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Abstract
Free vibration and bending behavior of sandwich beams containing open-cell metal foam core are studied in the present 
work using zigzag theory. Hamilton’s principle and the principle of minimum potential energy are applied for determining 
the governing equations for free vibration and bending behavior, respectively. Three types of distribution of pores are used 
during the present study. The influence of the distribution of pores, end condition, thickness of the core, foam coefficients on 
beam behavior is studied in detail. The face sheets are assumed to be made up of the same material like foam. It was noticed 
that the nature of the distribution of pores and the end conditions widely determine the behavior of the beam.

Keywords Metal foam · Sandwich beam · Free vibration · Bending · Finite element

1 Introduction

Because of the excellent properties of sandwich structures, 
such as lower self-weight, high strength, and stiffness, they 
are used widely in aerospace, civil, aeronautical, marine, 
defense, automobile industries, etc. [1]. Sandwich structures 
are the layered structures embedding a softcore [2]. Due to 
the presence of softcore, it is difficult to analyze these struc-
tures because they are weak in shear [3].

Several theories are available in the literature for the 
analysis of porous soft core sandwich structures [4]. These 
porous structures are used for constructing hydrological 
structures, marine structures, aerospace structures, etc. [5]. 
Ashby et al. [6] in their book, provided the guidelines for 
designing the metal foam structures. Hohe [7] presented 

stochastic homogenization of polymeric sandwich foam 
structures. Kesler and Gibson [8] performed bending analy-
sis of sandwich metal foam core beams subjected to point 
load experimentally. Howson and Zare [9] derived an exact 
stiffness matrix for 3-layered sandwich beams. Classical 
plate theory [10], the earliest one, cannot predict the behav-
ior of sandwich structures accurately [11]. Single-layer theo-
ries expand the in-plane displacement field as the first-order 
variation in the form of unknowns defined at the reference 
plane. This theory is called first-order shear deformation 
theory (FSDT) or Timoshenko beam theory. Magnucka-
Blandzi [12] proposed modification in Timoshenko beam 
theory for bending analysis of metallic soft core sandwich 
beams. Chen et al. [13] carried out elastic buckling, free and 
forced vibration [14] analysis of porous beams using the 
Ritz method [15] based on Timoshenko beam theory. Later, 
a similar methodology was reformed for buckling and free 
vibration analysis of graphene reinforced porous plates by 
Yang et al. [16] and Kitipornchai et al. [17]. Wang and Zhao 
[18] proposed Chebyshev collocation method-based FSDT 
solutions for free vibration analysis of sandwich metallic 
foam core beams resting upon elastic foundations. Bamdad 
et al. [19] carried out magneto-electro-elastic-based buck-
ling and vibration analysis of sandwich porous Timoshenko 
beams. The requirement of the shear correction factor is a 
major drawback of this theory, whose value is affected by 
several parameters, such as end conditions, material proper-
ties, etc. [20].
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To avoid the incorporation of the shear correction fac-
tor, higher-order shear deformation theories (HSDT) were 
developed, incorporating warping of the beam’s cross sec-
tion. Misiurek K, Śniady [21] carried out vibration analysis 
of beams under moving loading conditions. Wattanasakul-
pong et al. [22] carried out a vibration analysis of func-
tionally graded porous beams using the Galerkin method 
based on HSDT. Wang et al. [23] proposed HSDT-based 
transient analysis of functionally graded porous soft core 
sandwich beam loaded with a moving mass. Chinh et al. 
[24] employed third-order SDT for bending analysis of 
porous core sandwich beams with functionally graded face 
sheets along with a mesh-free method. With the help of the 
Galerkin method, Dat et al. [25] carried out vibration analy-
sis of porous sandwich beams. Ebrahimi et al. [26] carried 
out vibration analysis of porous metal plates resting on the 
viscoelastic foundation. Using higher-order sandwich panel 
theory, Shahedi and Mohammadimehr [27] carried out 
vibration analysis of rotating metallic soft core sandwich 
beams under hygrothermal conditions. Analytical solutions 
were presented by Yaghoobi and Taheri [28] for analysis 
of porous sandwich plates. However, HSDTs fail to predict 
transverse shear stress-free conditions at the beams' top and 
bottom surfaces and continuity of transverse shear stress at 
interfaces [29].

