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Abstract
In the present study, experimental works on friction stir spot welding (FSSW) of dissimilar AA 7075-T651/ Ti-6Al-4V alloys 
under various process conditions to weld joints have been reviews and multiple machine learning algorithms have been 
applied to forecast tensile shear strength. The influences of welding parameters such as dwell period and revolving speed on 
the mechanical and microstructural characteristics of weld joints were examined. Microstructural analyses were conducted 
using optical and scanning electron microscopy (SEM–EDS). The maximum tensile shear strength of 3457.2 N was achieved 
at the revolving speed of 1000 rpm and dwell period of 10 s. Dwell period has significant impact on the tensile shear strength 
of weld joints. A sharp decline (74.70%) in tensile shear strength was observed at longer dwell periods and high revolving 
speeds. In addition, a considerable improvement of 53.38% was observed in tensile shear strength at low dwell periods and 
high revolving speeds. Most significant machine learning data-driven methods used in welding such as, artificial neural 
network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM) and regression model 
were used to forecast the tensile shear strength of welded joints at selected welding parameters. The performance of each 
model was examined in training and validation stages and compared with experimental data. To evaluate the performance of 
the developed models, the two quantitative standard statistical measures of prediction error % and root mean squared error 
(RMSE) were applied. The performance of regression, ANN, ANFIS and SVM were compared and SVM regression model 
was found to perform better than ANN and ANFIS in forecasting the tensile shear strength of FSSW joints.

Keywords Friction stir spot welding · Artificial neural network · Adaptive neuro-fuzzy inference system · Support vector 
machine · Multilinear regression

1 Introduction

Currently, global resources and environmental conditions 
have become increasingly complex and special attention is 
being paid to lightweight materials to reduce the weights 
of aerospace structures, automobile bodies, high-speed 
passenger trains, etc. [1]. For weight reduction, the most 
effective method is the application of lightweight materi-
als. In existing lightweight structures in aerospace and auto-
motive structure, because elements such as Al, Mg and Ti 
are implanted of advancement in fabrication and process-
ing methods [2]. The biggest problem in dissimilar Al and 
Ti alloy fusion joining process is diffusion of Al before 
reaching the melting point of Ti [3]. This huge difference 
between the melting point, thermal conductivity, specific 
heat capacity and linear expansion coefficient of Al and Ti 
alloys results in great deformation, internal stress and lack 
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of bounding during joining process [4]. To solve this issue, 
some solid-state joining methods such as diffusion welding 
[5], laser welding–brazing [6], pressure welding [7], and 
friction welding [8] have been introduced. These specified 
methods had significant capability to weld dissimilar Al–Ti 
alloys that might forms intermetallic compounds. One emi-
nent element in joining dissimilar Al–Ti alloys is nucleation 
of  Ti3Al, TiAl and  TiAl3 intermetallic phases. These com-
pounds mainly rely on heating rate, thermal cycle, maximum 
heating temperature, cooling rate, and dwell period at high 
temperature [9]. Comparatively, friction stir welding (FSW) 
shows significant reduction in intermetallic compounds 
(IMC) layer compared to other solid-state joining meth-
ods, because FSW process is a solid-state joining method 
which occurs below melting temperature [10]. Friction stir 
spot welding (FSSW) was developed for the spot joining of 
similar and dissimilar metals as a solid-state joining method 
which was fundamentally based on FSW procedure. FSSW 
was first introduced by Kawasaki as a substitute for resist-
ance spot welding (RSW) in 2000 and used by corporations 
such as Mazda and Ford in 2003 in car body joints [11]. 
The newly developed FSSW technique provides more tech-
nical advantages such as low energy input requirement, less 
problem related to porosity and cracking, low heat affected 
zone (HAZ) and low residual compared to conventional 
resistance spot weld (RSW). Therefore, due to the technical 
advantages and ability of FSSW to joint dissimilar alloys, 
it has been considered as a substitute for RSW in automo-
tive applications [12]. However, in last few decades, many 
pioneering works have been performed on the FSSW of dis-
similar alloys as a substitute for RSW in automobile applica-
tion; however, further investigation is required. FSSW has 
extensively been applied in the manufacturing of body parts 
in automobiles, and has been found to be very economical 
in joining Al and Cu in aluminum car bodies [13]. Mazda 
is using this FSSW technique in its MX-5 sports car since 
2006 to swap Al trunk lid to steel hinges. Toyota has also 
used this process in the manufacturing of deck lid and hood 
of its Prius hybrid vehicle [14].

Currently, ML algorithms are employed for regression, 
classification, clustering or dimensionality contraction in 
large sets of data inputs [15]. Numerous ML models are 
used to explore the required output variables using differ-
ent ML tools to compare input restriction and output vari-
ables. Regression method is one of the most established and 
frequently applied techniques for forecasting/prediction. It 
is used to determine the relation between reliant and self-
reliant variables. Regression model establishes relationships 
among more than one input value and several output values. 
MLR is an appropriate tool for the estimation of real func-
tional connections between input and response variables that 
may distinguish the nature of joints [16]. ANN was one of 
the first ML methods which was developed in 1940s on the 

