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Abstract
An efficient numerical quasi-3D beam model is introduced to analyze the effect of carbon nanotube (CNT) agglomeration 
on the nonlinear dynamical stability characteristics of agglomerated beams at microscale made of agglomerated CNT-rein-
forced nanocomposites. For this objective, the constructive material properties are estimated based upon a micromechanical 
homogenization scheme containing only two parameters to capture the associated agglomeration of randomly oriented CNTs, 
while the nonlocal strain gradient continuum theory of elasticity is enrolled to apprehend various size dependency features. 
The unconventional nonlinear governing differential equations of motion are solved numerically via the shifted Cheby-
shev–Gauss–Lobatto discretization pattern together with the pseudo-arc-length continuation strategy. The size-dependent 
frequency–load–deflection characteristic curves are traced corresponding to different degrees of agglomeration including 
complete and partial ones. It is revealed that for an agglomerated CNT-reinforced nanocomposite microbeam in which the 
most CNTs are inside clusters, a higher value of the cluster volume fraction results in to reduce the significance of the sof-
tening and stiffing characters associated with the nonlocal and strain gradient small-scale effects, respectively. However, for 
an agglomerated CNT-reinforced nanocomposite microbeam in which the most CNTs are outside clusters, increasing the 
value of the cluster volume fraction plays an opposite role in the size dependency features.

Keywords Unconventional continuum mechanics · Agglomeration · Nanocomposites · Quasi-3D elasticity · Numerical 
solution technique

1 Introduction

Via incorporating nanoscaled particles into a matrix hav-
ing standard properties, one of advanced materials devel-
oped within recent decades namely as nanocomposite can 
be achieved which has been demonstrated a wide range of 
applications having various disciplines. To express some 
cases in this regard, Pitchan et al. [1] introduced polyether-
imide nanocomposites including functionalized multi-walled 
carbon nanotubes (CNTs) having aerospace application. 

Sahmani et al. [2, 3] prepared ceramic-based nanocom-
posite beam-type structures having biocompatibility used 
space holder and additive manufacturing techniques for bony 
implant applications. Fu et al. [4] fabricated nanocompos-
ites having protein adsorption capability containing vaterite 
nanospheres using aggregation mechanism. Ciplak et al. [5] 
introduced graphene-based nanocomposites having superca-
pacitor property via low-cost and green approach. Sahmani 
et al. [6] employed 3D-printing method to manufacture 
calcium phosphate polymeric nanocomposites with peri-
odic cellular topologies using for bone tissue applications. 
Oraibi and Kadhim [7] manufactured polymeric nanocom-
posites containing barium titanate nanoparticles using for 
piezoelectric applications. Somaily [8] utilized a one pot 
facile flash-combustion technique to prepare nickel oxide-
contained nanocomposites having excellent characters for 
using in optoelectronic cases.

On the other hand, utilizing advanced materials such 
as nanocomposites in design and manufacture structures 
at microscale and nanoscale is one of the most interesting 
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topics among fields of research study in recent years. For 
instance, Rafiee et al. [9] studied the nonlinear dynamic sta-
bility behavior of imperfect piezoelectric plates reinforced 
with carbon nanotubes in the presence of coupling between 
in-plane and lateral responses. Ansari et al. [10] explored 
postbuckling characteristics of Euler–Bernoulli beams at 
nanoscale including the small-scale effect of surface stress. 
Nguyen et al. [11] introduced quasi-3D isogeometric for-
mulations for size-dependent analysis of nanoplates based 
on the nonlocal continuum theory. Zhang et al. [12] studied 
nonlinear stability response of sandwich nanocomposite 
plates under bi-axial compressive load. Kitipornchai et al. 
[13] predicted natural frequencies of nanocomposite porous 
beams having graded distributions of porosity and nanofill-
ers. Sahmani and Aghdam [14] developed nonlocal strain 
gradient beam model for nonlinear stability analysis of lipid 
supramolecular microtubules. El-Borgi et al. [15] investi-
gated torsional oscillations of viscoelastic rod at microscale 
on the basis of the nonlocal strain and velocity gradient 
elasticity theory. Fu et al. [16] proposed an analytical solu-
tion for the sound transmission as well as wave excitation 
in stiffened double multilayer composite plates. Duc et al. 
[17] carried out nonlinear dynamical behavior of nanocom-
posite curved shallow shells subjected to the temperature 
change including geometrical imperfection. Borjalilou et al. 
[18] studied different linear mechanical behaviors of func-
tionally graded nanocomposite beams at nanoscale based 
upon the nonlocal Timoshenko beam model. Sahmani and 
Safaei [19] established nonlocal strain gradient beam models 
for nonlinear postbuckling characteristics of bi-directional 
graded composite microbeams under various loading con-
ditions. Gao et al. [20] anticipated snap-buckling behavior 
of functionally graded sandwich nanocomposite curved 
nanobeams based on the nonlocal strain gradient continuum 
theory. Thai et al. [21] developed size-dependent meshfree 
models to analyze free oscillations of functionally graded 
CNT-reinforced nanocomposite plates at nanoscale and 
microscale. Yi et al. [22] predicted the influence of vibra-
tional mode interactions on the size-dependent forced oscil-
lation response of porous composite nanoshells including the 
surface stress effect. Yuan et al. [23], and Yang et al. [24] 
established unconventional conical shell models to capture 
various types of size dependency in nonlinear stability and 
oscillations of functionally graded inhomogeneous truncated 
conical microshells.

