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Abstract
This article intends to examine thermoelastic damping (TED) in circular cylindrical nanoshells by considering small-scale 
effect on both structural and thermal areas. To fulfill this aim, governing equations are extracted with the aid of nonlocal 
elasticity theory and dual-phase-lag (DPL) heat conduction model. Circular cylindrical shell is also modeled on the basis 
of Donnell–Mushtari–Vlasov (DMV) equations for thin shells. By inserting asymmetric simple harmonic oscillations of 
nanoshell into motion, compatibility and heat conduction equations, the size-dependent thermoelastic frequency equation is 
obtained. By solving this equation and deriving the frequency of nanoshell affected by thermoelastic coupling, the value of 
TED can be calculated through complex frequency approach. Results of this investigation are given in two sections. First, to 
appraise the validity of presented formulation, a comparison study is conducted between the results of this work in special 
cases and those reported in the literature. Next, by providing several numerical data, a detailed parametric study is performed 
to highlight the profound impact of nonlocality and dual-phase-lagging on TED value in simply supported cylindrical 
nanoshells. The influence of some determining factors such as mode number and type of material on TED is also evaluated.

Keywords  Thermoelastic damping · Cylindrical nanoshell · Size effect · Nonlocal elasticity theory · Dual-phase-lag heat 
conduction model · Closed-form solution

1  Introduction

Given their extraordinary attributes and huge area of appli-
cations, small-scaled structural elements such as circular 
cylindrical nanoshells have received widespread atten-
tions. According to several experimental data, it has been 
made clear that the size-dependency phenomenon has a 
conspicuous influence on the static and dynamic behavior 
of miniaturized structures, which are extensively exploited 
in micro- and nanoelectromechanical systems (MEMS and 
NEMS). For instance, by conducting a micro-torsion test 
on thin copper wires, Fleck et al. [1] indicated that tor-
sional hardening of wire is three times what the theoretical 
method predicts. Via a micro-indentation experiment, Ma 
et al. [2] realized that the measured indentation hardness of 
silver single crystal is more than that estimated by classi-
cal formulation. In the micro-bending test on polypropylene 
microbeams by McFarland et al. [3], it was revealed that the 
measured stiffness values are at least four times larger than 
the classical beam theory stiffness predictions. Since clas-
sical theory (CT) of continuum pays no heed to submicron 
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discontinuities in bodies, it is unable to acceptably explicate 
the size-dependent behavior of mechanical structures with 
small scales. In consequence, for the sake of incorporat-
ing size effect into constitutive relations, size-dependent 
continuum theories like couple stress theory [4], nonlocal 
theory (NT) [5], modified couple stress theory (MCST) [6] 
and strain gradient theory (SGT) [7] have been advanced. As 
one of these nonclassical theories, nonlocal elasticity theory 
is based on this hypothesis that the stress at an arbitrary 
point is pertinent to the strains at all points of the continuum.

The heat transfer process in solid continua has been 
mathematically expounded through various heat conduction 
models. On the basis of empirical evidences, the Fourier 
law on which classical thermoelasticity (CTE) theory has 
been established cannot satisfactorily interpret heat transfers 
occurring in very small times or dimensions [8]. On that 
account, by employing one or more scale parameters, several 
non-Fourier heat conduction models have been propounded 
and developed to remove the limitations of Fourier law. By 
incorporation of a single phase lag parameter into conven-
tional model, Lord and Shulman [9] put forward a model (LS 
model) including small-scale effect only in time. By attach-
ing an additional phase lag parameter to LS model, Tzou 
[10] proposed the dual-phase-lag (DPL) model that is capa-
ble of capturing small-scale effect in both time and space 
domains. By description of heat transfer process according 
to phonon scattering model and solving the linearized pho-
non Boltzmann transport equation, Guyer and Krumhansl 
[11] arrived at a robust formulation (GK model) to reflect 
both nonlocal and lagging characteristics of heat propagation 
at nano dimensions.

Findings of theoretical and experimental researches sig-
nify that thermoelastic damping (TED) is one of predomi-
nant intrinsic energy dissipation mechanisms in small-sized 
structures. This phenomenon emanates from irreversible 
heat flow induced in the thickness direction of vibrating 
structures. Due to these transverse irreversible heat currents, 
strain energy cannot be totally retrieved, which narrows the 
quality factor of small-scaled mechanical devices. In the fol-
lowing, the most prominent studies conducted on TED in 
micro- and nanostructures are brought up. The investigation 
of Zener [12] on TED in thin beams is the first analytical 
study about TED in structural elements. In this work, an 
analytical solution in the form of infinite series has been 
presented to determine the magnitude of TED in Euler–Ber-
noulli beams. By solving the frequency equation of CTE, 
Lifshitz and Roukes [13] attained an explicit formula for 
estimation of TED in Euler–Bernoulli beams with the aid of 
complex frequency approach. In the work of Lu et al. [14], 
on the basis of DMV equations for thin shells, an analyti-
cal study in the framework of classical continuum theory 
and heat conduction model has been performed to survey 
TED in small-scaled cylindrical shells. In an analogous 