Layerwise theories (LWT) analyze each layer separately, 
and then the results are integrated over the whole domain. 
Loja [30] employed LWT for dynamic analysis of sandwich 
structures with metallic core with graphene reinforced skin 
faces using the finite element method. However, discrete 
LWTs are computationally costly as with an increase in 
layers, the number of unknowns increases. In the case of 
zigzag theories, the number of unknowns is independent of 
the number of layers. Application of zigzag theories for the 
analysis of functionally graded soft core sandwich structures 
is available in the works of Neves et al. [31], Garg et al. 
[32], Di Sciuva and Sorrenti [33]. Swaminathan et al. [34] 
presented a detailed review on the analysis of functionally 
graded plates. Carrera [35] presented a detailed review of the 
use of zigzag theories for the analysis of laminated sandwich 
plates and shells. Noor and Burton [36] presented an assess-
ment of various theories for the analysis of laminated sand-
wich structures under thermal conditions. Reddy [37] pre-
sented a detailed review of available models for the analysis 
of sandwich structures. Sayyad and Ghugal [38] reviewed 
available methods for the analysis of sandwich plates and 
beams subjected to different kinds of loadings. Liew et al. 
[39] presented a review of layerwise theories available for 
the analysis of laminated structures. Garg et al. [40] pre-
sented a review on the analysis of carbon nanotubes rein-
forced structures. Garg et al. [41] presented a detailed review 
of available literature on the analysis of nanocomposites.

It has been noticed that the free vibration analysis of 
sandwich porous metallic softcore beams is carried out using 
FSDT. Bending analysis of the same beams is also absent 
in the literature to the authors’ best knowledge. In the pre-
sent work, free vibration and bending analysis of sandwich 
porous metallic softcore beam are carried out using higher-
order zigzag theory (HOZT). The influence of foam coef-
ficients, end conditions, nature of the distribution of pores, 
core height is carried out in detail. The proposed model’s 
efficiency is checked by comparing present results with 
those reported already. Several new results are also reported.

2  Theoretical formulation

For a beam of length � units and thickness � units (Fig. 1), 
the displacement fields are expressed as

In the above equations, mid-plane displacements and 
rotations are denoted by 

(
�(0),�(0)

)
 and 

(
� (�),� (�)

)
 respec-

tively. The slope of �th and �th layer is represented by θ,  
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(�)
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)
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S
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�

)
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Fig. 1  The geometry of sandwich beam with open-cell metal foam 
core
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The generalized stress–strain relationship is written as:

The unknowns are stated in Eqs. (2.1) and (2.2) 
can be obtained in form of displacement-based terms 
�(0),�(0),� (�),� (�),�(�),�(�),�(�),�(�) using the follow-
ing conditions: (a) At � = �∕2 , ��z = 0, U(�) = �(�) , W(�) 
= �(�) ; (b) At � = −�∕2 , ��z = 0, U(�) = �(�) , �(�) = �(�) ; 
(c) At the interface: ��

�z = �
�+1
�z  , ��

zz = �
�+1
zz .

where

is a vector of unknowns, {D} is a vector of displacement 
components as stated above and [�] is a matrix whose ele-
ments depend on material properties and thickness of the 
concerned layer.

The last two derivative terms are explained easily with 
respect to displacement components; therefore, Eq. (2.4) will 
no longer require C−1 continuity conditions.

Now, with the aid of Eq. (2.4), Eqs. (2.1) and (2.2) can 
be re-written as

In the above equations, �(s) and �(s) depend on unit step 
function, thickness, and material property.

Generalized displacement vector for three-noded beam 
element having eight degrees of per node {D} is stated as

where Ni is the nodal shape function.
Using Eqs. (2.1)–(2.4), linear strain–displacement rela-

tion can be written as:

(2.3)
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[
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}
,

where

and matrix [H] is a function of layer thickness and unit 
step function.

Applying Eq.  (2.8) in Eq.  (2.9), we will arrive at 
Eq. (2.10), which is stated as
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Multiplying both sides of the above equations with a 
small infinitesimal time function:

Adopting the analogy with Fermat’s principle, �x(t) can 
be pictured as an infinitesimal deviation in a path from New-
ton’s trajectory, x(t) → x(t) + �x(t) and adopting variations 
at fixed ends as zero i.e., �x

(
t
1

)
= �x

(
t
2

)
= 0.

Rewriting the Eq. (2.11) and integrating over the time 
domain, we get

(2.11)mẍ = −
dP(x)

dx
.

(2.12)mẍ × 𝛿x(t) = −
dP(x)

dx
𝛿x(t).

(2.13)∫
t
2

t
1

(
−mẍ(t) −

dP(x(t))

dx

)
𝛿x(t)dt = 0,

where [B] is strain–displacement relationship matrix.

2.1  For free vibration problems

Considering a mass m moving from one point to another 
along x-axis, taking a certain time, the time-independent 
potential P(x) can be explained as:

(2.10){�} = [B]{D},
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Performing integration by parts on the first term and 
trivial integration on the second term, we get

Now substituting Eq. (2.15a, b) in Eq. (2.14), we will 
get Hamilton’s principle (without considering work done by 
external forces and damping) stated as

In the above equation, T  represents kinetic energy, which 
is calculated as

� stands for the density of material and U̇(x) and U̇(z) are 
the derivatives of U(x) and U(z) , respectively. P in Eq. (2.16) 
represents potential energy which is expressed as

or

The dynamic equations for a system given by Hamilton’s 
principle are

In the above equation [M] , 
{

�2D
�t2

}
 , [K] and 

{
D
}

 represent 
global mass matrix, nodal acceleration vector of system, 
global stiffness matrix, and unknown nodal vector, respec-
tively. The frequency � can be evaluated using (Governing 
equation)
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mẍ(t)𝛿x(t)dt∫
t
2

t
1
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(2.19)[M]
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}
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{
D
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.

