 amount_of_feats_to_predict—[1, 2],
•	 corr_cutoff_bound—[0.85, 0.9, 0.95],
•	 linear_reg_to—[0.7, 0.85],
•	 next_predictor_provider—[’lin’,’dec_tree’] (where’lin’ 

denotes linear regression,’dec_tree’ stands for a decision 
tree),

•	 order—[['HB', 'UTS', 'YS', 'A', 'K'], ['YS', 'HB', 'UTS', 
'K', 'A']],

•	 req_neighs—[5, 10, 20].

In the case of the max_steps parameter it was decided 
that it would not be tested with different values. For each of 
the runs, it was set to the value of 15. This was to limit the 
time needed to run all parameter configurations. From the 
combination of all possible parameter values, 144 unique 
sets were obtained.

3.4.1 � Model training with a machine learning algorithm

The Random Forest algorithm belongs to the 'ensemble 
learning' type methods, i.e. those that generate many sim-
ple models and aggregate their results. In the case of this 
algorithm, these simple models are decision trees. This 
algorithm was proposed by Breiman [14]. It consists in 
adding an additional layer of randomness to the Bagging 
algorithm [15]. In addition to constructing each tree with a 
different bootstrap data sample, random forests change the 
way classification or regression trees are constructed. In 
decision trees, each node is split using the best split of all 
the variables. In a random forest, each node is split using 
the best of the subset of the predictors randomly selected 
on that node. This somewhat counterintuitive strategy 
turns out to work very well when compared to many other 
classifiers, including discriminant analysis, support vector 
machines, and neural networks, and is resistant to over-
fitting [14]. The Gradient Boosting algorithm is another 
example of an 'ensemble learning' method. It is one of the 
best techniques for building predictive models. Gradient 
Boosting is a generalization of the AdaBoost algorithm 
[9]. It was created and described by Friedman [16] in 
1999. Currently, the latest version of Gradient Boosting 
is XGBoost (Extreme Gradient Boosting), which was pro-
posed in 2016 by Tiangi Chen [17]. This is again a method 
that uses many simple models that are decision trees and 
the final result depends on all of them. XGBoost uses an 
incremental strategy because it is a simpler and less time-
consuming task than training all trees at once. An innova-
tion in relation to Friedman's algorithm is the introduction 
of regularization. It was used as a penalty for having too 

many leaves in the decision tree. This is how the complex-
ity of the model is controlled. The Multilayer Perceptron 
[18] is a fully connected neural network of the feed-for-
ward type, which is, in fact, a double-decker version of a 
single-layer perceptron. Unlike single-layer perceptrons, 
it is used to solve nonlinear problems. The activation 
functions defined in the layers enable networks based on 
multi-layer perceptrons to derive a non-linear model. Each 
multilayer perceptron consists of at least 3 layers. The first 
is the input layer that takes a vector of input values. The 
next layer is a hidden layer through which information 
passes from the input layer to the next hidden layer or to 
the output layer. The last layer, called the output layer, 
gives us the values predicted by the network. Training of 
such a network is performed using the error backpropaga-
tion and stochastic gradient slope algorithm 7.

The Random Forest algorithm, in the case of the imple-
mentation from the scikitlearn library, has many param-
eters that affect its operation.

Model training with the Gradient Boosting algorithm 
was carried out in the same way as the model training with 
the Random Forest algorithm.

Algorithm parameters used during the tests:

•	 learning_rate,
•	 subsample - a coefficient determining what proportion of 

training samples will be randomly selected for training 
before the trees grow,

•	 max_depth - maximum tree depth,
•	 eval_metric - metric used to evaluate the model,
•	 booster - the type of booster used. ˙

The combination of all possible parameters creates 216 
unique sets. As in the previous algorithm, the random_
state parameter was set with one value for each training 
process.

To explore the parameter space, the GridSearchCV tool 
was used again.

The Keras interface from the TensorFlow library was 
used to create and train models using the Multilayer Per-
ceptron algorithm. It allows for a clear and simple defi-
nition of the neural network architecture by creating a 
sequential model to which we add subsequent layers of 
the network. Such a model is finally compiled using the 
indicated stochastic slope along the gradient method and 
the loss function.