To manifest some more recent research works in this field 
of study, Liu et al. [25] reported critical buckling loads of 
axially functionally graded nanocomposite Euler–Bernoulli 
beams using state-space method. Yue et al. [26] established 
a nonlocal strain gradient Timoshenko beam model for ther-
moelastic analysis of nanobeams. Yang et al. [27], and Rao 
et al. [28] introduced isogeometric analyses to anticipate 
linear and nonlinear bending and vibrations of composite 

microplates having non-uniform thickness. Fan et al. [29] 
employed the nonlocal strain gradient continuum elasticity 
theory together with an isogeometric plate model for nonlin-
ear vibration characteristics of composite microplates. Wu 
et al. [30] proposed a unified size-dependent plate formula-
tions to examine static flexural response of plates at micro-
scale and nanoscale. Kazemi et al. [31] explored dynamical 
large deformations in CNT-reinforced nanocomposite cylin-
ders incorporating large strain within the interphase region. 
Naskar et al. [32] predicted the surface stress type of size 
effect on the electromechanical responses of functionally 
graded nanocomposites using a semi-analytical technique. 
Chu et al. [33] and Zuo et al. [34] incorporated different 
strain gradient tensors to analyze nonlinear free vibrations 
of isogeometric microplates various oscillation amplitudes. 
Tao and Dai [35] presented nonlinear transient responses 
of sandwich nanocomposite microplates integrated with 
porous layers incorporating the couple stress size depend-
ency. Taati et al. [36] analyzed size-dependent nonlinear free 
oscillations of nanocomposite beams at nanoscale using a 
perturbation-based nonlocal formulations. Liu et al. [37], 
and Yang et al. [38] established modified couple stress-
based meshfree shell models for postbuckling analysis of 
randomly reinforced nanocomposite microshells under axial 
and lateral pressures. Saiah et al. [39] calculated natural 
frequencies of laminated nanocomposite plates containing 
piece-wise graphene-reinforced layers with various lay-
up arrangements. Jalaei et al. [40] explored the transient 
response of geometrical imperfect nanobeams made of 
functionally graded magnetic composites on the basis of the 
strain gradient elasticity. Zhao et al. [41] introduced a proba-
bilistic nanocomposite shell model for postbuckling analysis 
of strain gradient-based microshells under axial and lateral 
compressions. Ma et al. [42] established quasi-3D beam 
formulations for nonlocal strain gradient nonlinear bend-
ing of functionally graded composite microplates. Wang 
et al. [43] indicated the hygrothermal effects on the critical 
buckling loads of bi-directional functionally graded com-
posite microbeams in the presence of nonlocality and strain 
gradient size effect. Wei and Qing [44] developed modified 
couple stress-based plate model for bending, buckling and 
free oscillations of bi-directional graded composite circular 
microplates. Wang et al. [45] predicted the nonlinear stabil-
ity behavior of porous plates at microscale in the presence 
of various microstructural-dependent strain gradient tensors.

The main aim of the current research investigation is to 
analyze the size-dependent quasi-3D nonlinear dynamical 
stability characteristics of agglomerated nanocomposite 
microbeams reinforced with agglomerated randomly ori-
ented CNTs. In this regard, the nonlocal strain gradient con-
tinuum elasticity is applied to a quasi-3D beam theory incor-
porating the sinusoidal transverse shear and normal shape 
functions in conjunction with geometrical nonlinearity. The 
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constructive material properties are extracted based upon a 
micromechanical homogenization scheme containing only 
two parameters to capture the associated agglomeration of 
randomly oriented CNTs. Afterwards, an efficient numerical 
solving process using the shifted Chebyshev–Gauss–Lobatto 
discretization pattern together with the pseudo-arc-length 
continuation strategy is employed to trace the associated 
size-dependent nonlinear responses.

2  Quasi‑3D nonlocal strain gradient‑based 
beam formulations

In Fig. 1, a nanocomposite microbeam having the length of 
L and thickness of h reinforced by randomly oriented CNTs 
is displayed. As it is shown, due to bundling as well as clus-
tering of CNTs having low bending rigidity, it is necessary 
to consider the CNT agglomeration. To capture the effec-
tive material properties for a randomly oriented CNT-rein-
forced nanocomposite material incorporating the influence 
of the CNT agglomeration, Shi et al. [46] introduced a two-
parameter homogenization scheme. Based upon this micro-
mechanical model, the total CNT volume fraction related to 

the selected representative volume element (RVE) is divided 
to two parts as follows [46]:

in which V in−cluster
CNT

 and Vout−cluster
CNT

 stand for the CNT volume 
fractions associated with inside and outside of clusters, 
respectively. Accordingly, in order to describe the agglom-
eration feature, two parameters are taken into account as [46]

where Vcluster denotes the cluster volume fraction within the 
selected RVE. The parameter � refers to the ratio of CNT 
volume fraction to the total RVE volume. On the other 
hand, � represents the ratio of the cluster volume fraction 
to the CNT volume fraction inside the selected RVE. Con-
sequently, the value of � = 1 indicates uniform distribution 
of CNT reinforcements, so reduction of � leads to excessive 
agglomeration. In addition, the value of � = 1 specifies that 
all CNTs are located inside the clusters. Therefore, when 
� = � , it means that there are no agglomeration in the nano-
composite microbeams.

(1)VCNT = V in−cluster
CNT

+ Vout−cluster
CNT

,

(2)� =
Vcluster

V
, � =

V in−cluster
CNT

VCNT

(� ≥ 0, � ≤ 1),

Fig. 1  Schematic demonstration 
of a quasi-3D agglomerated 
CNT-reinforced nanocomposite 
microbeam
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Now, by taking the two parameters of � and � , the bulk 
and shear moduli associated with inside and outside of clus-
ters can be achieved as

in which Km and Gm in order are the bulk and shear moduli 
of the matrix phase, and

As a consequence, the bulk and shear moduli of the 
agglomerated CNT-reinforced nanocomposite material are 
obtained as

where

Therefore, the effective Young’s modulus and Poisson’s 
ratio can be extracted as

(3)

Kin−cluster =
3�Km − 3�VCNTKm + 3��1VCNTKm + ��3VCNT − 3��1Km

3
(
� − VCNT� + VCNT��1

) ,

Gin−cluster =
2�Gm − 2�VCNTGm + 2��2VCNTGm + ��4VCNT − 2��2Gm

2
(
� − VCNT� + VCNT��2

) ,

Kout−cluster =
3Km − 3�Km + 3�VCNTKm − 3VCNTKm + 3�1VCNT

(
Km − �Km

)
+ VCNT

(
�3 − 3Km�1

)
(1 − �)

3
(
1 − � − VCNT (1 − � ) + VCNT (1 − �)�1

) ,

Gout−cluster =
2Gm − 2�Gm + 2�VCNTGm − 2VCNTGm + 2�2VCNT

(
Gm − �Gm

)
+ VCNT

(
�4 − 2Gm�2

)
(1 − �)