basis of human brain neuron system. Later in 1980s, it found 
its first application and now, it is used in several engineer-
ing operations due to its competence of removing complex 
and non-linear relations among the characteristics of various 
systems [17]. Nevertheless, ANN can only provide reliable 
results, when a huge number of data set is used for training. 
In some cases, it provides very poor analysis ability and offer 
local optimal solution instead of best global answer [18]. 
The major disadvantage of ANN model is its incompetence 
to define weight values affiliated to ANN model. Further-
more, to address this problems, ANN can be resolved using 
a hybrid artificial technique denoted as neuro-fuzzy system, 
which implies the combination of fuzzy reasoning and ANN. 
Adaptive neuro-fuzzy inference system (ANFIS) uses both 
neural network and fuzzy system that combines both human 
like reasoning style of fuzzy systems with the learning and 
connectionist structure of neural network. The biggest disad-
vantage of ANN model is eliminated in ANFIS using fuzzy 
inference system, which provides a weight to each function. 
Therefore, this weight function ability of ANFIS system 
make it superior to others and it has been applied in many 
field of studies as demonstrated Kar et al. [19] in his study. 
ANFIS model is more favored due to its easy implementa-
tion, fast and precise learning, distinct generalization ability, 
excellent clarification aptitude using fuzzy rules and easy 
combination with both semantic and mathematical informa-
tion for trouble solving [20]. In early 1990s, a supervised ML 
approach called SVM was introduced as non-linear solution 
for classification and regression functions. In some fields 
(such as hydrology), researcher found that SVM was a better 
method in forecasting compared to ANN and ANFIS. SVM 
has better analysis capability, unprecedented and globally 
excellent architecture, and rapid data training capability. All 
these features makes SVM more robust, adequate and trust-
worthy [21]. ML models are extensively being employed in 
different manufacturing industries and researchers are apply-
ing them in real-life applications. Shojaeefard et al. [22] 
focused on the microstructure and mechanical features of 
the FSW of AA7075-O to AA5083-O alloys and developed 
an ANN model to simulate the correlation between the fric-
tion stir welding parameters and mechanical characteristics 
of the weld joints. ANN model works excellent and predicts 
the ultimate tensile strength and hardness of butt joints. 
Dewan et al. [23] applied ANN and ANFIS models to esti-
mate the ultimate tensile strength of FSW parameters. From 
the results of ANN and ANFIS, it was found that optimized 
ANFIS models provided more improved results than ANN. 
Armansyah et al. [24] applied SVM to establish a load level 
forecasting system for the FSSW joints of AA5052-H112 Al 
alloy. The results obtained for training and testing from the 
proposed system exhibited that the classification of load data 
matched 100% to the required loads. Panda et al. [25] inves-
tigated the failure load of spot-welded B.S. 1050 Al sheets 
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by utilizing AI methods such as ANFIS and SVM regression 
models. The performance of both models was compared in 
terms of relative error. The statistical comparison of both 
models showed that SVR model outperformed ANFIS.

In this work, 7075-T651 and Ti-6Al-4V Al alloys were 
welded by FSSW. The effects of revolving speed and dwell 
period on the mechanical and microstructural characteristics 
of weld joints were investigated. The obtained TSS results 
in this experimental study on dissimilar alloys were utilized 
to develop and train machine learning models (i.e. ANN, 
ANFIS, SVM and regression) to predict the response of all 
mentions models. All specified ML models were individu-
ally applied in the field of FSW and FSSW to forecast TSS 
response but they were not applied combined to predict the 
response. Therefore, this study was performed to categorize 
the performance of all these models on a specified data set 
of FSSW joints. The performance of each model was clas-
sified on the premise of root mean square error (RMSE) and 
overall prediction error % of the models from the obtained 
experimental data.

2  Experimental and machine learning 
methodology

2.1  Material preparation

In this study, AA7075-T651 and Ti-6Al-4V alloys with 
4 mm thickness were adopted to perform experiments and 
the chemical composition of the plates are summarized in 
Table 1. Joints were made in a lap position using FSSW 
method to ensure joint reliability. The plates were prepared 
according to JIS Z3136 Standard [26] with dimensions of 
100 mm × 35 mm × 4 mm, as shown in Fig. 3b. Prior to 
welding, all prepared sample sheets of AA7075-T651 and 
Ti-6Al-4V alloys were cleaned with industrial alcohol to 
remove impurities from the surface and protect from con-
tamination or oxidization. Figure 1 illustrates the position 
of sample plates and role of tool which was used to weld 
the plates. Welding tool was made of H-13 high strength 
steel alloy. The dimensions of the prepared tool are shown 
in Fig. 2.

2.2  Experiment setup and procedure

In this study, semi-automatic milling machine model 
FV250E was used to weld AA7075-T651 and Ti-6Al-4V 

alloys. The operating machine was semi-automatic and 
therefore, a special assembly mechanism was developed to 
hold the samples during welding process. A 25 mm hole was 
drilled in the assembly mechanism, as shown in Fig. 3a, to 
weld the specimen where tool could penetrate in metal sheet 
to make a weld joint. AA 7075-T651 aluminum plate were 
placed on top due to their lower melting temperature and 
easier infiltration compare to Ti-6Al-4V titanium alloy plate 
with high melting temperature and very difficult infiltra-
tion. The crossovers of both plates were 35 × 35 mm which 
were pointed out by cross line, as seen in Fig. 3b. Welding 

Table 1  Chemical composition 
and mechanical characteristics 
of base metals

Alloy Al Ti V Zn Mg Si Mn Cr Cu Fe C O H

7075-T651 Bal – – 5.72 2.63 0.08 0.05 0.19 1.55 0.19 – – –
Ti-6Al–4V 6.25 Bal 3.91 – – – – – – 0.14 0.023 0.126 0.002

Plunging Stirring Drawing out

Fig. 1  Illustration of FSSW joining process of AA7075-T651/Ti-6Al-
4V

5.8

Ø5 

Ø16

Fig. 2  The dimensions of the welding tool (mm) used in FSSW pro-
cess
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process parameters were shuffled using full factorial design 
of experiment method with two measurable process stages. 
Revolving speed (RS) was classified into three sublevels and 
dwell period (DP) was distinguished into two sublevels, as 
seen in Table 2. Minitab 18.1 was used to arbitrate process 
parameters.

Tensile shear strength (TSS) tests were performed on uni-
versal testing machine (INSTRON 3385H) at constant load 
rate of 3 mm/min at room temperature for all samples. Three 
replicate samples were created for each specified welding 
parameters shown in Table 3. Separate samples were pro-
duced for microstructural and micro-hardness analyses. All 
samples were sectioned in the middle of joint structure for 
characterization and were cut using electrical discharge 
machine (DK-7763 EDM). All samples were mounted with 
epoxy hardener and resins with 2:1 ratio. The mounted 
specimens were grinded with specified abrasive papers 
P220, P320, P500, P1000, P2400 and P4000 to get abrasion 
free surfaces. Then, grinded specimens were washed with 
distilled water to prepare them for polishing. All prepared 
samples were polished by particle-impregnated carrier paste 
with grit size of 1 µm. Keller’s reagent  [H2O (95 ml) +  HNO3 
(2.5 ml) + HCL (1.5 ml) + HF (1 ml)] was used to etch the 
specimens.

In this work, the hardness results of welded joints were 
taken along horizontal direction. Micro-hardness tests 
were conducted according to ASTM E384 standard [27]. 
Tukon micro-hardness tester (TU 300 FM) was used to con-
duct indentation. Micro-hardness tests were performed at 

0.5HV Vickers hardener with DP of 20 s at constant force 
of 4.903 N. Along horizontal direction, diversified indents 
were made on both sides of weld cross section, as shown in 
Fig. 9. Micro-hardness tests were conducted after 40 days of 
legitimate aging period.