The created neural network models consist of three net-
work layers:

•	 input layer with 14 neurons,
•	 a hidden layer for which the following parameters and 

their values were investigated:
•	 activation function: hyperbolic tangent,
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•	 L2 regularization for weights, biases and layer output,
•	 output layer with one neuron.

Models are compiled using the Adam optimizer with 
the 'learning_rate' parameter set to 0.1 and the loss func-
tion defined as a mean square error.

The learning process was carried out using the Early 
Stopping method, which allows to prevent overfitting of 
the network by checking whether the value of the loss 
function for validation samples changes during the learn-
ing process.

The model was developed on the basis of research pub-
lished in [5]. The Ensemble averaging algorithm consists in 
creating many models with different parameters and com-
bining them into one model in such a way that the input and 
output of such a model do not differ from a single model. 
The model output is combined and the final model output 
is the average value of the outputs of the models included 
in the kit. The models in the network set were trained with 
different regularization constants and different numbers of 
neurons in the hidden layer. To limit the number of different 
regularization constants, a study was conducted to see which 
constants would perform best for models with 10 and 25 
neurons in the hidden layer. The tested constants for weights, 
biases and layer outputs were the following values: [1e−1, 
1e−2, 1e−3, 1e−4, 1e−5]. The study was conducted using 
a fivefold cross-validation along with collecting R2 metric 
values and the mean absolute error.

Parameters with which the models were trained:

•	 activation function: hyperbolic tangent,
•	 regularization constants,
•	 number of neurons in the hidden layer: [3 … 30],
•	 optimizer: Adam with the learning_rate parameter equal 

to 0.01,
•	 optimized function: mean square error, ´
•	 maximum number of epochs: 3000,
•	 load size: 10,
•	 number of epochs with no change in the value of the loss 

function after which the learning process will be com-
pleted: 100.

The models for construction were selected in two ways: • 
The model configuration ranking was created, in which the 
place was determined by the mean value of the R2 metric 
or the average absolute error of all divisions of the data set 
from the cross-validation. For each division of the set, a 
model was built consisting of the n best models according 
to the created ranking, and the final quality of the model was 
calculated as the average value of the metrics of each model.

•	 For each of the splits, a model was created, where it con-
sisted of the best n models in relation to the R2 metric or 

the average absolute error for a given division of the data 
set. The final model quality was calculated as the average 
value of each model's metrics from each split. The first 
strategy will be labeled as "avg" (from the average value 
of the metric) and the second as "split" (from the cross-
validated split). A different number of models included in 
the kit were tested. A range of 2 to 30 models was tested 
for each of the mechanical properties.

The evaluation of the quality of the models was carried 
out for each algorithm separately. For each of the algorithms, 
the best 5 configurations of parameters were presented, the 
evaluation of which was carried out using cross-validation 
and metrics of the mean absolute error (MAE) and the coef-
ficient of determination (R2). Additionally, the worst con-
figurations are presented for comparison and drawing con-
clusions. It should also be noted here that the models were 
also trained on non-supplemented data.

Parameters tested:

•	 n_estimators - [10, 50, 100],
•	 max_depth - [15, 20, 25, 30],
•	 max_features - [’auto’, 8, 9, 10, 11, 12] (’auto’ - number 

of input dimensions),
•	 criterion - [’mse’,’mae’] (’mse’ - mean square error’mae’ 

- mean absolute error),
•	 min_samples_split - [2–4].

The combination of all possible values of the above 
parameters creates 432 unique sets, which together with the 
fivefold cross-validation result in 2880 training processes. 
Each of the models was trained with the same "random_
state" parameter that controls the seed of the random number 
generator while the algorithm is running. The search of the 
parameter space was performed with the GridSearchCV tool 
from the scikit-learn library. The best models for each of the 
metrics considered are trained over the entire dataset.