2
(
1 − � − VCNT (1 − �) + VCNT (1 − �)�2

) ,

(4)

�1 =
3
(
Km + Gm

)
+ k0 − p0

3
(
Gm + k0

) ,

�2 =
16G2

m
+ 14Gmk0 + 2Gmq0 + Gmp0 + 2k0q0 + p0q0

15
(
Gm + k0

)(
Gm + q0

) +
2Gm

(
3Km + Gm

)
+ 2Gm

(
3Km + 7Gm

)

5Gm

(
3Km + Gm

)
+ 5r0

(
3Km + 7Gm

) ,

�3 =
6Kmk0 + 4Gmk0 + 4Gmp0 + 3Kmp0 + Gms0 + k0s0 − p2

0

3
(
Gm + k0

)(
s0 + 2p0

) ,

�4 =
2
(
s0 − p0

)
15

+
8Gmq0

5
(
Gm + q0

) +
32G2

m
r0 + 24GmKmr0

15Km

(
r0 + Gm

)
+ 5Gm

(
7r0 + Gm

) +
4Gmk0 − 4Gmp0 + 2k0p0 − 2p2

0

15
(
Gm + k0

) .

(5a)

K =
Kout−cluster +

(
Γ1 + � − Γ1�

)(
Kin−cluster − Kout−cluster

)

1 +
(
Γ1 − Γ1�

)( Kin−cluster

Kout−cluster

− 1
) ,

(5b)

G =
Gout−cluster +

(
Γ2 + � − Γ2�

)(
Gin−cluster − Gout−cluster

)

1 +
(
Γ2 − Γ2�

)( Gin−cluster

Gout−cluster

− 1
) ,

(6)

Γ1 =
1 + �out−cluster

3
(
1 − �out−cluster

) ,Γ2 =
8 − 10�out−cluster

15
(
1 − �out−cluster

) ,

�out−cluster =
3Kout−cluster − 2Gout−cluster

6Kout−cluster + 2Gout−cluster

.

In Figs.  2 and 3, the variation of achieved effective 
Young’s modulus and Poisson’s ratio with the agglomera-

tion parameters is depicted, respectively.
On the basis of the quasi-3D theory of elasticity, the dis-

placement field of a beam-type structure is defined in such 
a way that the transverse deformation w(x1, t) is separated 
to bending wb(x1, t) and shear ws(x1, t) parts, and the nor-
mal strain along with the beam thickness is added to the 
displacement formulations with the aid a transverse normal 
shape function �

(
x3
)
 . Accordingly, one will have

in which the transverse shear and normal shape functions 
are considered as

(7)E =
9KG

3K + G
, � =

3K − 2G

6K + 2G
.

(8a)

U1

(
x1, x3, t

)
= u

(
x1, t

)
− x3

�wb

(
x1, t

)
�x1

+ �
(
x3
)�ws

(
x1, t

)
�x1

,

(8b)U3

(
x1, x3, t

)
= wb

(
x1, t

)
+ �

(
x3
)
ws

(
x1, t

)
,

(9a)�
(
x3
)
=

h

2
sin

(�x3
h

)
− x3,

(9b)�
(
x3
)
= 1 +

5

12�
cos

(�x3
h

)
.
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Consequently, by taking the geometrical nonlinearity into 
consideration, the quasi-3D-based strain components of an 
agglomerated nanocomposite microbeam can be expressed 
as

In order to capture the size dependency features more effi-
ciently, the physical coupling effect between strain gradient 

(10)

�11 =
�u

�x1
+

1

2

(
�wb

�x1
+

�ws

�x1

)2

− x3
�2wb

�x2
1

+ �
(
x3
)�2ws

�x2
1

,

�33 =
d�

(
x3
)

dx3
ws, �13 =

(
d�

(
x3
)

dx3
+ �

(
x3
))�ws

�x1
.

stress tensor and nonlocal stress tensor can be taken into 
account via the nonlocal strain gradient continuum elasticity 
in the following form [47]:

in which �(0)

ij
 and �(1)

ij
 stand for the stress tensors associated 

with the conventional strain and strain gradient tensors as 
follows:

where Cijmn refers to elastic parameter, e0a and e1a repre-
sent the nonlocal parameters related to the conventional and 
higher order stress tensors, and l denotes an internal length 
scale parameter for the strain gradient size effect. In addi-
tion, �0

(
x, x

′

, e0a
)
 and �1

(
x, x

′

, e1a
)
 are the nonlocal kernel 

functions corresponding to the introduced conditions by 
Eringen [48].

Therefore, the constitutive equation related to a beam-
type structure modeled via the nonlocal strain gradient con-
tinuum mechanics can be written as

With the assumption of e = e0 = e1 considered by Lim 
et al. [47], the derived constitutive equation of a nonlocal 
strain gradient beam can be rewritten as

In this regard, the stress–strain constitutive relations can 
be stated in the following form:

(11)�ij = �
(0)

ij
−

��
(1)

ij

�x1
,

(12a)�
(0)

ij
= ∫

L

0

{
Cijmn�0

(
x, x

�

, e0a
)��mn(x�

)

�x

}
dx�,

(12b)�
(1)

ij
= l2∫

L

0

{
Cijmn�0

(
x, x

�

, e1a
)
∇

(
��mn(x

�

)

�x

)}
dx�,

(13)

[
1 −

(
e1a

)2 �2

�x2
1

][
1 −

(
e0a

)2 �2

�x2
1

]
�ij

= Cijmn

[
1 −

(
e1a

)2 �2

�x2
1

]
�mn

− Cijmnl
2

[
1 −

(
e0a

)2 �2

�x2
1

]
�2�mn

�x2
1

.

(14)

[
1 − (ea)2

�2

�x2
1

]
�ij = Cijmn

[
1 − l2

�2

�x2
1

]
�mn.