2.3  Machine learning methods

ML has an important statistical section denoted as neural 
network (NN) which is extensively being utilized in various 
forecasting projects. Today, ML applications are being used 
in many fields and industries such as medical, weather fore-
cast, river water flow and many more [28]. NN is increas-
ingly used in artificial intelligent models and is based on 
the ability of human neuron system to process information. 
Astronomical researchers were attracted to ANN due to their 
outstanding performance based on non-linear input variables 
[29]. Psychologist Frank Rosenblatt first introduced artifi-
cial neural network (ANN), named as ‘perceptron’, in 1958. 
ANNs are data processing tools and are frequently used for 
prediction and classification [30]. Figure 4 shows multilayer 
ANN perceptron arrangement with three layers of input, hid-
den, and output. The input layer resided all input parameters. 
Input layer information was further refined in hidden layers 
section, and pursued to output layer. The data set applied to 
train machine learning models of ANN, ANFIS and SVM 
are summarized in Table 4.

ANFIS model was first established and introduced by 
Jang [31] and is a combination of NN and fuzzy inference 

Fig. 3  FSSW of AA7075-T651 with Ti-6Al-4V alloy, a assembly mechanism b welded sample according to JIS Z3136 standard

Table 2  Full factorial design of 
experiment  23 No Std order Run order A B RS (rpm) DP (S)

1 6 1 1 1 2000 10
2 3 2 0 − 1 1400 5
3 1 3 − 1 − 1 1000 5
4 2 4 − 1 1 1000 10
5 4 5 0 1 1400 10
6 5 6 1 − 1 2000 5
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system (FIS). Takagi [32] proposed FIS, also known as 
fuzzy model, and Sugeno et al. [33] developed an organ-
ized method to generate fuzzy rules from a data set with 
input and output variables. This five-layer rules inference 
system was developed together by Takagi, Sugeno and Kang 
(TSK). ANFIS with two inputs x and y and one output F was 
selected. It was assumed that rule base contained two fuzzy 
if–then rules of TSK:

where ai, bi, ci (i = 1, 2) are linear consequent parameters 
and X1, X2, Y1 and Y2 are the linguistic terms of precondition, 
and Fig. 5 shows ANFIS architecture. In this interference 

Rule 1 ∶ If
(
x is X1

)
and

(
y is Y1

)
then F1 = a1x + b1y + c1,

Rule 2 ∶ If
(
x is X2

)
and

(
y is Y2

)
then F2 = a2x + b2y + c2,

method, the outcomes of individual rules are consecutive 
combination of intake value added by a constant term. 
Weighted average is the final outcome of each rule. ANFIS 

Table 3  Randomized full 
factorial design of experiment 
models with three replications

Std order Run order PtType Blocks Dwell period 
(s)

Revolving 
speed (rpm)

Tensile shear 
strength (N)

14 1 1 1 5 1400 979.37
4 2 1 1 10 1000 3384.32
1 3 1 1 5 1000 926.56
18 4 1 1 10 2000 813.76
13 5 1 1 5 1000 958.47
11 6 1 1 10 1400 2215.08
17 7 1 1 10 1400 2241.56
16 8 1 1 10 1000 3457.11
8 9 1 1 5 1400 1084.03
7 10 1 1 5 1000 872.26
3 11 1 1 5 2000 2024.76
6 12 1 1 10 2000 874.58
9 13 1 1 5 2000 2148.01
12 14 1 1

1
10 2000 786.94

15 15 1 1 5 2000 2092.42
2 16 1 5 1400 1071.26
5 17 1 1 10 1400 2120.43
10 18 1 1 10 1000 3336.17

Revolving speed

Dwell period

Tensile shear Strength

Input Layer Hidden Layer Output Layer

Fig. 4  Schematic of ANN layer

Table 4  Machine learning data sets used to train the model sets of 
ANN, ANFIS and SVM

Dwell period (s) Revolving speed (rpm) Tensile shear 
strength (N)

5 1000 926.56
5 1000 958.47
5 1000 872.26
10 1000 3384.32
10 1000 3457.11
10 1000 3336.17
5 1400 979.37
5 1400 1084.03
5 1400 1071.26
10 1400 2215.08
10 1400 2241.56
10 1400 2120.43
5 2000 2024.76
5 2000 2148.01
5 2000 2092.42
10 2000 813.76
10 2000 874.58
10 2000 786.94
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architecture consists of five layers, as described below in 
detail [31].

SVM is a supervised training algorithm and is used for 
classification and regression analyses [34]. SVM is basi-
cally divided into two classes, support vector classification 
(SVC) and support vector regression (SVR). SVR was first 
proposed in 1997 by Vapnik et al. [35] and could be enforced 
to a statistical regression to help evaluate the relationships 
among variables. SVR anticipates the values of continuous 
dependent variable, unlike SVC that only classifies pattern 
into discrete classes. SVR relies on the subgroup of training 
data which lies within the margin of tolerance. SVR does not 
consider the data points which are beyond the margin of tol-
erance. The main goal of SVR model is to create a function 
with the highest tolerance deviation from the actual obtained 
targets for all training data and at the same time behave as 
flat as possible Fig. 6 [36].

Regression determination is the most frequently used 
classical estimation method to examine the combination of 
relevant and irrelevant values. Relationships among input 
and predicted variables could be describes by using the fol-
lowing linear model equation.

where �0…�i represent regression coefficients and �i is arbi-
trary error examines the overall performance of the model 
at each regression coefficient [37].

3  Experimental results and discussion

3.1  Temperature examination of FSSW process

In FSSW method, inflated heat has a key function in the 
mixing and plastic flow of materials. However, temperature 
has significant influence on the nucleation and growth of 
IMCs, because the formation of IMC is thermally mobilized 
[38]. Temperature measurement of AA7075-T651 aluminum 
alloy and titanium sheet was conducted using Thermometer 
(PCE-T390) during FSSW process. The thermometer was 
type K thermocouple temperature sensor with four input 
channels with temperature accuracy of ± 5 °C. Type K ther-
mocouple was adjusted on the upper aluminum sheet near 
tool penetration region. Figure 7 shows the peak tempera-
tures of AA7075-T651 and Ti-6Al-4V alloys during FSSW 
process at different revolving speeds and dwell periods. The 
temperature of weld joint was increased as the revolving 
speed and dwell period of the weld joint were increased. 
Temperature profile showed a linear relation between revolv-
ing speed and dwell period. As revolving speed and dwell 
period were increased, temperature was also increased. The 
maximum temperature of 329.2 °C was acquired at revolv-
ing speed of 2000 rpm and 10 s of dwell period. While the 
minimum temperature of 278 °C was obtained at revolving 
speed of 1000 rpm and dwell period of 5 s. At all revolv-
ing speeds, when dwell period increase from 5 to 10 s a 
significant improvement in temperature results obtained 

(1)Y = �0 +
∑

�iXi + �i,

Fig. 5  Type-3 ANFIS structure with two inputs and one output with 
two rules

Fig. 6  Schematic explanation of 
SVC and SVR
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[39]. A significant increase in temperature up to 15.55 was 
seen by increasing revolving speed from 1000 to 2000 rpm. 
The obtained results demonstrated that maximum revolving 
speed and longer dwell period produced immense heat input 
leading to high-temperature generation [40].