Gradient Boosting
The parameter space was built with the following 

possibilities:

•	 learning_rate - values: [0.01, 0.1, 0.3],
•	 subsample - coefficient determining how much of the 

training samples will be randomly selected before the 
trees grow, values: [0.3, 0.5, 1,0],

•	 max_depth - maximum tree depth, values: [6, 10, 20, 30],
•	 eval_metric - a metric to evaluate the model, value: 

[‘rmse’,‘mae’],
•	 booster - value: [‘gbtree’,‘gblinear’,‘dart’]. ´

The combination of all possible parameters creates 216 
unique sets. As in the previous algorithm, the random_state 
parameter was set with one value for each training process. 
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To explore the parameter space, the GridSearchCV tool 
was used again. The time needed to train all models was 
10 s. First evaluation criterion was the average absolute 
error (MAE) metric, and the second was the coefficient of 
determination (R2). Configurations with the 'learning_rate' 
parameter equal to 0.01 were not taken into account during 
the research due to the very poor quality of the results, due 
to an insufficient number of learning steps.

Multilayer Perceptron
Parameters tested:

•	 L2 regularization constants for weights, biases and layer 
outputs - [1e−1, 1e−2, 1e−3], ´

•	 the number of neurons in the layer: [20, 30, 40],
•	 batch size: [32, 64],
•	 number of epochs: [500, 1000],
•	 number of epochs without changes in the value of the 

loss function after which the learning process will be 
completed: [50, 100, 200].

The combination of all possible parameters creates 972 
unique sets. The entire space of possible parameters was 
cross-validated in the same way as for the two previous 
algorithms. The test set determined by the cross-validation 
served as the validation set for the Early Stopping method. 
First evaluation criterion was the metric of the mean abso-
lute error (MAE), and the second was the coefficient of 
determination (R2).

Ensemble Averaging
To limit the number of possible configurations of regu-

larization constants and at the same time to ensure that the 
results obtained with their participation are the best ones, 
preliminary studies have been carried out. The subject of 
these studies was to find 4 configurations of regularization 
constants for each of the mechanical properties with the fol-
lowing characteristics:

•	 the best configuration in terms of R2 metric for 10 neu-
rons in the hidden layer,

•	 the best configuration in terms of R2 metric for 25 neu-
rons in the hidden layer,

•	 the best configuration from the point of view of the MAE 
metric for 10 neurons in the hidden layer,

•	 the best configuration in terms of MAE metric for 25 
neurons in the hidden layer.

The best configurations were searched for from the val-
ues [1e−1, 1e−2, 1e−3, 1e−4, 1e−5] for the regularization 
constants for weight, biases and output. Given 10 and 25 
neurons in the hidden layer and 5 mechanical properties, this 
gives a total of 1,250 different configurations to study. In the 
next step, more models were trained. Throughout the pro-
cess, 2800 different models were trained taking into account 

5 different mechanical properties and fivefold cross-valida-
tion and different values of regularization constants and the 
number of neurons in the hidden layer. In the next step, using 
two developed model selection strategies—'avg' and 'split', 
neural network models were built, which included from 2 to 
30 best models. For each of the strategies, the models were 
selected in terms of the best results for the coefficient of 
determination and mean absolute error metrics. Models were 
built using models trained from one subset of cross-validated 
samples. When analyzing the graphs of the dependence of 
the number of models on their quality, it can be noticed that 
increasing the number of models improves the quality of 
the results only up to a certain point. Then a tendency to 
decline in quality as the number of models increases can be 
noticed. This proves the bad influence of too many model 
parameters on the quality of the prediction. There is also 
a noticeable advantage of the strategy of selecting models 
from the best models trained on a given subset chosen from 
sets determined during cross-validation ("split" strategy). 
The strategy of determining the best configurations, based 
on the best quality scores presented as the average of all the 
cross-validation splits, gives slightly worse results. Using 
this strategy is less deleterious to quality when increasing 
the number of models is visible. The exact best results are 
shown in Table 1. For each of the mechanical properties, 

Table 1   Table of the best models for all mechanical properties broken 
down into the best selection strategies and metrics

Bold values indicate the best result

Properties Strategy Metric Number of 
models

R2 MAE

UTS Avg R2 6 0.794 63.594
MAE 10 0.791 63.678

Split R2 4 0.810 61.533
MAE 10 0.804 61.098

Rp02 Avg R2 8 0.808 65.402
MAE 5 0.802 65.749

Split R2 2 0.836 62.612
MAE 4 0.832 59.652

A Avg R2 9 0.678 1.382
MAE 4 0.672 1.365

Split R2 4 0.710 1.320
MAE 5 0.701 1.300

HB Avg R2 5 0.837 18.988
MAE 3 0.835 18.974

Split R2 3 0.855 18.089
MAE 5 0.849 18.062

K Avg R2 8 0.683 14.732
MAE 10 0.686 14.387

Split R2 5 0.712 13.808
MAE 4 0.713 13.612
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4 are presented in terms of each strategy and metric used 
to select the best models. The best results for each of the 
mechanical properties were achieved using the 'split' strat-
egy. The number of entering models did not exceed 5 for 
the R2 metric. For the MAE metric, only in the case of the 
model for the UTS property, the number of models for the 
best result was 10.