At any point within the beam, displacement due to free 
vibration can be written as

or

where the matrix [F] is similar to [H] that contains terms in 
form of z and the unit step function. The consistent elemen-
tal mass matrix for an element can be stated as

where �i is the mass density of the ith layer and [N] is the 
shape function matrix and the matrix [L] is

Elemental stiffness, mass, and load matrix are assem-
bled to form corresponding global matrices by taking into 
account the behavior of all the elements. Finally, the free 
vibration problem is solved as an eigenvalue problem. The 
skyline technique has been used to store the global stiff-
ness matrix in a single array and the simultaneous iteration 
technique of Corr and Jennings [42] is used in free vibration 
analysis.

2.2  For bending study

Stating the total potential energy of the beam subjected to 
static loading as:

where Us is the beam’s strain energy and Wext is the energy 
due to external loading

where

(2.21)
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}
,
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T [F]dz.

(2.25)Πe = Us −Wext
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dxdz,
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Now, the total elemental potential energy can be written 
as:

Πe =
1

2
∫ {D}T [B]T [J][B]{D}dx −

1

2
∫ {D}T

[
Ntd

]T
�dx 

or

where the elemental stiffness matrix 
[
Ke

]
 is written as 

∫ [B]T [D][B]dx . 
[
Pe

]
 is elemental mechanical load vector 

∬ [
Ntd

]T
qdxdy . 

[
Ntd

]
 is the shape function like matrix.

By minimizing Eq. (2.29) with {D} , one gets (Governing 
equation)

Now taking the effect of all the elements, and determining 
the global stiffness matrix, load vector, and displacements 
can be worked out from there along with the application of 
suitable boundary conditions. Stresses can be determined 
using Eq. (2.3). The discussed methodology is coded in 
FORTRAN and the results are drawn out which are stated in 
the subsequent section. The Gaussian decomposition scheme 
is adopted for the solution.

Boundary conditions: Clamped: All degrees of freedom 
are restrained at the clamped end of the beam; Free: All 
degrees of freedom are allowed at the free end of the beam. 
For simply supported beam, at one end, following degrees 
of freedom are restrained: �(0),�(0),�(�),�(�),�(�),�(�) , 
whereas at another end, the following degrees of freedom 
are restrained: �(0),�(�),�(�).

3  Material modeling

Young’s modulus E and density � of metal foam core at any 
height � are given by:

Type-A foam (Fig. 2a) [13]:

(2.28)Wext = ∫ wqdx or Wext = ∫ {�}T
[
Ntd

]T
�dx.

(2.29)Πe =
1

2
{D}T

[
Ke

]
{D} −

1

2
{D}T

[
Pe

]
,

(2.30)
[
Ke

]
{D} =

[
Pe

]
.

(3.1)
E(�) = E

1

[
1 − �

o
cos

(
��∕��

)]
,

�(�) = �
1

[
1 − �

d
cos

(
��∕��

)]
.

Type-B foam (Fig. 2b) [16]:

Type-C foam (Fig. 2c) [18]:

where E
1
 and �

1
 are Young’s modulus and density of 

metal from which the foam is made up of (�o, �∗
o
,�) and (

�d, �
∗
d
,�∗) are the foam coefficients for Young’s modulus 

and density, respectively, Type-A, B, and C foams.
For open-cell metal foams, Gibson and Ashby [43] 

published the following relationship between density and 
Young’s modulus given by

The following equations exhibit the relationship between 
the coefficient of mass density and the coefficient of Young’s 
modulus [18]

(3.2)
E(�) = E

1

[
1 − �∗

o

{
1 − cos

(
��∕��

)}]
,

�(�) = �
1

[
1 − �∗

d

{
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(
��∕��

)
}
]
.

(3.3)
E(�) = E

1
� ,

�(�) = �
1
�∗

,

(3.4)
E(�)

E
1

=

(
�(�)

�
1

)2

.

(3.5)
1 − �dcos

�
��∕��

�
=

�
1 − �ocos

�
��∕��

�
For Type-A foam,

1 − �∗
d

�
1 − cos

�
��∕��

��
=

�
1 − �∗

o

�
1 − cos

�
��∕��

��
For Type-B foam,

�∗ =
√
� For Type-C foam.

Fig. 2  Various types of distribution of pores/cells within the metallic 
foam core
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For comparative-based study between the three types of 
foams, the masses of all foams are assumed the same for 
which the following relationship is used [18], which is used 
to find out the values for �∗

o
 and � for a particular value of �o

With the help of Eq. (3.6), Chen et al. [13] and Wang and 
Zhao [18] and suggested the values for �o ∈ [0, 0.6] . The 
values for foam coefficients are given in Table 1.