3.2  Microstructure analysis

Optical and stereo microscopes were used to characterize the 
microstructural features of welded samples at different weld-
ing parameters. Low magnification stereo microscope was 
used to examine the whole structure of welded specimens, 
as shown in Fig. 8. High magnification optical Olympus 
microscope was used to examine the internal joint features 
of welded joints, as shown in Fig. 9. At certain welding 
parameters, tool pin penetrated into upper sheet, since mate-
rial underneath tool pin become soft due to frictional heat 
and squeezed downward because of tool penetration causing 
lower sheet material to move upward toward the upper sheet 
and soften material mixed at edges of two facial surface 
that make a strong joint between two plates [41].Typically, 
in FSSW joints, faying surfaces exhibit a unique geome-
try known as ‘hook’, as shown in Fig. 8a–d. This hooking 
between faying surfaces is a result of inadequate metallic 
sticking between the two plates due to trapped oxide films 
and upward displacement during downward penetration of 
tool. In SZ, the broken particles of oxide layers are properly 
mixed with plasticized material and form a continuous joint. 
However, outside SZ, oxide layer fragments stay unmixed 
because of low stirring which often forms a flow curved pro-
file denoted as hook. The distribution of oxide film and hook 
size depends on welding parameters [42]. The distance from 
the tip of the hook to the interface of keyhole was referred 
to as weld bond width. Figure 8a–d exhibits that geometri-
cal features such as width of bond, SZ size, height of the 
hook of joints and adjustment varied according to welding 
parameters [43]. The upper bond width of weld specimen 

of shorter dwell period had larger bond width compared to 
longer dwell periods, especially at 1000 and 1400 rpm and 
5 s dwell period. Normally, at longer dwell periods, heat 
input is increased which results in the formation of larger 
bond widths, but due to low revolving speeds at 1000 rpm, 
longer dwell periods play crucial part in making materials 
softer resulting in upward flow toward pinhole and crea-
tion of smaller hook heights and lower bond widths and, 
therefore, stronger joints [44], as shown in Fig. 8a. How-
ever, some defects were found in these small interfacial hook 
regions that might be due to insufficient metallurgical bond-
ing during welding process. Interfacial hooks act as preexist-
ing cracks and result in failure in weld joints [45]. Microc-
racks were found in hook region due to broken unmixed Ti 
particles with trapped oxide layer during material mixing 
at specified welding parameters. However, elongated grain 
particles of titanium alloys are visible in the hook region 
which are produced due to partial recrystallization at specific 
welding parameters, as shown in Fig. 10c, d [46].

Similar phenomena were observed in microstructural 
analysis of specimens at 1400 revolving speed and dwell 
period of 10  s. Because of revolving speed of higher 
than 1000 rpm, macro-cracks were found in hook region 

250
260
270
280
290
300
310
320
330
340

1000 1400 2000

T
em

pr
at

ur
e 

(o C
)

Revolving speed (rpm)

5(Sec) 10(Sec)

Fig. 7  Temperature profile of FSSW joints at specified welding 
parameters

Fig. 8  Stereo macroscopic images at different revolving speeds and 
dwell periods a 1000 rpm and 10 s, b 1000 rpm and 5 s, c 1400 rpm 
and 10 s, d 1400 rpm and 5 s
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which resulted in lower strength of weld joints, as shown 
in Fig. 10d. In this figure, cracks along grain boundaries 
of some unmixed aluminum alloys were presented which 
might be due to excessive heat generation. Figure 10c shows 
longer bond widths at shorter dwell periods which was due 
to lower time for material to flow upward during FSSW pro-
cess resulting in longer bond widths. Even though increment 
in bonded width had no effect on the TSS of weld joint, 
because the creation of cracks in hook and some unmixed 
and broken particles of titanium alloys play main roles in 
low TSS, as shown in Fig. 13 [47]. Figure 10e, f represent 
the interfacial bounded width of the joint fabricated at high 
revolving speed of 2000 rpm and dwell periods of 5 and 
10 s, respectively. A visible macro-crack at joint weld inter-
face was noticed at all dwell periods. Theses cracks were 
formed in the aluminum side due to immense heat input dur-
ing welding procedure. SZ suffers from the highest welding 
temperature due to high revolving speeds and dwell periods; 
therefore, high input dynamic recrystallization occurs and 
fine and equiaxed grains were noticed in SZ, as shown in 
Fig. 10f. Cracks mostly propagate in the SZ of the interface 
of upper sheet weld joint. Some researchers have suggested 
that if welds were constructed with larger bond widths and 
tinier hook altitudes, the weld strength of FSSW joints could 
be improved [40]. The interface of SZ and TMAZ was weak 
due to microstructure variation during FSSW process. A 
large fracture line was observed in the upper sheet of weld 
interface which caused early fracture during TSS test. It is 
well known that there are additional crystal imperfections 

such as vacancy and dislocation in the grain borders of weld 
joint [48].