Fig. 2  Variations of the obtained effective Young’s modulus with 
agglomeration parameters corresponding to different CNT volume 
fractions
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where

As a result, the strain energy stored in a quasi-3D agglom-
erated CNT-reinforced nanocomposite microbeams can be 
presented in terms of the stress resultants as follows:

(15)

�
1 − (ea)2

�2

�x2
1

�⎧⎪⎨⎪⎩

�11
�33
�13

⎫⎪⎬⎪⎭
=

�
1 − l2

�2

�x2
1

�⎡
⎢⎢⎣

Q11 Q13 0

Q13 Q33 0

0 0 Q44

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

�11
�33
�13

⎫⎪⎬⎪⎭
,

(16)
Q11 = Q33 =

(1 − �)E)

(1 − 2�)(1 + �))
,

Q13 =
�E

(1 − 2�)(1 + �)
,Q44 =

E

2(1 + �)
.

In addition, the work done by the applied external axial 
compressive load can be read as

in which

where

(17)

Πs =
1

2∫
L

0
∫

h

2

−
h

2

�ij�ijdx3dx1

=
1

2∫
L

0

{
N∗
11

[
�u

�x1
+

1

2

(
�wb

�x1
+

�ws

�x1

)2
]

+N∗
33
ws −M∗

11

�2wb

�x2
1

+ J∗
11

�2ws

�x2
1

+ Q∗
1

�ws

�x1

}
dx1.

(18)Πw =
1

2∫
L

0

P

(
�wb

�x1
+

�ws

�x1

)2

dx1,

(19)

⎧
⎪⎪⎨⎪⎪⎩

N∗
11

− (ea)2
�2N∗

11

�x2
1

M∗
11

− (ea)2
�2M∗

11

�x2
1

J∗
11

− (ea)2
�2J∗

11

�x2
1

⎫
⎪⎪⎬⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

A∗
11

0 0

0 D∗
11

E∗
11

0 E∗
11

H∗
11

0 F∗
13

K∗
13

⎤
⎥⎥⎥⎥⎥⎦

T

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
1 − l2

�2

�x2
1

��
�u

�x1
+

1

2

�
�wb

�x1
+

�ws

�x1

�2
�

−

�
1 − l2

�2

�x2
1

�
�2wb

�x2
1�

1 − l2
�2

�x2
1

�
�2ws

�x2
1�

1 − l2
�2

�x2
1

�
w
s

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

N∗
33

− (ea)2
�2N∗

33

�x2
1

=

⎧
⎪⎪⎨⎪⎪⎩

G∗
13

F∗
13

K∗
13

G∗
33

⎫
⎪⎪⎬⎪⎪⎭

T

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
1 − l2

�2

�x2
1

��
�u

�x1
+

1

2

�
�wb

�x1
+

�ws

�x1

�2
�

−

�
1 − l2

�2

�x2
1

�
�2wb

�x2
1�

1 − l2
�2

�x2
1

�
�2ws

�x2
1�

1 − l2
�2

�x2
1

�
ws

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,

Q∗
1
− (ea)2

�2Q∗
1

�x2
1

= A∗
44

�
1 − l2

�2

�x2
1

�
�ws

�x1
,

(20)

⎧⎪⎪⎨⎪⎪⎩

A∗
11

D∗
11

E∗
11

H∗
11

⎫⎪⎪⎬⎪⎪⎭

= Q11b∫
h

2

−
h

2

⎧⎪⎪⎨⎪⎪⎩

1

x2
3

x3�
�
x3
�

�
�
�
x3
��2

⎫⎪⎪⎬⎪⎪⎭

dx3,

A∗
44

= Q44b∫
h

2

−
h

2

�
d�

�
x3
�

dx3
+ �

�
x3
��

dx3

⎧⎪⎨⎪⎩

F∗
13

K∗
13

G∗
33

⎫⎪⎬⎪⎭
= Q33b∫

h

2

−
h

2

⎧⎪⎨⎪⎩
x3

d�
�
x3
�

dx3
, �

�
x3
� d��x3

�
dx3

,

�
d�

�
x3
�

dx3

�2⎫⎪⎬⎪⎭
dx3.

Fig. 3  Variations of the obtained effective Poisson’s ratio with 
agglomeration parameters corresponding to different CNT volume 
fractions
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In addition, the kinetic energy of a quasi-3D agglomerated 
CNT-reinforced nanocomposite microbeam incorporating trans-
verse shear and normal deformations can be introduced as

where � represents the mass density of the agglomerated 
nanocomposite microbeam as

in which �CNT and �m refer to, respectively, the mass density 
of CNT and matrix phases, and

(21)

Πk =
1

2∫
L

0
∫

h

2

−
h

2

{
�

[(
�U1

�t

)2

+

(
�U3

�t

)2
]}

dx3dx1

=
1

2∫
L

0

{
I0

[(
�u

�t

)2

+

(
�wb

�t

)2
]
− 2I1

�2wb

�x1�t
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With the aid of the essential lemma of calculus associ-
ated with the variational formulations, the quasi-3D-based 
governing differential equations of motion can be derived 
as
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In addition, the associated boundary conditions can be 
expressed as

(23c)
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(24)
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• For the movable simply supported end condition:

• For the movable clamped end condition:
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= 0.
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�wb
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=
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= 0.
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3  Differential quadrature‑based solution 
strategy

An effective numerical solving procedure namely as gener-
alized differential quadrature (GDQ) method is employed 
herein to capture the solution of the developed size-depend-
ent nonlinear problem. For this reason, an accurate discre-
tization process is considered for the proposed nonlinear 
problem via putting an inconsistent function of F(�) defined 
within an associated territory of � =

[
�1, �2,… , �n

]
 to use as 

follows:

where �(k)

�
 states the coefficients related to the weighting 

process of the k th-order derivation that can be brought in as 
follows:

(27)
dkF(�)

d�k
=

n∑
i=1

�
(k)

�
F(�i),

in which the gridding pattern of shifted Cheby-
shev–Gauss–Lobatto is utilized as

In order to initiate the solving procedure, the regime asso-
ciated with the postbuckling part of the considered problem 
is extracted by eliminating the inertia terms as

(28a)�
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⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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,

(29)�i =
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[
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.
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Table 1  Comparison examination on the nonlocal nonlinear fre-
quency ratio ( �nl∕�l ) of an isotropic nanobeam relevant to various 
maximum beam deflections

wmax∕
√
I∕A Present research work Ref. [51]

1 1.11817 1.11920
2 1.41309 1.41801
3 1.80445 1.80919
4 2.23989 2.24511
5 2.70116 2.70429
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where

and \diamondsuit stands for the Hadamard product.
Consequently, one can achieve the following vectorized 

nonlinear stability equations:

where �∗ stands for the vectorzied displacement compo-
nents after discretization by n elements which is taken into 
account as
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(31)
(
Kl − PKg

)
�∗ +Knl

(
�∗

)
= 0,
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,

Kij and Ti refer to, respectively, the discretized linear stiff-
ness components and discretized nonlinear stiffness com-
ponents associated with the agglomerated CNT-reinforced 
nanocomposite microbeams.