3.4.2 � Research conclusions

Random Forest

•	 For each of the mechanical properties, the top five mod-
els are very close to each other in terms of prediction 
quality and could be used interchangeably although there 
is a difference in performance. The parameter 'criterion' 
with the value of 'mse' turned out to be better than 'mae' 
in almost all cases (except for the models for the UTS 
property, where the quality was measured using the R2 
metric), which means that optimizing the mean square 
error brings better results than optimizing mean absolute 
error (all worse models were optimized in this way),

•	 It can also be seen that choosing the 'n_estimators' 
parameter (number of trees) from the value 10 gave the 
worst models, which cleary indicates that the more trees, 
the better the model will be, but also more complicated,

•	 The 'max_depth' parameter does not significantly affect 
the quality, when for each of the mechanical properties 
the best models were trained with each of the available 
values,

•	 The "max_features" parameter with "auto" value has not 
worked for any of the best models, which may mean that 
a better choice would be to impose a specific number of 
dimensions in advance taken into account when build-
ing trees. It can also be noticed that higher values of 
this parameter (12, 11, 10) performed better in the best 
models in terms of the mean absolute error metric, in the 
case of the coefficient of determination, smaller values 
(8, 9, 10) prevail,

•	 The "min_samples_split" parameter (the minimum num-
ber of samples needed to split a node) was in most of 
the best models with the value 2, which means that the 
trees being built have a large number of leaves. The only 
exception were the models for the A property, in which 
the quality was measured by the determination coefficient 
metric, where the tested parameter appeared in 4 out of 
5 models with a value of 4. This means that trees with 
fewer leaves performed better,

•	 Visible differences between the best and the worst models 
in terms of quality in both metrics allow for the conclu-
sion that the process of tuning parameters was needed in 
this case

Gradient boosting
The 'learning_rate', 'sub_sample' and 'param_booster' 

parameters had the greatest impact on the quality of the 
predictions because their values for the best models are in 
most cases the same,

•	 The 'max_depth' parameter with a value of 6 occurred 
only in the best configurations for models predicting the 
K property. In the case of other properties, the value of 
this parameter for the best models was different. In the 
case of the worst models, the most common value was 
10,

•	 The 'param_booster' parameter with the 'dart' value was 
more successful in the case of the best configurations 
for the MAE metric and in the case of models for UTS 
properties assessed with the R2 metric, it proves that in 
these cases the use of the drop-out mechanism positively 
influenced the quality of predicted values. The 'gblinear' 
value did not occur in any of the best configurations, it 
can be stated that the linear regression models do not 
give good results with the boosting gradient.

Multilayer perception

•	 In all the best configurations, the number of neurons in 
the hidden layer ('units' parameter) was 30 or 40 (with a 
predominance of 40). This is understandable due to the 
large number of dimensions that are passed to the input 
layer,

•	 The maximum number of epochs in most cases was 1000, 
which means that 500 epochs were insufficient in most 
cases,

•	 The batch size had little effect on the best results as it 
occurred with both values

•	 The regularization constant value for balances in most 
cases has a single value for the best configurations and it 
can also be seen that for the properties of UTS, YS and 
HB, the value 0.1 works best.