4  Results and discussion

The proposed mathematical model is applied for free vibra-
tion and static analysis of sandwich beams containing metal-
lic foam core made up of steel. The influence of foam coeffi-
cients, geometric properties, end conditions, core thickness, 
and nature of the distribution of pores on the static, free 
vibration, and buckling behavior is presented in detail. The 
material properties for steel areas E

1
= 200GPa , � = 0.33 , 

�
1
= 7850 kg∕m3.

(3.6)
��∕2

∫
0

�
1 − �ocos

�
��∕��

�
dz =

��∕2

∫
0

�
1 − �∗

o

�
1 − cos

�
��∕��

��
dz =

��∕2

∫
0

√
�dz.

4.1  Free vibration study

4.1.1  Convergence and validation studies

For choosing the optimum mesh size and validating the pro-
posed model, free vibration analysis of metal foam (Type-A) 
beams is carried out (i.e., �� = 1 ). Both ends clamped (CC) 
and cantilever (CF) end conditions are adopted. Dimension-
less natural frequency 

�
� = ��

√
�1∕E1

�
 is shown in Table 2. 

Dimensionless natural frequency converges when the num-
ber of beam elements reaches 10 (Fig. 3). Therefore, the 
same mesh size is adopted. Present results are validated with 
dimensionless natural frequencies calculated using 

Table 1  Metal foam coefficients 
for different foam distributions

�
o

�∗
o

�

0.1 0.1738 0.9361
0.2 0.3442 0.8716
0.3 0.5103 0.8064
0.4 0.6708 0.7404
0.5 0.8231 0.6733
0.6 0.9612 0.6047

Table 2  Dimensionless natural frequency for metal foam Type-A 
beam with different end conditions (E.C.) �

o
= 0.5

�∕� E.C Present Chen et al. [14] Wang and 
Zhao [18]

10 CC 0.6012 0.5944 0.5947
CF 0.1098 0.1008 –

20 CC 0.3205 0.3166 0.3167
CF 0.0520 0.0508 –

50 CC 0.1313 0.1291 0.1291
CF 0.0219 0.0204 –

Fig. 3  Convergence study for dimensionless natural frequency for 
metal foam Type-A beam with both ends clamped for different num-
bers of finite elements (�

o
= 0.5,�∕� = 10)

Timoshenko beam theory along with the Ritz method by 
Chen et al. [14] and the Chebyshev collocation method by 
Wang and Zhao [18]. Present results are found to be in good 
agreement.

4.1.2  Free vibration study on sandwich beam containing 
open‑cell metal foam core

In this section, free vibration analysis of sandwich beam 
with open-cell metal foam core is carried out. In Table 3, 
variation of dimensionless natural frequency is reported for 
various values of ��∕� . For Type-A beam, the values of �o 
are taken as 0.1, 0.2 and 0.3. Corresponding values for �∗

o
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and � are taken for Type-B and Type-C beams as reported 
in Table 1. By doing this, for a value of �o , the mass of 
core will remain constant for Type-A, B, and C cases. With 
an increase in thickness of the core, the values for dimen-
sionless natural frequency decrease. With an increase in the 
thickness of the core, the amount of distribution of pores 
across the thickness increases, resulting in a decrease in the 
beam's stiffness. Hence, the natural frequency of the beam 
decreases. The nature of the distribution of pores also affects 
the behavior of the beam. Maximum value for frequency is 
observed for Type-A case and minimum for Type-B case. 
Thus, the beam with Type-A configuration has greater stiff-
ness followed by Type-C. Type-B configuration gives mini-
mum stiffness value. With the increase in metal foam coef-
ficient, the dimensionless natural frequency decreases for 
Type-B and C beams but increases for Type-A beam. This 
behavior is in accordance with the results given by Wang and 
Zhao [24] for sandwich foam core beams resting on elastic 
foundations.

Figure 4 shows the variation of dimensionless natural 
frequencies for thick sandwich beams containing metallic 
foam core with different end conditions, namely, both ends 

clamped (CC), cantilever (CF), and both ends simply sup-
ported (SS) for different foam coefficients. Equivalent foam 
coefficients are used during the present study as reported 
in Sect. 2. In the present study, it is observed that with an 
increase in the value of �o for Type-A beam, the dimension-
less natural frequency decreases for all end conditions which 
is opposite to the behavior as observed in Table 3, in which 
the dimensionless natural frequency increases. A similar 
type of behavior is observed for both Type-B and Type-C 
beams. Thus, the vibration behavior of a thick metallic foam 
beam is different from a moderately thick beam. The amount 
of decrease is more in the case of CC and CF beams than the 
SS beam for Type-A and C beams. For the Type-B beam, a 
noticeable decrease in natural frequency is observed for all 
the end conditions.