At the initiate phase of the numerical solving process, the 
nonlinear expressions of Knl(�

p) are ignored, and then the 
critical buckling loads of the agglomerated CNT-reinforced 
nanocomposite microbeams are achieved and appointed as 
beginning point of the route of numerical solution for the 
examined nonlinear problem. Afterwards, a repetitious oper-
ation is applied jointly with the pseudo-arc-length continu-
ation technique [48] to track down the correlated nonlinear 
stability curves.

Subsequently, the characteristics of nonlinear dynam-
ics within postbuckling and prebuckling regimes of an 
agglomerated CNT-reinforced nanocomposite microbeam 
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are captured via imposing a dynamical disturbance having 
an amplitude around the predicted buckled configuration. 
Therefore, two parts of static and dynamic ones are supposed 
for the associated displacement components as follows:

After substitution of Eq. (33) into the nonlocal strain 
gradient-based nonlinear differential equations of motion, 
one will have

where M denotes the mass matrix taking in the related iner-
tia components. In addition, the over dot specifies the time 
differentiation.

On the basis of Eq. (33) and incorporating the imposed 
dynamical disturbance, the dynamic governing equations 
can be stated in discretized form as

(33)� = �s +�d.

(34)M�̈ +
(
Kl − PKg

)
� +Knl(�) = 0,

Via taking a harmonic solution into account as 
�d = �

d
ei�t , the associated eigenvalue problem is extracted 

in a general form, the solution of which can be introduced as

where � and � in order represent the decreased generalized 
coordinates and sparse matrix related to the basis function in 
the presence of Galerkin-derived mode-shapes, as

in which

Inserting Eq. (36) in Eq. (34) and then multiplying the result of 
it with the Galerkin matrix operator leads to the following format 
of the time-dependent governing differential equations of problem:

where

On the other hand, the discretization of the sparse matrix 
incorporating the basis function contained of q number of 
Galerkin-derived mode-shapes results in
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Fig. 4  Conventional and nonlocal strain gradient-based lin-
ear frequency–load response of agglomerated nanocompos-
ite microbeams corresponding to various small-scale parameters 
( � = 0.4, � = 0.8,VCNT = 0.1)
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where nt represents the discretization node numbers within 
the time domain. Consequently, after putting the related dis-
cretization process for Eq. (39), it yields

in which �()
t  stands for the time differentiation matrix opera-

tors which can be defined as follows:

(43)M��
(2)
t +Kl� +Knl(� ) = 0,

(44a)
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i, j = 2,3, 4,… , nt ,

As a consequence, Eq. (43) can be rewritten in a vector-
ized form as follows:

in which ⊗ refers to the Kronecker product.

(44b)

�
(2)
t = 4�2

�
�i,j

�
→

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�11 = −
n2
t

12
−

1

6

�i,1 =
(−1)i−2

2sin
2
�

�(i−1)

nt

�

�1,j =
(−1)nt−j

2sin
2
�

�(nt−j−1)
nt

�

�i+1,j+1 = �i,j

i, j = 2,3, 4,… , nt .

(45)
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�

(2)
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+

(
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�
⊗Kl

)]
vec(� ) + vec

(
Knl(� )

)
= 0,

Fig. 5  Conventional and nonlocal strain gradient-based nonlinear 
frequency ratio–deflection response of agglomerated nanocompos-
ite microbeams corresponding to various small-scale parameters 
( � = 0.4, � = 0.8,VCNT = 0.1)

Table 2  Nonlinear frequency ratios ( �nl∕�l ) of agglomerated CNT-
reinforced nanocomposite microbeams corresponding to different 
cluster volume fractions ( � = 0.9,Wmax = 0.5)

� Small-scale parameters P = Pcr∕2 P = 2Pcr

Simply supported–simply supported boundary conditions
0.2 Conventional 2.3971 1.1718

ea = 10 μm, l = 0 μm 2.5095 (+ 4.69%) 1.2841 (+ 9.58%)
ea = 0 μm, l = 10 μm 2.2919 (− 4.38%) 1.0613 (− 9.43%)

0.5 Conventional 2.4266 1.2017
ea = 10 μm, l = 0 μm 2.5408 (+ 4.71%) 1.3145 (+ 9.39%)
ea = 0 μm, l = 10 μm 2.3194 (− 4.42%) 1.0908 (− 9.23%)

0.8 Conventional 2.4319 1.2071
ea = 10 μm, l = 0 μm 2.5465 (+ 4.71%) 1.3200 (+ 9.35%)
ea = 0 μm, l = 10 μm 2.3244 (− 4.42%) 1.0961 (− 9.19%)

Simply supported–clamped boundary conditions
0.2 Conventional 2.2904 1.0597

ea = 10 μm, l = 0 μm 2.3957 (+ 4.60%) 1.1703 (+ 10.44%)
ea = 0 μm, l = 10 μm 2.1919 (− 4.30%) 0.9498 (− 10.37%)

0.5 Conventional 2.3180 1.0893
ea = 10 μm, l = 0 μm 2.4250 (+ 4.62%) 1.2002 (+ 10.18%)
ea = 0 μm, l = 10 μm 2.2177 (− 4.33%) 0.9793 (− 10.10%)

0.8 Conventional 2.3229 1.0945
ea = 10 μm, l = 0 μm 2.4303 (+ 4.62%) 1.2055 (+ 10.14%)
ea = 0 μm, l = 10 μm 2.2223 (− 4.33%) 0.9845 (− 10.05%)