Comparison of the quality of the tested models
To assess which machine learning algorithms worked best 

for the collected data, Table 2 presents the best results for 
each algorithm in terms of the R2 metric. It can be clearly 
indicated that the best algorithm turned out to be Gradi-
ent Boosting. It achieved the best results for each of the 
mechanical properties. For the UTS and YS properties, the 
Ensemble Averaging algorithm worked well, with worse 
results in the remaining cases. The biggest surprise is the 
result of the Random Forest algorithm for the HB property, 
where it took second place and in the case of the remaining 
properties it was in the last and penultimate places.
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3.4.3 � Objectives and observations achieved

The aim of the work was to develop a solution that would 
enable to predict the final parameters of selected castings, 
and the training data set required to be supplemented. The 
solution is based on data from the ADI research. The data 
was collected from the literature and had been assessed by 
experts. Then an algorithm was developed to fill in the miss-
ing data. To achieve results, 4 complex machine learning 
algorithms were selected and tested: Random Forest, Mul-
tilayer Perceptron, Gradient Boosting and Ensemble Averag-
ing. As a result of the conducted research, prediction models 
of mechanical properties of castings were developed on the 
example of ADI, the best ones turned out to be those trained 
with the Gradient Boosting algorithm. Further verification 
consisted of the physical execution of experimental cast-
ings. It should be remembered that the standardization of 

the hardness measurement was performed using the hardness 
conversion table described in the literature.

3.5 � Verification of the obtained results with the use 
of a physical experiment

On the basis of the developed solution, selected chemical 
compositions of materials that meet the design requirements 
were indicated.

– Laboratory melts of these alloys (Table 3) were car-
ried out and the obtained chemical composition of the test 
ingots was determined. The melts were carried out in the 
RADYNE medium frequency induction furnace in a cru-
cible with an inert lining based on Al2O3. A crucible with 
a capacity of 100 kg of the mass of the metal charge was 
used. The following were used as input materials:

–pig iron with the following composition:
C – 4.44%,
Si – 0.97 %,
Mn – 0.05 %,
P – 0.05 %,
S – 0.013 %,
–steel scrap with composition:
C – 0.1%,
Si – 0.02 %,
Mn – 0.3 %,
P – 0.02 %,
S – 0.02 %,

•	 ferroalloys,
•	 deoxidizers,
•	 FeSiMg17 master alloy
•	 FeSi75T inoculant.

Samples for chemical composition analysis were cast to 
metal molds (copper mold), and for the remaining labora-
tory tests and experimental castings—to green sand molds. 
During the melts, it was found out that, while maintaining 
the appropriate technological regime (type, temperature 
and time of metallurgical treatments), all these alloys do 
not pose any major difficulties in terms of the technology 
of melting, pouring and solidification in ceramic molds. 
The chemical analysis of the melts was carried out using 

Table 2   Table showing the summary of the best results for all used 
algorithms for all mechanical properties

Properties Algorithm R2

UTS Gradient boosting 0.8243
Ensemble averaging 0.810
Random forest 0.8081
Multilayer perceptron 0.8011

YS Gradient boosting 0.8513
Ensemble averaging 0.836
Multilayer perceptron 0.8287
Random forest 0.8054

A Gradient boosting 0.7296
Random forest 0.7121
Ensemble averaging 0.710
Multilayer perceptron 0.6890

HB Gradient boosting 0.8791
Random forest 0.8674
Ensemble averaging 0.855
Multilayer perceptron 0.8416

K Gradient boosting 0.7694
Multilayer perceptron 0.7351
Random forest 0.7230
Ensemble averaging 0.713

Table 3   Mechanical properties 
of selected alloys (minimum 
values or their limits)

Parameter GJS-1400-1 GJS-1200-2 GJS-1000-5 G20NiMn-
CrMo5-4-3

G120MnCrMo13-1 G22NiCrMo5-6

UTS [MPa] 1400 1200 1000 1300 900–1100 930–1080
YS [MPa] 1100 850 700 1100 350–450 825
A [%] 1 2 5 6 5 10
HB [−] 380–480 340–440 300–360 388–477 200–250 300–375
E [GPa] 165 167 168 212
ν [−] 0.27 0.27 0.27
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the emission spectrometry method on the POLYVAC 2000 
device (Hilger Co, Great Britain) in accordance with the 
certified research procedures developed at the Foundry 
Research Institute in Krakow (currently the Łukasiewicz 
Research Network—Krakow Institute of Technology) 
(Table 4).