study, Kim and Kim [15] addressed the role of initial stress 
in the amount of TED in cylindrical shells. Li et al. [16] 
established an analytical model to specify TED in classical 
circular and rectangular microplates in the context of energy 
dissipation approach. Yue et al. [17] evaluated small-scale 
effect on thermoelastic vibrations of Timoshenko nanobe-
ams according to nonlocal strain gradient theory (NSGT) 
and GK model. To ascertain size effect on TED in circu-
lar nanoplates, by making use of nonlocal theory and DPL 
model, Xiao et al. [18] extracted an explicit size-dependent 
expression for TED. Li and Esmaeili [19] exploited nonlocal 
elasticity theory and GK model to provide a model describ-
ing TED in axisymmetric vibrations of circular nanoplates. 
In the article of Zhong et al. [20], MCST and classical model 
of heat conduction have been utilized to find an analytical 
relation estimating TED in Kirchhoff rectangular micro-
plates. Zhang et al. [21] employed MCST and GK model to 
highlight the influence of scale parameters on TED in small-
sized beams. Zhang et al. [22] provided an analytical model 
to appraise the damping vibrations of plates reinforced with 
graphene oxide powders in thermal environments. In the 
context of entropy generation approach, Parayil et al. [23] 
assessed TED in classical Timoshenko beams with mid-
plane nonlinearity. By means of nonlocal strain gradient 
theory (NSGT) and GK model, Deng et al. [24] developed a 
theoretical model to appraise size effect on TED in graphene 
nanobeams. Rashahmadi and Meguid [25] implemented the 
Galerkin method to predict the magnitude of TED in ortho-
tropic graphene nanosheets using nonlocal elasticity theory. 
Li and Ma [26] analyzed TED in functionally graded (FG) 
rectangular microplates with different boundary conditions 
via classical continuum theory and heat conduction model. 
With the help of MCST and three-phase-lag (TPL) model, 
Kumar and Mukhopadhyay [27] achieved a size-dependent 
solution for TED in thin microplates. With the aim of clari-
fying small-scale effect on TED in thin rectangular nano-
plates, an analytical research has been carried out by Yang 
et al. [28] on the basis of nonlocal theory and DPL model. 
By incorporating nonlocal effect within constitutive and heat 
conduction relations, Ahmadi et al. [29] determined size-
dependent value of TED in orthotropic nanoplates. By inclu-
sion of surface and dual-phase-lagging effect into governing 
equations, Shi et al. [30] derived an explicit solution for TED 
in nanobeams. Zhou and Li [31] investigated TED in small-
sized rectangular and circular plates according to MCST and 
nonlocal version of DPL model. Paper of Ge et al. [32] has 
been devoted to determination of size effect on the amount 
of TED in rectangular plates by utilizing NSGT and GK 
model. Weng et al. [33] presented a closed-form solution for 
coupled thermoelastic response of Timoshenko nanobeams 
by applying NSGT and DPL model. Zhou and Li [34] con-
ducted a theoretical study to illuminate the impact of DPL 
model on TED in miniaturized rings with rectangular cross 
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section. With the help of MCST, Arshid et al. [35] surveyed 
size-dependent vibrations of FG porous sandwich curved 
microbeams in thermal environments.

Given experimental and theoretical findings mentioned 
above, utilization of size-dependent continuum theories and 
heat conduction models in governing equations of small-sized 
structures leads to more confident predictions about their ther-
moelastic behavior. Assessment of small-scale effect on TED 
in circular cylindrical nanoshells in the framework of nonlo-
cal elasticity theory and dual-phase-lag (DPL) heat conduc-
tion model is carried out in this paper for the first time. By 
exploiting Donnell–Mushtari–Vlasov (DMV) model of thin 
shells, size-dependent coupled thermoelastic equations are 
established. Next, asymmetric time-harmonic vibrations are 
adopted to extract the frequency equation affected by thermoe-
lastic coupling. Subsequently, an analytical expression con-
sisting of structural and thermal scale parameters is derived to 
specify the magnitude of TED in cylindrical nanoshells with 
arbitrary boundary conditions. With the purpose of evaluat-
ing the validity of present formulation, a comparison study is 
done between the results predicted by this model with those 
existing in the literature. A complete parametric study is also 
conducted on simply supported cylindrical nanoshells to focus 
on the impact of nonlocality, dual-phase-lagging and material 
on the amount of TED in some vibration modes.