Clamped–clamped boundary conditions
0.2 Conventional 2.1244 0.8698

ea = 10 μm, l = 0 μm 2.2184 (+ 4.42%) 0.9801 (+ 12.68%)
ea = 0 μm, l = 10 μm 2.0366 (− 4.13%) 0.7576 (− 12.90%)

0.5 Conventional 2.1490 0.8995
ea = 10 μm, l = 0 μm 2.2446 (+ 4.45%) 1.0095 (+ 12.23%)
ea = 0 μm, l = 10 μm 2.0596 (− 4.16%) 0.7880 (− 12.39%)

0.8 Conventional 2.1534 0.9048
ea = 10 μm, l = 0 μm 2.2494 (+ 4.46%) 1.0148 (+ 12.16%)
ea = 0 μm, l = 10 μm 2.0637 (− 4.17%) 0.7934 (− 12.31%)
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Through encompassing Eq. (45) to a set of nonlinear alge-
braic-type of equations, the considered nonlinear dynamic 
problem can be picked up using the strategy of pseudo-arc-
length continuation.

4  Numerical results and discussion

A parametric examination is now performed, on the basis of 
which the dimensionless linear frequency–load and nonlin-
ear frequency ratio–deflection responses related to the non-
local strain gradient-based nonlinear dynamic stability of the 
agglomerated CNT-reinforced nanocomposite microbeams 
within the both prebuckling and postbuckling regimes are 
traced.

Accordingly, the dimensionless parameters utilized in the 
numerical analysis are considered as

D i m e n s i o n l e s s  m a x i m u m  d e f l e c t i o n : 
Wmax =

(
wb + ws

)
max

∕h

Dimensionless frequency: � = Ωh
√
�m∕Em.

Dimensionless axial load: P = PL∕Emh
3

In addition, the geometric parameters of the agglom-
erated CNT-reinforced nanocomposite microbeams con-
sidered in the present analysis are taken into account 
as: b = h = 10 μm, L = 100h . For armchair CNT nano-
fillers having the radius of 0.1nm , one will have: 
k0 = 30GPa, p0 = 10GPa , r0 = 1GPa , s0 = 450GPa , and 
q0 = 1GPa [46]. In addition, for the matrix phase, it is sup-
posed that: Em = 0.85GPa, �m = 0.4, �m = 2370Kg∕m3 [50].

Table 3  Nonlinear frequency ratios ( �nl∕�l ) of agglomerated CNT-
reinforced nanocomposite microbeams corresponding to different 
cluster volume fractions ( � = 0.2,Wmax = 0.5)

� Small-scale parameters P = Pcr∕2 P = 2Pcr

Simply supported–simply supported boundary conditions
0.2 Conventional 2.3971 1.1718

ea = 10 μm, l = 0 μm 2.5094 (+ 4.68%) 1.2840 (+ 9.57%)
ea = 0 μm, l = 10 μm 2.2918 (− 4.39%) 1.0612 (− 9.44%)

0.5 Conventional 2.3958 1.1704
ea = 10 μm, l = 0 μm 2.5080 (+ 4.68%) 1.2826 (+ 9.59%)
ea = 0 μm, l = 10 μm 2.2905 (− 4.39%) 1.0598 (− 9.45%)

0.8 Conventional 2.3848 1.1592
ea = 10 μm, l = 0 μm 2.4964 (+ 4.67%) 1.2712 (+ 9.66%)
ea = 0 μm, l = 10 μm 2.2803 (− 4.38%) 1.0488 (− 9.52%)

Simply supported–clamped boundary conditions
0.2 Conventional 2.2904 1.0597

ea = 10 μm, l = 0 μm 2.3956 (+ 4.59%) 1.1702 (+ 10.43%)
ea = 0 μm, l = 10 μm 2.1918 (− 4.30%) 0.9498 (− 10.37%)

0.5 Conventional 2.2891 1.0583
ea = 10 μm, l = 0 μm 2.3943 (+ 4.59%) 1.1689 (+ 10.45%)
ea = 0 μm, l = 10 μm 2.1906 (− 4.30%) 0.9484 (− 10.38%)

0.8 Conventional 2.2789 1.0472
ea = 10 μm, l = 0 μm 2.3833 (+ 4.58%) 1.1577 (+ 10.55%)
ea = 0 μm, l = 10 μm 2.1811 (− 4.29%) 0.9373 (− 10.49%)

Clamped–clamped boundary conditions
0.2 Conventional 2.1244 0.8698

ea = 10 μm, l = 0 μm 2.2183 (+ 4.42%) 0.9800 (+ 12.67%)
ea = 0 μm, l = 10 μm 2.0365 (− 4.14%) 0.7575 (− 12.91%)

0.5 Conventional 2.1233 0.8684
ea = 10 μm, l = 0 μm 2.2171 (+ 4.42%) 0.9787 (+ 12.70%)
ea = 0 μm, l = 10 μm 2.0355 (− 4.14%) 0.7561 (− 12.93%)

0.8 Conventional 2.1142 0.8572
ea = 10 μm, l = 0 μm 2.2074 (+ 4.41%) 0.9676 (+ 12.88%)
ea = 0 μm, l = 10 μm 2.0270 (− 4.12%) 0.7445 (− 13.15%)

Table 4  Nonlinear frequency ratios ( �nl∕�l ) of agglomerated CNT-
reinforced nanocomposite microbeams corresponding to different 
CNT amounts inside clusters ( � = 0.9,Wmax = 0.5)

� Small-scale parameters P = Pcr∕2 P = 2Pcr

Simply supported–simply supported boundary conditions
0.2 Conventional 2.3971 1.1718

ea = 10 μm, l = 0 μm 2.5094 (+ 4.68%) 1.2840 (+ 9.57%)
ea = 0 μm, l = 10 μm 2.2918 (− 4.39%) 1.0612 (− 9.44%)

0.5 Conventional 2.4324 1.2076
ea = 10 μm, l = 0 μm 2.5470 (+ 4.71%) 1.3205 (+ 9.35%)
ea = 0 μm, l = 10 μm 2.3248 (− 4.42%) 1.0966 (− 9.19%)