Figure 5 shows the first ten-mode shapes metal foam Type-
A porous sandwich beam (�o = 0.1,�∕� = 4,��∕� = 0.8) 
for CC, SS, and CF end conditions. In Fig. 6, the first ten-
mode shapes are shown for metal foam Type-B porous sand-
wich beam (�∗

o
= 0.1738,�∕� = 4) whereas, Fig. 7 shows 

the same for metal foam Type-C porous sandwich beam 
(� = 0.9361,�∕� = 4) . Mode shapes for all three types of 

Table 3  Dimensionless natural 
frequency for sandwich beam 
containing open-cell metal foam 
core for different thicknesses 
of cores having CC ends 
(�∕� = 10)

��∕� Type-A (�
o
) Type-B (�∗

o
) Type-C (�)

0.1 0.2 0.3 0.1738 0.3442 0.5103 0.9361 0.8716 0.8064

0.8 0.6372 0.6379 0.6387 0.6261 0.6156 0.6049 0.6332 0.6299 0.6267
0.6 0.6380 0.6396 0.6412 0.6341 0.6317 0.6292 0.6366 0.6369 0.6372
0.4 0.6378 0.6392 0.6404 0.6366 0.6368 0.6369 0.6375 0.6390 0.6403

Fig. 4  Variation of dimension-
less natural frequencies for dif-
ferent types of thick sandwich 
beams containing metallic foam 
core with different end condi-
tions ( ��∕� = 0.8 , �∕� = 4)
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CC and SS beams are similar, whereas, for a beam with CF 
end condition, mode shapes are different for all three cases, 
especially at higher vibration modes.

4.2  Bending analysis

4.2.1  Convergence and validation studies

Table  4 shows the variation of dimensionless maxi-
mum de f l ec t i on  

(
w(l, 0) = w∕�

)
 and  s t r e s s e s (

�̃�xx{0,�∕2} = 𝜎xx∕�, �̃�xz{0, 0} = 𝜎xz∕�
)
 for porous Type-

A 
(
�� = 1

)
 CF beam subjected to uniformly distributed load 

of intensity (�) 1 ×  104 N/m. It can be seen that the values for 
dimensionless maximum deflection converge when the num-
ber of beam elements equals 60, which is taken for further 

studies. Obtained results are found to be in good agreement 
with those published by Chen et al. [14] using FSDT with 
shear correction factor equals 5/6.

4.2.2  Bending study on sandwich beam containing 
open‑cell metal foam core

Under this section, a bending analysis of sandwich beam 
containing metallic foam core subjected to sinusoi-
dal loading is carried out. Next are the relations adopted 
for transforming dimensional quantities into respec-
tive dimensionless ones: w(l∕2, 0) = w(l∕2, 0)E1�

3∕�4 , 
�̃�
xx
(l∕2,�∕2) = 𝜎

xx
(l∕2,�∕2)∕��

0
 , �̃�xz(0, 0) = 𝜎xz(0, 0)∕�0 , 

u(0,�∕2) = 10 × u(0, h∕2)E1�
3∕�4.

Fig. 5  First ten-mode shapes for (a) CC, (b) SS, and (c) 
CF ended metal foam Type-A porous sandwich beam 
(�

o
= 0.1,�∕� = 4,��∕� = 0.8)

Fig. 6  First ten-mode shapes for (a) CC, (b) SS, and (c) 
CF ended metal foam Type-B porous sandwich beam 
(�∗

o
= 0.1738,�∕� = 4,��∕� = 0.8)
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Type-A sandwich beam with metal soft core foam: 
Table 5 shows the variation of dimensionless transverse 
displacement for Type-A sandwich beam containing metal 
soft core foam having simply supported end for different val-
ues of foam coefficient (�o) , �∕� and ��∕� . It can be seen 
that as the value for �o increases, dimensionless transverse 
deflection of beam increases. Thus, the beam is losing its 
stiffness as the value for �o increases. With an increase in 
the thickness of the core, dimensionless transverse deflec-
tion increases. Table 6 shows the variation of dimensionless 
in-plane displacement for the same beam. Also, the in-plane 
displacement of the beam increases with the increase in �o 
value. Thus, as the foam coefficient for Type-A configura-
tion increases, the beam starts losing its both in-plane and 
transverse stiffness. Tables 7 and 8 show the variation of 
dimensionless in-plane stress and dimensionless transverse 
shear stress for the same beam. With the increase in the 
value for �o , the value for �̃�xx increases and �̃�xz decreases. 
Figure 8 shows the variation of dimensionless stresses across 
the thickness for SS Type-A beam having �∕� = 4 with �o 
= 0.1 and 0.6. It is observed that with an increase in foam 
coefficient, non-linearity in dimensionless in-plane stress 
increases. However, the nature of variation of transverse 
shear stress almost remains the same.