2 � Basic theoretical principles

2.1 � Fundamentals of nonlocal elasticity theory

Based on the differential form of Eringen’s nonlocal elastic-
ity theory [5], the nonlocal stress tensor � and the classical 
(local) stress tensor t are related to each other via the fol-
lowing relation:

in which parameter � is known as nonlocal parameter. More-
over, symbol ∇2 represents the Laplace operator. According 
to coupled thermoelastic constitutive relations of conven-
tional stress tensor t , Eq. (1) becomes:

where �mm indicates trace of strain tensor � . Material prop-
erties E and � are also elasticity modulus and the Poisson 
ratio. In addition, parameter � stands for the thermal expan-
sion coefficient. Variable � = T − T0 denotes the temperature 
increment with T  and T0 as the instantaneous and reference 
temperatures, respectively. Note that when the nonlocal 
parameter � is set to zero, constitutive relations of nonlocal 
theory reduce to those of classical theory.

(1)
(
1 − �∇2

)
� = t,

(2)

(
1 − �∇2

)
� =

E

(1 + �)(1 − 2�)

[
��mmI + (1 − 2�)� − (1 + �)��I

]
,

2.2 � Fundamentals of dual‑phase‑lag (DPL) heat 
conduction model

According to DPL heat conduction model for isotropic mate-
rials, heat conduction process is formulated through the fol-
lowing relation [10]:

where q defines the heat flux vector. Furthermore, Material 
constant k refers to thermal conductivity. Parameters �q and 
�T are also called phase lag of heat flux and phase lag of 
temperature gradient that make it possible to capture small-
scale effect in time and space domains, respectively. It is 
worth mentioning that in the absence of �T , the constitutive 
relation of DPL model corresponds to that of LS model. 
Additionally, by dropping the terms comprising phase lags 
�q and �T , Eq. (3) is reduced to constitutive relation of the 
Fourier law. The equation of conservation of energy for an 
isotropic material is expressed by [10]:

with � and cv standing for mass density and specific heat per 
unit mass, respectively. Parameter � = E�∕(1 − 2�) is also 
known as thermal modulus. If heat flux q is eliminated from 
Eqs. (3) and (4), equation of heat conduction in terms of 
temperature alteration � and cubical dilatation �mm is derived 
as below:

in which symbol ∇
2 defines three-dimensional Laplace 

operator.

3 � Thermoelastic model of cylindrical shells 
according to nonlocal theory and DPL 
model

3.1 � Motion equations

Figure 1 illustrates the schematic view and geometry of a cir-
cular cylindrical shell with length L , radius R and uniform 
thickness h . On the basis of Donnell–Mushtari–Vlasov (DMV) 
model of thin shells, the components of displacement field 
have the following form [36]:

(3)q + �q
�q

�t
= −k�� − k�T

���

�t
,

(4)−� ⋅ q = �cv
��

�t
+ T0�

��mm

�t
,

(5)k
(
1 + �T

�

�t

)
∇

2

� =
(
1 + �q

�

�t

)(
�cv

��

�t
+ T0�

��mm

�t

)
,

(6)

ux = u(x, �, t) − z
�w(x, �, t)

�x
, u� = v(x, �, t) −

z

R

�w(x, �, t)

��
,

uz = w(x, �, t)
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in which ux , u� and uz refer to the displacements along 
x , � and z directions, respectively. By referring to equa-
tions above, the nonzero components of strain tensor are 
expressed by [36]:

One thing to emphasize here is that �x� = 2�x� . According 
to plane stress condition in thin shells ( �zz = 0 ), by inserting 
Eqs. (7a)–(7c) into Eq. (2), one can get:

Substitution of Eqs. (7a)–(7c) and (8) into Eq. (2) results 
in the following nonlocal thermoelastic constitutive relations:

Note that ∇2 =
(
�2∕�x2

)
+
(
1∕R2

)(
�2∕��2

)
.

Through the relations below, one can attain membrane force 
and bending moment resultants:

(7a)�xx = �0
xx
+ z�xx =

�u

�x
− z

�2w

�x2
,

(7b)��� = �0
��

+ z��� =
(
1

R

�v

��
+

w

R

)
− z

(
1

R2

�2w

��2

)
,

(7c)�x� = �0
x�
+ z�x� =

(
1

R

�u

��
+

�v

�x

)
− z

(
2

R

�2w

�x��

)
.

(8)

�zz = −
�

1 − �

(
�0
xx
+ �0

��

)
− z

�

1 − �

(
�xx + ���

)
+

1 + �

1 − �
��.

(9a)

(
1 − �∇2

)
�xx =

E

1 − �2

[(
�0
xx
+ ��0

��

)
+ z

(
�xx + ����

)]
−

E�

1 − �
�,

(9b)

(
1 − �∇2

)
��� =

E

1 − �2

[(
��0

xx
+ �0

��

)
+ z

(
��xx + ���

)]
−

E�

1 − �
�,

(9c)
(
1 − �∇2

)
�x� =

E

2(1 + �)

[(
�0
x�
+ z�x�

)]
.