0.8 Conventional 2.4427 1.2180
ea = 10 μm, l = 0 μm 2.5581 (+ 4.72%) 1.3311 (+ 9.29%)
ea = 0 μm, l = 10 μm 2.3346 (− 4.42%) 1.1069 (− 9.12%)

Simply supported–clamped boundary conditions
0.2 Conventional 2.2904 1.0597

ea = 10 μm, l = 0 μm 2.3956 (+ 4.59%) 1.1702 (+ 10.43%)
ea = 0 μm, l = 10 μm 2.1918 (− 4.30%) 0.9498 (− 10.37%)

0.5 Conventional 2.3234 1.0950
ea = 10 μm, l = 0 μm 2.4308 (+ 4.62%) 1.2060 (+ 10.14%)
ea = 0 μm, l = 10 μm 2.2227 (− 4.33%) 0.9850 (− 10.05%)

0.8 Conventional 2.3331 1.1053
ea = 10 μm, l = 0 μm 2.4412 (+ 4.63%) 1.2164 (+ 10.05%)
ea = 0 μm, l = 10 μm 2.2319 (− 4.34%) 0.9953 (− 9.95%)

Clamped–clamped boundary conditions
0.2 Conventional 2.1244 0.8698

ea = 10 μm, l = 0 μm 2.2181 (+ 4.41%) 0.9801 (+ 12.68%)
ea = 0 μm, l = 10 μm 2.0366 (− 4.13%) 0.7575 (− 12.91%)

0.5 Conventional 2.1538 0.9053
ea = 10 μm, l = 0 μm 2.2498 (+ 4.46%) 1.0153 (+ 12.15%)
ea = 0 μm, l = 10 μm 2.0641 (− 4.16%) 0.7939 (− 12.31%)

0.8 Conventional 2.1625 0.9156
ea = 10 μm, l = 0 μm 2.2591 (+ 4.47%) 1.0255 (+ 12.00%)
ea = 0 μm, l = 10 μm 2.0722 (-4.18%) 0.8044 (-12.14%)
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In order to explore the accuracy of the proposed beam 
formulations, the nonlinear frequency ratio ( �nl∕�l ) of an 
axially compressed isotropic nanobeam with simply sup-
ported boundary conditions are obtained based upon the 
nonlocal continuum theory and corresponding to different 
maximum beam deflections, and then they are compared 
with those reported by Yang et al. [51] using an analytical 
solution as tabulated in Table 1. An excellent agreement is 
detected which confirms the validity of the proposed model 
and the accuracy of the given numerical results in the cur-
rent investigation.

Figures 4 and 5 depict, respectively, the nonlocal strain 
gradient-based linear frequency–load response and nonlinear 
frequency ratio-load response of agglomerated CNT-rein-
forced nanocomposite microbeams corresponding to differ-
ent values of the nonlocal and strain gradient parameters. 

It is revealed that the nonlocality effect on the linear fre-
quency is opposite before and after the bifurcation point as 
within the prebuckling territory, it results in lower linear 
frequency while within the postbuckling domain, it leads 
to higher values of �l . This change in the size dependency 
character before and after the bifurcation point can be also 
observed related to the strain gradient type of size effect but 
with an opposite pattern. On the other hand, it is found the 
nonlinear frequency ratio ( �nl∕�l ) associated with a specific 
value of the microbeam deflection increases by taking the 
nonlocality into account, but decreases via considering the 
strain gradient size effect. These features of size dependency 
are the same within the both prebuckling and postbuckling 
territories.

In Tables 2 and 3, the nonlocal strain gradient-based non-
linear frequency ratios ( �nl∕�l ) associated with a specific 
maximum deflection of axially compressed agglomerated 
CNT-reinforced nanocomposite microbeams are presented 
corresponding to different cluster volume fractions with high 
( � = 0.9 ) and low ( � = 0.2 ) CNT amounts inside clusters, 
respectively. It is deduced that for an agglomerated CNT-
reinforced nanocomposite microbeam in which the most 
CNTs are inside clusters, a higher value of the cluster vol-
ume fraction results in to reduce the significance of the sof-
tening and stiffing characters associated with the nonlocal 

Table 5  Nonlinear frequency ratios ( �nl∕�l ) of agglomerated CNT-
reinforced nanocomposite microbeams corresponding to different 
CNT amounts inside clusters ( � = 0.2,Wmax = 0.5)

� Small-scale parameters P = Pcr∕2 P = 2Pcr

Simply supported–simply supported boundary conditions
0.2 Conventional 2.3971 1.1718

ea = 10 μm, l = 0 μm 2.5094 (+ 4.68%) 1.2840 (+ 9.57%)
ea = 0 μm, l = 10 μm 2.2918 (− 4.39%) 1.0612 (− 9.44%)

0.5 Conventional 2.3910 1.1655
ea = 10 μm, l = 0 μm 2.5029 (+ 4.68%) 1.2776 (+ 9.62%)
ea = 0 μm, l = 10 μm 2.2861 (− 4.39%) 1.0550 (− 9.48%)

0.8 Conventional 2.3723 1.1463
ea = 10 μm, l = 0 μm 2.4830 (+ 4.67%) 1.2580 (+ 9.74%)
ea = 0 μm, l = 10 μm 2.2686 (− 4.37%) 1.0359 (− 9.63%)

Simply supported–clamped boundary conditions
0.2 Conventional 2.2904 1.0597

ea = 10 μm, l = 0 μm 2.3956 (+ 4.59%) 1.1702 (+ 10.43%)
ea = 0 μm, l = 10 μm 2.1918 (− 4.30%) 0.9498 (− 10.37%)

0.5 Conventional 2.2847 1.0535
ea = 10 μm, l = 0 μm 2.3895 (+ 4.59%) 1.1640 (+ 10.49%)
ea = 0 μm, l = 10 μm 2.1865 (− 4.30%) 0.9436 (− 10.43%)

0.8 Conventional 2.2672 1.0344
ea = 10 μm, l = 0 μm 2.3708 (+ 4.57%) 1.1447 (+ 10.66%)
ea = 0 μm, l = 10 μm 2.1701 (− 4.28%) 0.9245 (− 10.62%)