Type-B sandwich beam with metal soft core foam: 
Tables 9 and 10 present the values for dimensionless trans-
verse and in-plane displacements for Type-B sandwich beam 
containing metal soft core foam with SS ends for different 
values of foam coefficient (�∗

o
) , �∕� and ��∕� . With an 

increase in the value for �∗
o
 , the values for both types of dis-

placements show an increasing trend, which informs about 
a decrease in the value for stiffness of the beam. With an 
increase in the thickness of the core, the values for dimen-
sionless deflections also increase. Tables 11 and 12 exhibit 
the variation of dimensionless in-plane stress and transverse 
shear stress for the same beam. With an increase in the thick-
ness of the core, values for �̃�xx increase. For �̃�xz , the values 
first decrease and then increase. Figure 9 shows the variation 
of dimensionless stresses across the thickness for SS Type-
B beam having �∗

o
 = 0.1738 and 0.9612. It is observed that 

with an increase in the value of foam coefficient, non-line-
arity in the distribution of stresses increases. Thus, for better 
prediction of stresses, a zigzag effect must be incorporated.

Type-C sandwich beam with metal soft core foam: Bend-
ing behavior of SS Type-C sandwich beam containing metal-
lic softcore foam is studied in this part. Results for dimen-
sionless transverse and in-plane displacements are reported 
in Tables 13 and 14, respectively. Even for this case, with 
an increase in the value for � , the beam starts losing its both 
in-plane and transverse stiffness. Tables 15 and 16 show 
the variation of dimensionless in-plane stress and transverse 
shear stress for Type-C beam. With an increase in value for 
� , the value for �̃�xx increases and �̃�xz decreases. Figure 10 

Fig. 7  First ten-mode shapes for (a) CC, (b) SS, and (c) 
CF ended metal foam Type-C porous sandwich beam 
(� = 0.9361,�∕� = 4,��∕� = 0.8)

Table 4  Dimensionless displacement and stresses for metal foam 
Type-A porous beam with CF end and �

o
= 0.5

1 Mesh size.

�∕� Source w �̃�
xx

�̃�
xz

10 Present (10)1 0.00189 − 233.9801 16.9873
Present (20) 0.00153 − 239.3263 13.2814
Present (40) 0.00127 − 242.2259 10.5078
Present (60) 0.00104 − 244.1489 8.1553
Present (80) 0.00104 − 244.1488 8.1551
Present (100) 0.00104 − 244.1485 8.1551
Chen et al. [14] 0.00083 – –

20 Present 0.01655 − 951.3945 12.1832
Chen et al. [14] 0.01307 – –

50 Present 0.60541 -5847.5506 24.3154
Chen et al. [14] 0.50898 – –
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shows the nature of dimensionless stress distribution across 
the thickness for SS Type-C beam (�∕� = 4) with �  = 
0.9361 and 0.6047. The nature of stress distribution for 
Type-C beam is found similar to Type-A beam.

5  Conclusions

In the present work, free vibration and bending analysis of 
sandwich beams containing metallic foam core are inves-
tigated using finite element-based HOZT. Three different 
configurations of distribution of pores are assumed. The 
influence of porosities, end conditions, geometric properties, 

Table 5  Dimensionless 
transverse displacement (w) for 
a sandwich beam with Type-A 
metal soft core foam having SS 
ends subjected to sinusoidal 
load

�∕� ��∕� �
o

0.1 0.2 0.3 0.4 0.5 0.6

10 0.8 0.1148 0.1167 0.1187 0.1209 0.1232 0.1257
0.6 0.1138 0.1146 0.1155 0.1164 0.1175 0.1186
0.4 0.1132 0.1135 0.1138 0.1142 0.1146 0.1151

4 0.8 0.1329 0.1363 0.1400 0.1442 0.1492 0.1554
0.6 0.1317 0.1336 0.1359 0.1385 0.1416 0.1456
0.4 0.1308 0.1319 0.1331 0.1345 0.1363 0.1386

Table 6  Dimensionless 
in-plane displacement (−u) for 
a sandwich beam with Type-A 
metal soft core foam having SS 
ends subjected to sinusoidal 
load

�∕� ��∕� �
o

0.1 0.2 0.3 0.4 0.5 0.6

10 0.8 0.1758 0.1785 0.1812 0.1841 0.1871 0.1903
0.6 0.1743 0.1753 0.1764 0.1775 0.1787 0.1799
0.4 0.1735 0.1738 0.1741 0.1745 0.1748 0.1752

4 0.8 0.4516 0.4595 0.4678 0.4769 0.4867 0.4978
0.6 0.4477 0.4515 0.4556 0.4602 0.4653 0.4714
0.4 0.4456 0.4472 0.4491 0.4512 0.4538 0.4569

Table 7  Dimensionless in-plane 
stress (�̃�

xx
) for a sandwich beam 

with Type-A metal soft core 
foam having SS ends subjected 
to sinusoidal load

�∕� ��∕� �
o

0.1 0.2 0.3 0.4 0.5 0.6

10 0.8 6.2000 6.2940 6.3914 6.4926 6.5982 6.7092
0.6 6.1453 6.1823 6.2204 6.2597 6.3007 6.3441
0.4 6.1192 6.1296 6.1405 6.1521 6.1647 6.1787