By making use of Eqs. (9a)–(9c) and (10a)–(10b), the fol-
lowing relations of resultants are obtained:

and

(10a)
(
Nxx,N�� ,Nx�

)
=

+h∕2

∫
−h∕2

(
�xx, ��� , �x�

)
dz,

(10b)
(
Mxx,M�� ,Mx�

)
=

+h∕2

∫
−h∕2

z
(
�xx, ��� , �x�

)
dz.

(11a)

(
1 − �∇2

)
Nxx =

Eh

1 − �2

(
�0
xx
+ ��0

��

)
−

NT

1 − �

=
Eh

1 − �2

(
�u

�x
+

�

R

�v

��
+

�w

R

)
−

NT

1 − �
,

(11b)

(
1 − �∇2

)
N�� =

Eh

1 − �2

(
��0

xx
+ �0

��

)
−

NT

1 − �

=
Eh

1 − �2

(
�
�u

�x
+

1

R

�v

��
+

w

R

)
−

NT

1 − �
,

(11c)

(
1 − �∇2

)
Nx� =

Eh

2(1 + �)
�0
x�

=
Eh

2(1 + �)

(
1

R

�u

��
+

�v

�x

)
,

(12a)

(
1 − �∇2

)
Mxx = D

(
�xx + ����

)
−

MT

1 − �

= −D

(
�2w

�x2
+

�

R2

�2w

��2

)
−

MT

1 − �
,

(12b)

(
1 − �∇2

)
M�� = D

(
��xx + ���

)
−

MT

1 − �

= −D

(
�
�2w

�x2
+

1

R2

�2w

��2

)
−

MT

1 − �
,

Fig. 1   Schematic view of a 
circular cylindrical shell

ℎ
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in which D = Eh3∕12(1 − �2) is called bending rigidity of 
shell. Thermal force NT and thermal moment MT are also 
given by:

Transverse motion of a circular cylindrical shell is gov-
erned by the equation below [36]:

By merging Eqs. (12a)–(12c) and (14), one can obtain:

where symbol ∇4 = ∇2

(
∇2

)
= (�4∕�x4) + (2∕R2)(�4∕�x2��2)

+(1∕R4)(�4∕��4) represents the biharmonic operator. It is 
important to point up that the difference between equation 
above and that determined by Lu et al. [14] is due to different 
definitions of thermal resultants.

Owing to transverse deflection-dominated oscillations in 
DMV model of thin shells, one can neglect the influence of 
inertia in the in-plane direction. Accordingly, motion equa-
tions in longitudinal and circumferential directions can be 
written as [36]:

Airy function � is defined as below:

As it is evident, relations above satisfy motion Eqs. (16) 
completely. Substitution of Eq. (17) into Eq. (15) yields the 
transverse motion equation as follows:

with ∇2

K
= (1∕R)

(
�2∕�x2

)
.

3.2 � Compatibility equation

The compatibility equation of a circular cylindrical shell is 
given by [36]:

(12c)

(
1 − �∇2

)
Mx� =

D(1 − �)

2
�x� = −D(1 − �)

(
1

R

�2w

�x��

)
,

(13)NT = E�

+h∕2

∫
−h∕2

�dz and MT = E�

+h∕2

∫
−h∕2

�zdz.

(14)
�2Mxx

�x2
+

2

R

�2Mx�

�x��
+

1

R2

�2M��

��2
−

N��

R
= �h

�2w

�t2
.

(15)
D∇4w +

1

1 − �
∇2MT +

(
1 − �∇2

)N��

R
+ �h

(
1 − �∇2

)�2w
�t2

= 0,

(16)
�Nxx

�x
+

1

R

�Nx�

��
= 0 and

�Nx�

�x
+

1

R

�N��

��
= 0.

(17)Nxx =
1

R2

�2�

��2
, Nx� = −

1

R

�2�

�x��
, N�� =

�2�

�x2
.

(18)
D∇4w +

1

1 − �
∇2MT +

(
1 − �∇2

)
∇2

K
� + �h

(
1 − �∇2

)�2w
�t2

= 0,

With the aid of Eqs. (11a)–(11c), one can readily obtain:

By inserting relations above into Eq. (19) and employ-
ing Eq. (17), the compatibility equation takes the following 
form:

3.3 � Heat conduction equation

By means of Eqs. (7a), (7b) and (8), one can determine cubi-
cal dilatation �mm as:

Substitution of Eqs. (7a), (7b), (20a) and (20b) into rela-
tion above leads to:

Given scant impact of thermoelastic coupling, the mag-
nitude of NT is much lower than that of Nxx + N�� [14]. By 
taking into consideration this point and utilizing Eq. (17) 
into (23), cubical dilatation becomes:

For circular cylindrical shells, three-dimensional Laplace 
operator ∇

2 is expressed by:

In thin circular cylindrical shells, thickness value is trivial 
compared to radius value (i.e. R ≫ z ). Additionally, in thin 
mechanical elements, temperature gradients in transverse 
direction are enormous in comparison with those in other 

(19)

�

�x

(
R
��0

��

�x
−

1

2

��0
x�

��

)
+

�

��

(
1

R

��0
xx

��
−

1

2

��0
x�

�x

)
+ �xx = 0.