The effects of welding parameters could be observed in 
the SZ and TMAZ of welded structure. The optical micro-
structure shown in Fig. 9 presented unmixed region in SZ 
joint interface area which might be generated, because low 
revolving speeds produced low heat and low dwell periods 
did not provide enough time to stir well and create strong 
weld joint. Therefore, in SZ area, cracks were obvious which 
reduced joint strength. Similarly, as was seen from Fig. 8a, 
b for revolving speed of 1000 rpm and dwell period of 10 s, 
stereo macroscope showed smaller hook regions compare 
to that obtained for dwell period of 5 s, which showed the 
effect of dwell period on welded joint microstructure. Fig-
ure 10a, b represents the optical microstructures of left and 
right sides of hook region at 1000 rpm revolving speed and 
10 s dwell period which showed good joint bond at the inter-
face. Dwell period had significant importance in obtaining 
high strength, because longer dwell periods allow materials 
to stir and improve material flow during tool penetration. As 
revolving speed was increased to 2000 rpm, heat generation 
was increased which caused variations in the microstructure 
of compound area. In Fig. 10e, f, white and gray regions pre-
sent alpha and beta phases in hook region. Laminar β phase 
was prominent in hook region. In SZ area, grain refinement 
could be seen which was due to mechanical stresses along 
the direction of applied force causes friction. Whereas in 
TMAZ region, the grains are elongated in direction parallel 
to the boundary, which provided evidence of material flow 

Fig. 9  Cross-sectional images 
of welding joint at 1000 rpm 
revolving speed and 5 s dwell 
period at pointed section cracks
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during FSSW process. The material that flow under the tool 
undergoes extreme plastic deformation in sense of strain 
and strain rate at high temperature, which led to ultrafine 
equiaxed grains due to recrystallization around the revolving 
tool [49]. Mostly, recrystallization region was referred to as 
SZ. The outer side of SZ was TMAZ, which was exposed 
to moderate thermal cycle and limited plastic deformation. 

Therefore, it can be expected that recrystallization did not 
occur in TMAZ due to lower temperatures which caused 
insufficient plastic deformation [50].

Al/Ti hybrid structures have some benefits compare to 
single materials in term of accomplishment and lightweight 
structure demands. Al/Ti metals have mediocre inter-sol-
ubility and have brittle IMC; therefore, the possibility of 

Fig. 10  Optical micrographs at different welding parameters: a 1000 rpm and 10 s left hook, b 1000 rpm and 10 s right hook, c 1400 rpm and 
5 s, d 1400 rpm and 10 s, e 2000 rpm and 5 s, f 2000 rpm and 10 s
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interfacial crack during welding process is inevitable and 
joint features can vigorously degraded. Thus, it is difficult 
to develop strong Al/Ti weld joints without any cracks or 
imperfections. In the interface of dissimilar weld joints, 
cracks propagate due to the formation of intermetallic com-
pounds. According to duality phase diagram, both Ti and 
Al were active materials which could create  Ti3Al, TiAl 
and  Al3Ti and other intermetallic compounds [51]. In the 
junction of weld joint, two zones are mainly present: Al-
rich and Ti–rich. In Al/Ti interface of a weld joint, mostly 
Al metal dominates. This shows that phase change mostly 
happened in Al-rich area. However, it was observed in some 
cases in Ti-rich areas forming titanium-rich intermetallic 
compounds. According to research, the most preferable 
IMC in welding of Al/Ti has been  TiAl3 due to its transit 
phase, when response temperature is lower than the melting 
point of Al [52]. The formation of  TiAl3 IMCs were dis-
cussed in detail elsewhere [53]. In this study, FSSW welded 
samples at 2000 rpm revolving speed and 5 s dwell period 
was selected for SEM–EDS analysis. SEM–EDS analyses 
were carried at weld joint interfaces and under tool pin 
area. Figure 11 shows AlTi intermetallic compound at the 
interface of welded specimen and Fig. 12 exhibits  Ti3Al 

IMCs under tool pin region. The formation of AlTi IMCs 
depended on process temperature and according to binary 
diagram, AlTi IMCs was found in welding dissimilar alloys. 
The free energy of AlTi compound was greater than that 
of  TiAl3 compound [54]. The maximum process tempera-
ture obtained in this FSSW process was 329.2 °C. Accord-
ing to Klassen et al. [55], the dispersion of Al atoms in Ti 
plate had greater influence than the spread of Ti atoms in 
Al plate. Therefore, AlTi and  Al3Ti IMCs should be formed 
chronologically due to the prominent diffusion of Al into Ti 
Side. However, in our research,  Ti3Al IMCs were formed 
at weld interface due to the huge amounts of Ti fragments 
at elevated temperatures. According to Salishchev et al. 
[56],  Ti3Al grains were divided into fragments by low angle 
boundaries and recrystallized grains were formed around 
them. Recrystallization of  Ti3Al could be accelerated by the 
transformation of material into disordered state. However, at 
low temperature, the volume of recrystallized material could 
significantly increase during deformation. High revolving 
speeds raised Ti fragments in joint interface region resulting 
in the development of IMCs and nucleation of cracks in weld 
joint and deprecation of tensile shear strength. Figure 10e 
shows cracks and voids at the weld interface of the joint. The 

Fig. 11  SEM–EDS analysis of FSSW joints of dissimilar AA7075-T651 and Ti-6Al-4V at 2000 rpm revolving speed and 5 s dwell period

Fig. 12  SEM–EDS analysis of FSSW joints of dissimilar AA7075-T651 and Ti-6Al-4V at 2000 rpm revolving speed and 5 s dwell period
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movement of Ti atoms toward aluminum side produce  Ti3Al 
compound. As revolving speed was increased, the amount of 
Ti fragments were increased which produced brittle IMCs 
at joint surface and the occurrence of fracture on the joint 
at higher revolving speeds was related to Ti fragments [43]. 
According to Esmaeili et al. [57], in friction welding pro-
cess, the establishment of abundant amount of rigid material 
fragments created resistance in soft material flow. Therefore, 
the dispersion of rigid material fragments in soft material 
flow formed defects such as voids and cracks in soft metal 
near the weld interface. According to Fuji et al. [58], the 
dominant factor in the mechanical properties of friction 
welded joints of Al and Ti dissimilar alloys was the thick-
ness of IMCs produced at weld interface. The critical thick-
ness of intermetallic compound layer was found to be 5 µm. 
Furthermore, in our experiments, IMCs occurred extremely 
in a very narrow region at the interface of weld joints. The 
thickness of  Ti3Al compound might not exceed the critical 
value of 5 µm; therefore, the obtained joints exhibited con-
siderable tensile shear strength. Wu et al. [59] confirmed 
the thickness of IMC in his study on friction stir welding of 
Al 6061with Ti-6Al-4V alloys. The maximum strength was 
achieved because of the formation of thin IMC of  TiAl3 layer 
with only 100 nm thickness at joint interface. The formation 
of IMC layer during FSSW study was remarkably thin (did 
not exceed the critical limit value of 5 µm) resulting in high 
failure load values. They pointed out that small variations in 
dwell period significantly influenced diffusion process dur-
ing the FSSW of AL/Ti joints.