4 0.8 2.5473 2.5918 2.6390 2.6899 2.7455 2.8080
0.6 2.5254 2.5469 2.5701 2.5956 2.6246 2.6588
0.4 2.5136 2.5229 2.5333 2.5453 2.5597 2.5777

Table 8  Dimensionless 
transverse shear stress (�̃�

xz
) for 

a sandwich beam with Type-A 
metal soft core foam having SS 
ends subjected to sinusoidal 
load

�∕� ��∕� �
o

0.1 0.2 0.3 0.4 0.5 0.6

10 0.8 4.7270 4.6743 4.6200 4.5638 4.5057 4.4453
0.6 4.7408 4.7030 4.6646 4.6256 4.5858 4.5451
0.4 4.7590 4.7397 4.7202 4.7003 4.6801 4.6593

4 0.8 1.8817 1.8595 1.8364 1.8121 1.7865 1.7591
0.6 1.8867 1.8698 1.8524 1.8341 1.8149 1.7942
0.4 1.8937 1.8839 1.8736 1.8627 1.8508 1.8376
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Fig. 8  Variation of dimensionless stresses across the thickness for a sandwich beam with Type-A metal soft core foam having SS ends subjected 
to sinusoidal load (�∕� = 4)

Table 9  Dimensionless 
transverse displacement (w) for 
a sandwich beam with Type-B 
metal soft core foam having SS 
ends subjected to sinusoidal 
load

�∕� ��∕� �∗
o

0.1738 0.3442 0.5103 0.6708 0.8231 0.9612

10 0.8 0.1206 0.1293 0.1390 0.1501 0.1627 0.1795
0.6 0.1163 0.1199 0.1236 0.1278 0.1323 0.1431
0.4 0.1141 0.1154 0.1167 0.1183 0.1206 0.1312

4 0.8 0.1384 0.1480 0.1591 0.1722 0.1890 0.2273
0.6 0.1342 0.1390 0.1446 0.1517 0.1626 0.2107
0.4 0.1321 0.1346 0.1379 0.1427 0.1523 0.2104

Table 10  Dimensionless 
in-plane displacement (−u) for 
a sandwich beam with Type-B 
metal soft core foam having SS 
ends subjected to sinusoidal 
load

�∕� ��∕� �∗
o

0.1738 0.3442 0.5103 0.6708 0.8231 0.9612

10 0.8 0.1850 0.1983 0.2132 0.2298 0.2480 0.2663
0.6 0.1782 0.1834 0.1888 0.1947 0.2000 0.2068
0.4 0.1749 0.1765 0.1781 0.1799 0.1819 0.1869

4 0.8 0.4731 0.5054 0.5415 0.5814 0.6240 0.6551
0.6 0.4568 0.4701 0.4842 0.4994 0.5162 0.5505
0.4 0.4490 0.4542 0.4601 0.4675 0.4793 0.5371

Table 11  Dimensionless 
in-plane stress (�̃�

xx
) for a 

sandwich beam with Type-B 
metal soft core foam having SS 
ends subjected to sinusoidal 
load

�∕� ��∕� �∗
o

0.1738 0.3442 0.5103 0.6708 0.8231 0.9612

10 0.8 6.5245 6.9907 7.5140 8.0996 8.7439 9.3924
0.6 6.2850 6.4679 6.6573 6.8655 7.0532 7.2892
0.4 6.1657 6.2230 6.2814 6.3423 6.4122 6.5906

4 0.8 2.6685 2.8510 3.0545 3.2795 3.5193 3.6941
0.6 2.5767 2.6516 2.7306 2.8164 2.9100 3.1047
0.4 2.5325 2.5619 2.5948 2.6357 2.7018 3.0291
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Table 12  Dimensionless 
transverse shear stress (�̃�

xz
) for 

a sandwich beam with Type-B 
metal soft core foam having SS 
ends subjected to sinusoidal 
load

�∕� ��∕� �∗
o

0.1738 0.3442 0.5103 0.6708 0.8231 0.9612

10 0.8 4.7576 4.7346 4.7084 4.6784 4.6446 4.6099
0.6 4.7200 4.6596 4.5969 4.5323 4.4675 4.4049
0.4 4.7286 4.6792 4.6301 4.5818 4.5347 4.4875

4 0.8 1.8968 1.8896 1.8808 1.8694 1.8556 1.8437
0.6 1.8815 1.8589 1.8350 1.8099 1.7841 1.7582
0.4 1.8836 1.8643 1.8451 1.8260 1.8066 1.7793

Fig. 9  Variation of dimensionless stresses across the thickness for a sandwich beam with Type-B metal soft core foam having SS ends subjected 
to sinusoidal load (�∕� = 4)