(20a)�0
xx
=

1

Eh

[(
1 − �∇2

)
Nxx − �

(
1 − �∇2

)
N�� + NT

]
,

(20b)�0
��

=
1

Eh

[(
1 − �∇2

)
N�� − �

(
1 − �∇2

)
Nxx + NT

]
,

(20c)�0
x�

=
2(1 + �)

Eh
[(1 − �∇2)Nx�],

(21)
(
1 − �∇2

)
∇4� + ∇2NT − Eh∇2

K
w = 0.

(22)

�mm =
1 − 2�

1 − �

[(
�0
xx
+ �0

��

)
+ z

(
�xx + ���

)]
+

1 + �

1 − �
��.

(23)

�mm =
1

Eh

1 − 2�

1 − �

[
(1 − �)

(
1 − �∇2

)(
Nxx + N��

)
+ 2NT

]

−
1 − 2�

1 − �
z∇2

w +
1 + �

1 − �
��.

(24)

�mm =
1 − 2�

Eh

(
1 − �∇2

)
∇2� −

1 − 2�

1 − �
z∇2w +

1 + �

1 − �
��.

(25)∇
2

=
�2

�x2
+

1

(R + z)2
�2

��2
+

�2

�z2
+

1

R + z

�

�z
.
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directions [14]. On account of these two significant issues, 
one can write:

Substitution of Eqs. (24) and (26) into Eq. (5) and simpli-
fication of result gives:

with � = k∕�cv and ΔE = E�2T0∕�cv standing for thermal 
diffusivity and relaxation strength, respectively. Since the 
value of relaxation strength is typically trifling ( ΔE ≪ 1 ), 
one can simplify heat conduction Eq. (27) as follows:

4 � Determination of TED value

Asymmetric time-harmonic vibrations are adopted for cir-
cular cylindrical shell as below:

where �mn shows the complex frequency comprising ther-
moelastic coupling effect. By inserting relations above into 
Eq. (28), one can arrive at the following heat conduction 
equation:

(26)∇
2

� =
�2�

�z2
+

1

R

��

�z
.

(27)

�

(
1 + �T

�

�t

)(
�2�

�z2
+

1

R

��

�z

)

=

[
1 + ΔE

1 + �

(1 − 2�)(1 − �)

](
1 + �q

�

�t

)
��

�t

+
ΔE

�Eh

(
1 + �q

�

�t

)
�

�t

(
1 − �∇2

)
∇2�

−
ΔE

�(1 − �)

(
1 + �q

�

�t

)
�

�t

(
z∇2w

)
,

(28)

�

(
1 + �T

�

�t

)(
�2�

�z2
+

1

R

��

�z

)

=
(
1 + �q

�

�t

)
��

�t
+

ΔE

�Eh

(
1 + �q

�

�t

)
�

�t

(
1 − �∇2

)
∇2�

−
ΔE

�(1 − �)

(
1 + �q

�

�t

)
�

�t

(
z∇2w

)
.

(29a)w(x, �, t) =

∞∑
m=1

∞∑
n=0

Wm(x)e
i(�mnt+n�),

(29b)�(x, �, z, t) =

∞∑
m=1

∞∑
n=0

Θm(x, z)e
i(�mnt+n�),

(29c)�(x, �, t) =

∞∑
m=1

∞∑
n=0

Φm(x)e
i(�mnt+n�),

in which ∇2

1
=
(
d2∕dx2

)
− (n2∕R2) . Moreover, complex 

parameter p is introduced by:

General solution of Eq. (30) is expressed by:

where c1 and c2 are unknown coefficients to be specified 
via thermal boundary conditions. Additionally, parameters 
r1 and r2 are determined by:

By taking adiabatic boundary conditions at the inter-
nal and external surfaces of nanoshell, one can write 
�Θm∕�z = 0 at z = ±h∕2 . According to these thermal bound-
ary conditions, the solution of temperature change appeared 
in Eq. (32) becomes:

Substitution of relation above into relations of Eq. (13) 
gives:

in which

(30)

�2Θm

�z2
+

1

R

�Θm

�z
+ p2Θm

= p2
ΔE

�(1 − �)
z∇2

1

Wm − p2
ΔE

�Eh

(
1 − �∇2

1

)
∇2

1

Φm,

(31)

p =

�
�mn

�

√
a1 − ia2 with

a1 =

�
�q − �T

�
�mn

1 + �2
T
�2
mn

and a2 =
1 + �T�q�

2
mn

1 + �2
T
�2
mn

.