3.3  Tensile shear strength

Tensile shear strength of FSSW joints at specified welding 
criteria are shown in Fig. 13. Revolving speed and dwell 
period had immense effect on the TSS of weld joints which 
were controlled by process parameters. At low dwell period 

of 5 s, maximum TSS values were 958.5 N, 1084.03 N and 
2148.6 N for revolving speeds of 1000, 1400 and 2000 rpm, 
respectively. At low revolving speed of 1000 rpm and dwell 
period of 5 s, lowest TSS value was obtained which was 
due to lower heat generation and shorter period of stirring 
and mixing the materials at the interface that later caused 
joint failure. As revolving speed was increased from 1000 
to 2000 rpm, the value of TSS of weld joint was increased 
to 55.38%. At lower dwell periods, increment in revolving 
speed improved heat generation which increased the fluidity 
of plasticized material at the interface increasing the TSS 
of joint. Therefore, at lower dwell periods, the highest TSS 
was gained at highest revolving speed [60]. Moreover, it has 
been reported that low dwell periods play a key function in 
the failure of FSSW joints [61] (Table 5). 

At high dwell period of 10 s and low revolving speed 
of 1000 rpm, TSS was 3457.2 N and as revolving speed 
was increased to 1400 and then 2000 rpm, joint strength 
was decreased respectively to 2241.565 N and 874.6 N. 
Maximum TSS was obtained at low revolving speed which 
meant low heat generation during welding process [62] but 
dwell period played a key function in enhancing temperature 
and improving material mixing under low revolving speeds 
resulting in establishing strong weld joints [63]. It has been 
proved that dwell period played a critical role in nugget 
thickness. Dwell period was found to be important in attain-
ing large joint lengths that enhanced TSS [64]. Also, high 
dwell periods enhanced process heat increasing volume flow 
of stir material below the tool and broadening joint area [61]. 
High revolving speed and at high dwell period welded joint 
has low TSS [65]. Devaluation in TSS at high dwell periods 
and revolving speeds was because of increase in temperature 
which led to complete plasticization of metal [66]. High heat 
input changed the structure of grains in weld joints changing 
their mechanical properties. It is believed that the TSS of 
weld joint is mainly affected by the formation of interme-
tallic compounds [67]. At high dwell periods and revolving 
speeds, a sharp decline of 74.70% was observed in the TSS 
of the weld joint. Dwell period increased heat input creating 
micro-cracks at the interface and producing IMC compounds 
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Fig. 13  Tensile shear strength of FSSW joints at specified welding 
parameters

Table 5  Tensile shear strength results with standard deviation and 
temperature at specified parameters

Dwell time (s) RPM Tensile load (N) STD

5 1000 958.4744 60.04
10 1000 3457.115 112.59
5 1400 1084.034 108.89
10 1400 2241.565 73.31
5 2000 2148.008 114.75
10 2000 874.5848 53.97
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such as  Ti3Al which depreciated the TSS of welded joints 
(Figs. 11, 12) [51].

3.4  Micro‑hardness

Figure 14 shows the micro-hardness characterization of 
jointed specimens in aluminum plate presenting smoot ten-
dency in TMAZ. The highest micro-hardness of 129.8 HV 
was found in the TMAZ of aluminum region at 2000 rpm 
revolving speed at 10 s dwell period. Enhancement in micro-
hardness was found in TMAZ area rather than SZ due to 
heat flow during solidification which increased grain size. 
The highest micro-hardness in SZ was 124 HV which was 
acquired at revolving speed of 1000 rpm and dwell period 
of 5 s. SZ had lower hardness than TMAZ due to high heat 
input which led to dynamic recrystallization in aluminum 
sheet [68]. Improvement in dwelling period increased the 
heat of process causing coarser grains size, which decreased 
hardness [61]. Reduction in micro-hardness flow of a few 
samples could be due to the formation of micro-cracks at 
maximum revolving speed and longer dwell periods.

At 2000 rpm revolving speed and 10 s dwell period, the 
highest micro-hardness of 386.1 HV was obtained in tita-
nium under tool pin stir region. A minor variation in the 
hardness profile of weld joint was seen at dwell periods of 
5 s and 10 s. On titanium side, high micro-hardness was 
found in the keyhole of weld joint which could be due to 
high temperatures which changed crystal structure and 
made grains more equixed under tool pin [69]. A reason-
able improvement of 13.85% in hardness was observed at 
2000 rpm revolving speed and 10 s dwell period almost 
13.85% higher in keyhole compare to SZ and 4.32% higher 
in keyhole with respect to TMAZ region. Compare to TMAZ 
and keyhole regions, a decline in hardness profile was 
noticed in SZ [68]. The lowest hardness value was obtained 

at 1000 rpm revolving speed and 10 s dwell period which 
was due to low heat input. In titanium region, micro-hard-
ness value was increased in keyhole periphery. This incre-
ment in micro-hardness value might be due to grain refine-
ment [70] which was responsible for higher hardness [65]. 
Inversely, linear combination was found between hardness 
and grain intensity of SZ [61].

4  Machine learning models training

4.1  ANN model training

ANN is a heavily aligned disseminated information pro-
cessing system that has absolute depiction features resem-
bling biological neural networks of human brain [71]. 
Two-layer feed-forward neural network (FFNN) tool with 
backpropagation learning algorithm was applied to predict 
the responses of TSS, because it is a well-known universal 
predictor. Neural network fitting tool was consisted of input 
and output layers, twin-layer feed-forward network with sig-
moid unseen neurons and linear output neurons (fitnet) that 
can be appropriate for easy multi-dimensional mapping of 
problems. MATLAB R2019a computing environment was 
applied to develop the ANN model. The graphical structure 
of the developed neural network model is shown in Fig. 15. 
In this model, eight neurons were applied for hidden layer 
to train the model. There was no specified methods to select 
the number of hidden neurons. Thus, mostly, the selection 
of hidden neurons depended on minimum mean square error 
(MSE). There are various types of algorithms available for 
training model input data. The selection criteria of algo-
rithm were performance and learning speed which could 
provide the best fit to data. Therefore, Levenberg-Marquard 
(LM) backpropagation algorithm was selected to train the 

Fig. 14  Micro-hardness inden-
tation profile of AA7075-T651/
Ti-6Al-4V alloy at various 
process parameters
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model. LM was especially constructed for quicker conver-
gence in backpropagation algorithms. The presented tech-
nique was the quickest and supported numerical solution to 
obtain mean square error [72]. 70% of input data was used 
to train network model, 15% of the data was applied for 
testing and the remaining 15% data of experimental results 
was employed for validation. The model was trained mul-
tiple times until R-square value near to 1 or exactly 1 was 
obtained.