Table 13  Dimensionless 
transverse displacement (w) for 
a sandwich beam with Type-C 
metal soft core foam having SS 
ends subjected to sinusoidal 
load

�∕� ��∕� �

0.9361 0.8716 0.8064 0.7404 0.6733 0.6047

10 0.8 0.1169 0.1211 0.1257 0.1308 0.1364 0.1427
0.6 0.1147 0.1165 0.1184 0.1204 0.1226 0.1249
0.4 0.1136 0.1142 0.1148 0.1155 0.1163 0.1172

4 0.8 0.1349 0.1403 0.1463 0.1530 0.1605 0.1692
0.6 0.1326 0.1354 0.1386 0.1421 0.1460 0.1506
0.4 0.1313 0.1327 0.1344 0.1362 0.1384 0.1410

Table 14  Dimensionless 
in-plane displacement (−u) for 
a sandwich beam with Type-C 
metal soft core foam having SS 
ends subjected to sinusoidal 
load

�∕� ��∕� �

0.9361 0.8716 0.8064 0.7404 0.6733 0.6047

10 0.8 0.1791 0.1855 0.1923 0.1999 0.2082 0.2174
0.6 0.1757 0.1783 0.1810 0.1838 0.1867 0.1898
0.4 0.1740 0.1748 0.1756 0.1765 0.1773 0.1783

4 0.8 0.4592 0.4757 0.4935 0.5129 0.5344 0.5584
0.6 0.4510 0.4582 0.4658 0.4739 0.4826 0.4921
0.4 0.4468 0.4496 0.4527 0.4560 0.4596 0.4638
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foam coefficients, and core thickness is studied in detail. 
Following points are noted during present investigations:

• The free vibration behavior of a thick sandwich beam 
with metallic foam is different from a moderately thick 
sandwich beam containing metallic foam core for a Type-
A case.

• Type-A beam shows the maximum value for stiffness fol-
lowed by Type-C and Type-B cases.

• With an increase in thickness of the core, the value for 
dimensionless natural frequency decreases.

• The end condition also determines the free vibration 
behavior of the sandwich beam with a metallic core. 
A large decrease in dimensionless natural frequency 
decreases for simply supported Type-B beams, whereas, 
for Type-A and C beams, the dimensionless natural fre-
quency remains almost constant.

• Mode shapes for SS and CC Type-A, B, and C beams are 
similar, whereas, for CF end condition, mode shapes are 

Table 15  Dimensionless 
in-plane stress (�̃�

xx
) for a 

sandwich beam with Type-C 
metal soft core foam having SS 
ends subjected to sinusoidal 
load

�∕� ��∕� �

0.9361 0.8716 0.8064 0.7404 0.6733 0.6047

10 0.8 6.3160 6.5396 6.7823 7.0471 7.3385 7.6626
0.6 6.1961 6.2866 6.3809 6.4796 6.5836 6.6939
0.4 6.1362 6.1640 6.1926 6.2223 6.2533 6.2861

4 0.8 2.5906 2.6830 2.7834 2.8932 3.0143 3.1495
0.6 2.5439 2.5846 2.6275 2.6731 2.7220 2.7753
0.4 2.5204 2.5364 2.5536 2.5722 2.5928 2.6159

Table 16  Dimensionless 
transverse shear stress (�̃�

xz
) for 

a sandwich beam with Type-C 
metal soft core foam having SS 
ends subjected to sinusoidal 
load

�∕� ��∕� �

0.9361 0.8716 0.8064 0.7404 0.6733 0.6047

10 0.8 4.7376 4.6938 4.6463 4.5945 4.5376 4.4743
0.6 4.7331 4.6863 4.6377 4.5870 4.5338 4.4777
0.4 4.7477 4.7168 4.6853 4.6530 4.6198 4.5855

4 0.8 1.8870 1.8697 1.8510 1.8305 1.8080 1.7830
0.6 1.8848 1.8659 1.8462 1.8257 1.8040 1.7811
0.4 1.8900 1.8766 1.8628 1.8486 1.8338 1.8182

Fig. 10  Variation of dimensionless stresses across the thickness for a sandwich beam with Type-C metal soft core foam having SS ends sub-
jected to sinusoidal load (�∕� = 4)
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different for all three types of beams, especially at higher 
modes.

• With an increase in the value for foam coefficient, all 
types of beams lose their in-plane and transverse stiff-
nesses.

• With an increase in the thickness of the metallic foam 
core, dimensionless displacements, and in-plane stress 
increases, and dimensionless transverse stress decrease 
for all types of beams. However, for the Type-B beam, 
variation of transverse shear stress with an increase 
in thickness first shows an increasing trend and then 
decreases.

• The present model can predict zero transverse shear 
stress at the top and bottom surfaces of the beam.

• Type-B beam gives a highly non-linear distribution of 
stresses across its thickness. The amount of non-linearity 
increases with increases in the value for foam coefficient.
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