(32)

Θm(x, z) = c1e
r1z + c2e

r2z +
ΔE

�(1 − �)

(
z −

1

R

1

p2

)
∇2

1
Wm

−
ΔE

�Eh

(
1 − �∇2

1

)
∇2

1
Φm,

(33)

r1 =
−1 +

√
1 − 4R2p2

2R
and r2 =

−1 −
√
1 − 4R2p2

2R
.

(34)

Θm(x, z) =
ΔE

�(1 − �)

[
1

r1

sinh
(
r2h∕2

)

sinh[
(
r1 − r2)h∕2

] er1z − 1

r2

sinh
(
r1h∕2

)

sinh[
(
r1 − r2)h∕2

] er2z

+z −
1

R

1

p2

]
∇2

1
Wm −

ΔE

�Eh

(
1 − �∇2

1

)
∇2

1
Φm.

(35a)NT =

∞∑
m=1

∞∑
n=0

NT ,m(x)e
i(�mnt+n�),

(35b)MT =

∞∑
m=1

∞∑
n=0

MT ,m(x)e
i(�mnt+n�),

(36a)

NT ,m =
EΔE

1 − �

[
2 sinh

(
r1h∕2

)
sinh

(
r2h∕2

)

sinh[
(
r1 − r2)h∕2

]
(

1

r2
1

−
1

r2
2

)
−

h

R

1

p2

]
∇2

1
Wm

− ΔE

(
1 − �∇2

1

)
∇2

1
Φm,
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with

Substitution of Eq. (36b) into motion Eq. (18) gives:

wi t h  ∇4

1
= ∇2

1

(
∇2

1

)
=
(
d4∕dx4

)
− 2

(
n2∕R2

)(
d2∕dx2

)
+ (n4∕R4)  . 

Furthermore:

By inserting Eq. (36a) into compatibility Eq. (21), one 
can get:

 where

Elimination of function Φm from Eqs. (38) and (40) pro-
vides the thermoelastic frequency equation in terms of Wm 
as below:

in which ∇4

K
= ∇2

K

(
∇2

K

)
=
(
1∕R2

)(
d4∕dx4

)
 . In addition:

(36b)

MT ,m =
EΔE

1 − �

[
h3

12
+

1

r1

sinh
(
r2h∕2

)

sinh[
(
r1 − r2)h∕2

] f (r1
)

−
1

r2

sinh
(
r1h∕2

)

sinh[
(
r1 − r2)h∕2

] f (r2
)]

∇2

1
Wm,

(37)f (r) =
h

r
cosh (rh∕2) −

2

r2
sinh (rh∕2).

(38)

[
D + ΔEF

(
�mn

)]
∇4

1

Wm +
(
1 − �∇2

1

)
∇2

K
Φm

− �h�2

mn

(
1 − �∇2

1

)
Wm = 0,

(39)

F
(
�mn

)
=

Eh3

12(1 − �)2

{
1 +

12

h3

[
1

r1

sinh
(
r2h∕2

)

sinh[
(
r1 − r2)h∕2

] f (r1
)

−
1

r2

sinh
(
r1h∕2

)

sinh[
(
r1 − r2)h∕2

] f (r2
)]}

.

(40)
ΔEG

(
�mn

)
∇4

1
Wm +

(
1 − �∇2

1

)
∇4

1
Φm − Eh∇2

K
Wm = 0,

(41)

G
(
�mn

)
=

E

1 − �

[
2 sinh

(
r1h∕2

)
sinh

(
r2h∕2

)

sinh[
(
r1 − r2)h∕2

]
(

1

r2
1

−
1

r2
2

)
−

h

R

1

p2

]
.

(42)

[
D + ΔEF

(
�mn

)]
∇8

1

Wm − ΔEG
(
�mn

)
∇2

K
∇4

1

Wm

+ Eh∇4

K
Wm = �h�2

mn

(
1 − �∇2

1

)
∇4

1

Wm,

In the absence of thermoelastic coupling effect, Eq. (42) 
reduces to isothermal frequency equation as follows:

where �0,mn refers to the nonlocal isothermal frequency of 
mode number (m, n) . For arbitrary boundary conditions, the 
Galerkin method is applied on equation above to determine 
the approximate value of �0,mn as [36]:

Beam mode shapes are a common selection of shape 
function Wm for rectangular plates and cylindrical shells 
[36]. For a nonlocal beam, the governing equation of mode 
shape is given by:

in which �m are the roots of beam eigenvalue problem. It 
is important to emphasize that the boundary conditions of 
the beam should be same as those of the shell. Additional 
explanations about the mode shape of different boundary 
conditions are provided in Appendix section. Given that 
thermoelastic coupling effect is marginal, one can replace 
F
(
�mn

)
 and G

(
�mn

)
 with F(�0,mn) and G(�0,mn) in Eq. (42) 

[14]. Accordingly, the frequency equation takes the follow-
ing form:

Implementation of the Galerkin procedure in Eq. (47) 
and segregation of real and imaginary parts gives:

where

(43)

∇8

1
= ∇4

1

(
∇4

1

)
=

d
8

dx8
− 4

n2

R2

d
6

dx6
+ 6

n4

R4

d
4

dx4
− 4

n6

R6

d
2

dx2
+

n8

R8
.