Figure 16 shows the plot of experimental (target) find-
ings and corresponding predicted results of training, 

validation, and test data with overall prediction of the 
model. The correlation coefficient of target values with 
training data was found to be 0.99896. Similarly, the cor-
relation coefficients of validation and test data were 0.9991 
and 0.99967, respectively. The value of correlation coeffi-
cient R-square for validation and test data near to 1 showed 
that the model was trained very well. The overall value of 
R-square of 0.99853 endorsed that ANN model prediction 
efficiency was excellent.

Fig. 15  Neural network archi-
tecture
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Fig. 16  ANN model results of 
training, testing, validation and 
overall data
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4.2  ANFIS model training

ANFIS is basically a combination of two different techniques 
of ANN and fuzzy logic. FIS trained himself by using ANN 
systems. Neuro-adaptive learning method provided a process 
for fuzzy system to learn from the data set [19]. In this study, 
neuro-fuzzy designer tool was used to train the model by 
utilizing the provided data set. Detailed procedure of ANFIS 
training and pseudocode is depicted in Fig. 17. To train the 
model, default hybrid method was selected that possesses the 
advantages of ANN systems and FIS. The most well-known 
fuzzy inference system is shown in Fig. 5. In this study, 
single-output-Sugeno fuzzy inference system (FIS) model 
was automatically generated by using grid partitioning. The 
FIS model utilized in this paper contained two inputs, in 
which one input contained three and the other contained two 
membership functions for input. Membership type for input 
data training was selected as gaussmf function. Error toler-
ance for the model was adjusted as 0.005 and the number of 
epochs was 100 to train the model.

4.3  SVM regression training

SVR model is supervised ML tool that can learn from input 
data. SVR learning model was trained using ten cross-val-
idation processes. Cross-validation is extensively applied 
to assess the accomplishment of classifiers and prediction 
models to calculate error rate. In SVM, ten cross-validation 
is used by default which is denoted by V. In this technique, 
10% data are used each time for validation and remaining 
data is used to train the model. This process continues until 
repetition of training and testing takes place on all data sets. 
Support vector regression model was trained on all models 
and the best trained model was chosen and presented in this 
study. Fine Gaussian and medium Gaussian kernel functions 
provided better results with functional error R-square val-
ues of 0.99 and 0.99 with function root mean square error 
(RMSE) values of 103.23 and 112.57, respectively. Fig-
ures 18 and 19 show regression results.

4.4  Regression model training

The current regression model shown the correlation between 
the input and output parameters. The adequacy of the regres-
sion models is tested with correlation coefficient (R2) value. 
Equation 2 presents the relationship between the revolving 
speed and dwell time and the output as tensile strength. To 
obtain this relation, curve fitting tool was applied to get the 
graphical results of tensile shear strength which obtained 
using a non-linear polynomial equation.

Fig. 17  Flowchart of ANFIS training and testing
Fig. 18  Support vector regression result of fine Gaussian kernel with 
experimental and predicted responses
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The second-order polynomial regression equation was 
applied to show the outcome of the results Y, as shown in 
Eq. 3.

(2)TSS = f (R, T).

(3)Y = a0 +
∑

aixi +
∑

aiix
2

i
+
∑

aijxixj.

Therefore, the expression for two factors and picked poly-
nomial equation was stated in Eq. 4:

where a0 is the average of responses and ai, aii, aij are regres-
sion coefficients [73] which relied on particular linear, inter-
action, and squared terms of factors. Conclusive experimen-
tal connection was assembled by utilizing these coefficients 
and the grown final equation of multi linear regression 
model was represented as

To visually study the effects of process parameters on 
TSS on specified welding parameters, a 3D response sur-
face graph was generated which is shown in Fig. 20. The 
response surface graph showed the influences of parameters 
on welded joints at various revolving speeds (rpm) and dwell 
periods (s), on the TSS of weld joints. The highest TSS 
was obtained at low revolving speeds and immense dwell 
periods.

5  Machine learning model results 
and discussion

Four different ML models were adopted in this study, namely 
ANN, ANFIS, SVM and Regression analysis, to train the 
model and then predict the expected outcomes of TSS of 
FSSW joints. The performance of all models was evaluated 
by computing prediction errors among experimental and 
predicted results based on the following equation.

(4)Y = a0 + aiR + aiiT + aijR × T + a02T
2,

(5)
TSS = −4414 + 1272R + 1.665T − 0.7588RT + 0.00111 ∗ T2.

Fig. 19  Support vector regression result of medium Gaussian kernel 
with experimental and predicted responses

Fig. 20  Response surface graph to represent the effects of welding parameters
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Prediction error equation is the principle tool to process 
the efficiency of a trained model. The model test was trained 
with input parameters to obtain predicted results. The pre-
diction error of trained model demonstrated the overall pre-
diction performance of the specified models. Furthermore, 
RMSE is also a frequently used method to measure model 
error in analytical approximation. The applied RMSE equa-
tion is described below

where N represents entire training data, pi is the assessment 
of required knowledge, and ti is the experimental value. The 
RMSE approach was used to calculate the forecasting effi-
ciency of the work. ANN model had two inputs and one 
output with hidden layer which included eight nodes, begin-
ning with one node to fabricate and evaluate using Leven-
berg–Marquard procedure. The unseen nodes employed 
sigmoid transfer function and outcome node employed lin-
ear transfer function. The model was trained multiple times 
to obtain optimal predicted results. The overall correlation 
coefficient of experimental and predicted outcomes could 
be observed based on prediction error % value of model. In 
Table 6, the average prediction error % of ANN model was 
3.774% with RMSE of 52.633. Similarly, in ANFIS model, 
gradient descent and least square algorithms were applied 
for the functional analysis of optical factor to obtain good 
performance. Sugeno fuzzy model was developed with two 
IF rules. The Build in MATLAB neuro-fuzzy designer tool 
was employed to train the input data. ANFIS model had six 
fuzzy rules for the data set and Gaussian (gaussmf) mem-
bership function was chosen to train the model. The average 
prediction error of ANFIS model with Hybrid propagation 

(6)
Prediction error% =

|actual value − predicted value|
actual value

× 100.