Clamped–clamped boundary conditions
0.2 Conventional 2.1244 0.8698

ea = 10 μm, l = 0 μm 2.2183 (+ 4.42%) 0.9800 (+ 12.67%)
ea = 0 μm, l = 10 μm 2.0365 (− 4.14%) 0.7575 (− 12.91%)

0.5 Conventional 2.1193 0.8635
ea = 10 μm, l = 0 μm 2.2129 (+ 4.42%) 0.9739 (+ 12.78%)
ea = 0 μm, l = 10 μm 2.0318 (− 4.13%) 0.7511 (− 13.02%)

0.8 Conventional 2.1037 0.8442
ea = 10 μm, l = 0 μm 2.1962 (+ 4.38%) 0.9548 (+ 13.10%)
ea = 0 μm, l = 10 μm 2.0172 (− 4.11%) 0.7311 (− 13.40%)

Fig. 6  Influence of CNT amount inside clusters on the nonlocal strain 
gradient-based linear frequency–load path of agglomerated nanocom-
posite microbeams ( � = 0.9,VCNT = 0.1)
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and strain gradient small-scale effects, respectively. How-
ever, for an agglomerated CNT-reinforced nanocomposite 
microbeam in which the most CNTs are outside clusters, 
increasing the value of the cluster volume fraction plays an 
opposite role in the size dependency features. Moreover, it 
is seen that for all values of the cluster volume fraction and 
within the both postbuckling and prebuckling territories, this 
softening character related to the nonlocality is somehow 
more considerable than the stiffening character associated 
with the strain gradient size effect.

Tables 4 and 5 give the nonlocal strain gradient-based 
nonlinear frequency ratios ( �nl∕�l ) associated with a spe-
cific maximum deflection of axially compressed agglom-
erated CNT-reinforced nanocomposite microbeams cor-
responding to different CNT amounts inside clusters with 
high ( � = 0.9 ) and low ( � = 0.2 ) cluster volume fractions, 
respectively. It is demonstrated that for an agglomerated 
CNT-reinforced nanocomposite microbeam having a low 

cluster volume fraction, increasing the CNT amount inside 
clusters causes to enhance the significance of the soften-
ing and stiffing characters associated with the nonlocal and 
strain gradient small-scale effects, respectively. However, for 
an agglomerated CNT-reinforced nanocomposite microbeam 
having a high cluster volume fraction, increasing the CNT 
amount inside clusters plays an opposite role. These obser-
vations are repeated for all kinds of boundary conditions.

In Figs. 6 and 7, the nonlocal strain gradient-based lin-
ear frequency–load response and nonlinear frequency ratio-
load response are illustrated, respectively, for agglomerated 
CNT-reinforced nanocomposite microbeams having high 
cluster volume fractions with various CNT amounts inside 
clusters. It is indicated that by increasing the CNT amount 
inside clusters, the bifurcation point shifts to a lower axial 
compressive load. In addition, it results in that the linear 
frequency of the agglomerated nanocomposite microbeam 
before the bifurcation point increases, but reduces after the 
bifurcation point. Furthermore, for a specific maximum 
deflection induced in the microbeam, the nonlinear fre-
quency ratio gets larger by decreasing the CNT amount out-
side clusters. These anticipations are repeated for all kinds 
of end supports.

Figures 8 and 9 show the nonlocal strain gradient-based 
linear frequency–load response and nonlinear frequency 

Fig. 7  Influence of CNT amount inside clusters on the nonlocal strain 
gradient-based nonlinear frequency ratio–deflection path of agglom-
erated nanocomposite microbeams ( � = 0.9,VCNT = 0.1)

Fig. 8  Influence of cluster volume fraction on the nonlocal strain gra-
dient-based linear frequency–load path of agglomerated nanocompos-
ite microbeams ( � = 0.9,VCNT = 0.1)
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ratio-load response are illustrated, respectively, for 
agglomerated CNT-reinforced nanocomposite microbeams 
having high CNT amount inside clusters with various clus-
ter volume fractions. It can be found that by decreasing 
the cluster volume fraction, the bifurcation point shifts 
to a higher axial compressive load. Moreover, it causes 
that the linear frequency of the agglomerated nanocom-
posite microbeam before the bifurcation point reduces, 
but enhances after the bifurcation point. In addition, for a 
specific maximum deflection induced in the agglomerated 
microbeam having high CNT amount inside clusters, the 
nonlinear frequency ratio becomes smaller by increasing 
the CNT amount outside clusters. These observations can 
be detected for all kinds of end supports.

5  Concluding remarks

The prime objective of the present research study was to 
analyze the size-dependent quasi-3D nonlinear dynamical 
stability characteristics of agglomerated nanocomposite 
microbeams reinforced with randomly oriented CNTs. In 
this regard, the nonlocal strain gradient continuum elastic-
ity was applied to a quasi-3D beam theory incorporating 
the sinusoidal transverse shear and normal shape functions 
in conjunction with geometrical nonlinearity. The con-
structive material properties were extracted based upon a 
micromechanical homogenization scheme containing only 
two parameters to capture the associated agglomeration of 
randomly oriented CNTs. Afterwards, an efficient numerical 
solving process was employed to trace the associated size-
dependent nonlinear responses.

It was observed that the nonlocality effect on the linear 
frequency is opposite before and after the bifurcation point 
as within the prebuckling territory, it results in lower linear 
frequency while within the postbuckling domain, it leads 
to higher values of �l . This change in the size dependency 
character before and after the bifurcation point can be also 
found for the strain gradient type of size effect but with an 
opposite pattern. It was indicated that for an agglomerated 
CNT-reinforced nanocomposite microbeam having a low 
cluster volume fraction, increasing the CNT amount inside 
clusters causes to enhance the significance of the soften-
ing and stiffing characters associated with the nonlocal and 
strain gradient small-scale effects, respectively. However, for 
an agglomerated CNT-reinforced nanocomposite microbeam 
having a high cluster volume fraction, increasing the CNT 
amount inside clusters plays an opposite role. These obser-
vations were repeated for all kinds of boundary conditions. 
In addition, for a specific maximum deflection induced in 
the microbeam, the nonlinear frequency ratio gets larger by 
decreasing the CNT amount outside clusters.
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