(44)D∇8

1
Wm + Eh∇4

K
Wm = �h�2

0,mn

(
1 − �∇2

1

)
∇4

1
Wm,

(45)�0,mn =

⎡
⎢⎢⎢⎢⎣

D

L∫
0

Wm∇
8

1
Wmdx + Eh

L∫
0

Wm∇
4

K
Wmdx

�h

L∫
0

Wm

�
1 − �∇2

1

�
∇4

1
Wmdx

⎤
⎥⎥⎥⎥⎦

1

2

.

(46)
d
4Wm

dx4
= �4

m

(
1 − �

d
2

dx2

)
Wm,

(47)

[
D + ΔEF

(
�
0,mn

)]
∇8

1

Wm − ΔEG
(
�
0,mn

)
∇2

K
∇4

1

Wm

+ Eh∇4

K
Wm = �h�2

mn

(
1 − �∇2

1

)
∇4

1

Wm.

(48)�2

mn
= �mn + i�mn,

(49a)�mn =

(
D + ΔEFr

) L∫
0

Wm∇
8

1
Wmdx − ΔEGr

L∫
0

Wm∇
2

K
∇4

1
Wmdx + Eh

L∫
0

Wm∇
4

K
Wmdx

�h

L∫
0

Wm

(
1 − �∇2

1

)
∇4

1
Wmdx

,
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in which functions Fr and Fi denote the real and imaginary 
parts of F

(
�0,mn

)
 , respectively. Additionally, functions Gr 

and Gi represent the real and imaginary parts of G
(
�0,mn

)
 , 

respectively. According to the complex frequency approach, 
TED value is determined via the following relation [13]:

By referring to Eq. (48) and conducting a procedure 
similar to what has been performed in [37], one can write:

By inserting Eqs. (49a) and (49b) into equation above, 
the expression estimating TED becomes:

Owing to small value of relaxation strength ΔE , Eq. (52) 
can be simplified to the following relation:

With the help of relation above, one can predict the 
magnitude of TED in circular cylindrical shells by captur-
ing nonlocal and dual-phase-lagging effect.

(49b)

�mn =

ΔEFi

L∫
0

Wm∇
8

1
Wmdx − ΔEGi

L∫
0

Wm∇
2

K
∇4

1
Wmdx

�h

L∫
0

Wm

(
1 − �∇2

1

)
∇4

1
Wmdx

,

(50)Q−1 = 2

|||||
Im

(
�mn

)

Re
(
�mn

)
|||||
.

(51)Q−1 =
||||
�mn

�mn

||||.

(52)Q−1 =

||||||||||

ΔEFi

L∫
0

Wm∇
8

1
Wmdx − ΔEGi

L∫
0

Wm∇
2

K
∇4

1
Wmdx

(
D + ΔEFr

) L∫
0

Wm∇
8

1
Wmdx − ΔEGr

L∫
0

Wm∇
2

K
∇4

1
Wmdx + Eh

L∫
0

Wm∇
4

K
Wmdx

||||||||||

.

(53)

Q−1 =

||||||||||

ΔEFi

L∫
0

Wm∇
8

1
Wmdx − ΔEGi

L∫
0

Wm∇
2

K
∇4

1
Wmdx

D

L∫
0

Wm∇
8

1
Wmdx + Eh

L∫
0

Wm∇
4

K
Wmdx

||||||||||

.

5 � Explicit solution to TED in simply 
supported cylindrical shells

In this section, an explicit solution for TED in a simply sup-
ported cylindrical nanoshell is presented. For such a shell, 
the boundary conditions at the edges x = 0 and x = L are 
expressed as [36]:

Accordingly, the Navier solution is considered to represent 
displacement field as below:

Hence, one can write:

The Navier solution presented in Eqs. (55a)–(55c) is fully 
compatible with boundary conditions given in Eq.  (54). 
Moreover, the shape function presented in Eq. (56) satisfies 
both isothermal frequency Eq. (44) and coupled thermoelastic 
frequency Eq. (47). In consequence, Eqs. (55a)–(55c) are the 
exact solutions of TED problem for simply supported cylindri-
cal shells. Substitution of Eq. (56) into isothermal frequency 
Eq. (44) gives:

(54)w = v = Mxx = Nxx = 0.