(7)RMSE =

√√√√ 1

N

N∑

i=1

(pi − ti)
2
,

was 3.361% and the RMSE of the predicted result was 
50.934. ANFIS model provided more accurate prediction 
then ANN model which showed that the prediction capabil-
ity of ANFIS model was higher than ANN model. Further-
more, MLR model was used to predict surface response and 
optimize process parameters. MLR model was trained by 
using polynomial functions to fit the model. The obtained 
polynomial equation was employed to predict the response 
of the results on specified welding parameters. The obtained 
results showed good prediction accuracy with prediction 
error of 2.624% and RMSE value of 39.352, which demon-
strated the overall performance of the model. SVM regres-
sion model is a supervised ML model, which used input and 
output data to train the model and then predict the results. 
SVM regression models were trained under all kernel func-
tions and the best result was provided by fine and medium 
Gaussian kernel functions. The prediction result of SVM 
regression model vs experimental results are compared in 
Table 6. The average prediction errors of SVM regression 
model was found to be 2.354 and 1.822% with RMSE values 
of 67.762 and 56.259, respectively. Both fine and medium 
Gaussian kernel SVM regression models provided the lowest 
prediction error in percentage which showed that the predic-
tion capacity of SVM regression model was much higher 
than all other applied ML models. SVM regression model is 
a better method to predict the mechanical properties (tensile 
shear strength) of FSSW joints. Various different available 
kernel functions in MATLAB are applied in this study and 
every kernel function has great impact on the prediction 
based on SVR network.

6  Conclusion

In this study, dissimilar AA7075-T651 and Ti-6Al-4V alloys 
were joined by FSSW and the effects of welding procedures 
such as revolving speed and dwell period on the mechani-
cal and microstructural characteristics were evaluated. 

Table 6  Experimental vs prediction results of specified models with average prediction error and RMSE

Dwell 
period 
(s)

Revolving 
speed (rpm)

Tensile shear strength (N) SVM (fine 
Gaussian) (N)

SVM (medium 
Gaussian) (N)

ANFIS (hybrid 
propagation) (N)

MLR (N) ANN (feed-forward 
backpropagation) (N)

5 1000 958.47 967.583 967.776 919.130 927.000 872.300
10 1000 3457.11 3361.671 3361.593 3392.662 3493.000 3421.000
5 1400 1084.03 1074.964 1074.889 1044.964 1141.000 1045.000
10 1400 2241.56 2146.121 2218.946 2193.385 2189.400 2181.000
5 2000 2148.01 2052.571 2052.496 2088.302 2128.000 2120.000
10 2000 874.58 882.262 882.454 825.057 900.000 830.800

Prediction error% 2.354 1.822 3.361 2.624 3.774
RMSE 67.762 56.259 50.934 39.352 52.633
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Furthermore, machine learning models MLR, ANN, ANFIS 
and SVM were applied on the TSS of welded joints to exam-
ine welding parameters (revolving speed and dwell period) 
to predict the results and compare with experimental data. 
The applications of machine learning algorithm, especially 
in the field of friction stir spot welding, are limited. The pre-
diction of TSS at different parameters with multiple machine 
learning regression tool models has not been conducted yet. 
Therefore, the conclusion of this study is based on experi-
mental and predicted results of machine learning models.

• The utmost tensile shear strength of 3457.2  N was 
obtained at revolving speed of 1000 rpm and dwell period 
of 10 s. The main reason for obtaining this high strength 
at low rpm was low heat input. Longer dwell periods 
had crucial effects on material mixing. Longer dwell 
periods allowed the materials to be stirred under low 
temperatures, while maintaining standard properties of 
metals. As revolving speed was increased to 2000 rpm at 
constant dwell period, an intensive down turn of 74.70% 
was observed in tensile shear strength that was because 
of excessive heat input which totally plasticized metal 
under the tool and initiated micro-cracks and defects in 
the junction of weld joint.

• At lower time period of 5 s, revolving speed has signifi-
cant effect on the strength of weld joints. A significant 
increase of 55.38% in tensile shear strength of weld joints 
was observed at revolving speed of 2000 rpm compare to 
that at 1000 rpm. Improvement in tensile shear strength 
was due to higher temperature compare to low revolv-
ing speed. Lower dwell periods performed an important 
function to control the plasticization of metal relative to 
high dwell period of 10 s. A 59.3% advancement in ten-
sile shear strength was observed from higher 10 s dwell 
time to lower 5 s one at same 2000 rpm revolving speed.

• The highest hardness of 129.6 HV in aluminum region 
was noticed in TMAZ instead of SZ at revolving speed 
of 2000 rpm and time period of 10 s. Enhancement in 
hardness profile in TMAZ rather than SZ was because of 
increment in grain structure. Maximum hardness 124HV 
was received in SZ. SZ had lower hardness than TMAZ 
due to high temperature which led to dynamic recrystal-
lization in aluminum sheet.

• Mostly, hardness value is affiliated with revolving speed 
and increases as revolving speed is increased. In titanium 
plate, the maximum hardness of 386.1 HV was acquired 
at revolving speed of 2000 rpm and time period of 10 s. 
This increment in hardness might be due to the forma-
tion of intermetallic compounds due to dissimilar joint 
welding.

• Scanning electron microscopy (SEM–EDS) showed the 
composition of AlTi and  Ti3Al intermetallic compounds 
at weld interface. The creation of these IMCs reduced the 

tensile shear strength of joint at high revolving speeds 
and dwell periods. The major factor in the creation of 
IMCs was Ti fragments which were rigid materials that 
reduced the flow of soft materials during FSSW process.

• The applications of machine learning algorithms, espe-
cially in the area of FSSW, are limited. The forecast-
ing of tensile shear strength at different parameters with 
multiple machine learning regression tools has not been 
studied yet.

• Support vector machine regression model provided bet-
ter tensile shear strength predictions compare to ANFIS 
and ANN models. In SVM, two kernel functions of fine 
and medium Gaussian provided better forecast results in 
term of error prediction % and RMSE value. Minimum 
prediction errors were 2.354 and 1.822 with 67.762 and 
56.259% RMSE, respectively. Even though it has been 
reported in other fields of study that the prediction capa-
bility of SVM model was much higher than ANN and 
ANFIS models, regression model had significantly lower 
prediction error% than ANFIS and ANN models. In this 
study, ANN had the highest prediction error% among all 
other applied models.
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