3.6 � Summary

The collection of data is an important aspect in the case of 
creating an intelligent system or its part (module) aimed at 
supporting the production of metal products, an important 
aspect is the collection of data. In the presented case, the 
collected data concerned the production of ADI. An impor-
tant aspect of this solution was the attempt to solve the prob-
lem related to the lack of data. Lack of data was considered 
in the context of the IT system. This deficiency is related 
both to the number (in the context of the number of trials) 
and to the parameters measured during the process (not all 
parameters important for the system were and are measured 
or recorded). To develop and create predictive models and 
decision support modules, in the event of not owning com-
plete data, the decision was made to use the area of pro-
duction of products for which modern methods are applied 
and some experience and knowledge are possessed so that 
the results obtained as a result of the system operation can 
be verified not only experimentally (by making appropriate 
castings), but also so that some adjustments can be made 
during the course, based on the knowledge and experience 
of production technologists. This subject is taken up in sci-
entific research.

The article presents the IT tools originally compiled by 
the authors designed to aid in the material-technological 

conversion process, which is related to various activities 
resulting in the developement of a machine metal part [1]. 
In particular, the process may refer to changing the tar-
get application of an element without changing its shape. 
Another approach allows for consolidation, i.e. the possibil-
ity of reconciling different construction and technological 
versions. It can also refer to regeneration, i.e. the renewal 
of old technological concepts. Conversion can also refer to 
both design and technology changes, and as such it should 
be understood as a change in the manufacturing technol-
ogy, resulting in increased durability and quality of compo-
nents, reference to new technological trends in the context 
of product manufacture, and reduction in operating costs of 
the component being created. Prototype castings of chosen 
parts were made using the developed algorithm and then 
examined in the field. The prototype series of castings, parts 
of the machines working in forests and farms, were trans-
ferred to operational tests at selected agriculture farms. The 
production of these castings was preceded by a computer 
simulation of the casting technology developed and by test-
ing the selected casting alloys. During operational tests, the 
durability of the experimental cast tools produced as part 
of the project was compared with the durability of conven-
tional forged and welded tools. The analysis covered the 
manufacturing technology and operating conditions of the 
components, including also testing of materials currently 
being used for these components. Important aspect of the 
decision-making process is to determine if the conversion is 
economically viable. If it is and if being at the same time is 
possible then the design of the components should be modi-
fied to allow their manufacture by casting technology. Due 
to technological change, the shape of the developed design 
is also modified. The parameters of a given material should 

Table 4   Obtained mechanical 
properties of ductile iron 
hardened with isothermal 
transformation (ADI)

Variant 1: austenitization 900 °C/2 h; isothermal quenching in salt bath 270 °C/3 h
Variant 2: austenitization 900 °C/2 h; isothermal quenching in salt bath 330 °C/2.5 h
Variant 3: austenitization 900 °C/2 h; isothermal quenching in salt bath 375 °C/2.5 h
Variant 4: austenitization 850 °C/2 h; isothermal quenching in salt bath 300 °C/3 h
Variant 5: austenitization 900 °C/2 h; isothermal quenching in salt bath 320 °C/2 h
Variant 6: austenitization 900 °C/2 h; isothermal quenching in salt bath 340 °C/2 h
Variant 7: austenitization 950 °C/2 h; isothermal quenching in salt bath 360 °C/1.5 h

Thermal treatment UTS [MPa] YS [MPa] A [%] HRC [−] KC [J]

Preliminary tests-smelting 1
 Variant 1 1480 1130 2.4 43 54.5
 Variant 2 1170 830 5.6 36 72.4
 Variant 3 950 580 8.2 27 80.6

Verification tests-smelting 2
 Variant 4 1430 1280 1.7 39 56.1
 Variant 5 1315 1170 2.4 37 62.2
 Variant 6 1200 1020 6.4 33 79.4
 Variant 7 1030 780 5.7 25 77.5
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be selected in accordance with the requirements. Often, the 
selected casting alloy meets the construction and operating 
requirements applied to the previously used material. If an 
alloy fulfilling these requirements is not available, research 
works are undertaken to develop a suitable material. One of 
the methods of obtaining an alloy with the required param-
eters is the modification treatment, i.e. changing the chemi-
cal composition or conducting a heat treatment or thermo-
chemical treatment. The essential aspect of this procedure 
is to enable a technological process to proceed according to 
order in such a way as to minimize the occurrence of cast-
ing defects.
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