(55a)u(x, �, t) =

∞∑
m=1

∞∑
n=0

Am cos

(
m�x

L

)
cos n(� − �)ei�mnt,

(55b)v(x, �, t) =

∞∑
m=1

∞∑
n=0

Bm sin

(
m�x

L

)
sin n(� − �)ei�mnt,

(55c)w(x, �, t) =

∞∑
m=1

∞∑
n=0

Cm sin

(
m�x

L

)
cos n(� − �)ei�mnt.

(56)Wm(x) = Cm sin

(
m�x

L

)
.

Table 1   Mechanical and thermal constants of single-walled carbon nanotube (SWCN) at T
0

= 300K [14]

E(GPa) � �(kgm−3) k(Wm−1K−1) �(10−6K−1) �cv(10
6Jm−3K−1)

1060 0.25 2270 2000 7 1.36
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In addition, by inserting Eq. (56) into coupled thermoelastic 
frequency Eq. (47) and doing the same procedure conducted 
in the previous section, the explicit relation of TED in sim-
ply supported circular cylindrical nanoshells can be readily 
derived as follows:

(57)

�0,mn =

⎡⎢⎢⎢⎢⎣

D

��
m�

L

�2

+
�

n

R

�2
�4

+
Eh

R2

�
m�

L

�4

�h

��
m�

L

�2

+
�

n

R

�2
�2�

1 + �

��
m�

L

�2

+
�

n

R

�2
��

⎤⎥⎥⎥⎥⎦

1

2

.

(58)

Q−1 =

||||||||||

ΔEFi

[(
m�

L

)2

+
(

n

R

)2
]4

+ ΔE
Gi

R

[(
m�

L

)2

+
(

n

R

)2
]2(

m�

L

)2

D

[(
m�

L

)2

+
(

n

R

)2
]4

+
Eh

R2

(
m�

L

)4

||||||||||

.

6 � Numerical results and discussion

In this section, several graphical data and numerical results 
are given to examine size-dependent TED in cylindrical 
nanoshells. First, with the aim of assessment of the validity of 
presented model, a comparison study is performed between 
the results of current study and those reported in the literature. 
Next, by providing several numerical results, a detailed para-
metric study is made for the sake of clarifying the influence of 
some determining factors like nonlocal parameter, phase lags, 
vibration modes and material on TED value.

6.1 � Comparison study

For the sake of checking the validity of given formulation, a 
comparison study is performed between the findings of this 
study with those of the research of Lu et al. [14]. They evalu-
ated TED in thin circular cylindrical shells in the framework of 
classical continuum theory and Fourier heat conduction law. In 
consequence, nonclassical mechanical and thermal constants, 
i.e. � , �q and �T should be ignored in the presented model to 
compare the outcomes of these two investigations. Thermoe-
lastic properties of single-walled carbon nanotube (SWCN) are 
given in Table 1 [14]. For different mode numbers, the vari-
ation of TED predicted in [14] and estimated in current work 
is depicted in Fig. 2 for a clamped–clamped SWCN with geo-
metrical parameters R = 70nm , L = 350nm and h = 0.35nm . 
As it is evident, the results extracted on the basis of developed 
formulation in this article are in good agreement with those 
reported by Lu et al. [14].

6.2 � Parametric study

This section is devoted to appraisal of the impact of some key 
factors such as nonlocal parameter, phase lags and material 
on the magnitude of TED for some mode numbers. Except 
where specified, numerical examples are presented for a cir-
cular cylindrical shell made of copper with geometrical ratios 
L∕R = 4 and R∕h = 60 . Thermoelastic constants of copper 
(Cu) as well as gold (Au) and lead (Pb) at reference tempera-
ture T0 = 300K are listed in Table 2.

6.2.1 � Impact of nonlocal parameter on TED

Figure 3 indicates the variation of normalized value of TED 
((Q−1∕ΔE)*(106 )) as a function of the radius of nanoshell for 
different values of nonlocal parameter � . It can be observed 
that for nano-sized cylindrical shells, as the magnitude of 
radius ascends, TED value gets larger. It is also inferred that 
nonlocal theory predicts greater values of TED in compari-
son with classical theory. As it is obvious, by increasing the 
nonlocal parameter � , the amount of TED intensifies.

Fig. 2   Effect of vibration modes on TED in a clamped–clamped 
single-walled carbon nanotube (SWCN) with geometrical properties 
R = 70nm , L = 350nm and h = 0.35nm

Table 2   Thermoelastic properties of some materials at T
0

= 300K 
[10]

Material property Copper (Cu) Gold (Au) Lead (Pb)

E(GPa) 110 79 16
� 0.35 0.40 0.44
�(kgm−3) 8940 19,300 11,340
k(Wm−1K−1) 386 315 35.3

�(10−6K−1) 16.5 14.2 28.9

cv(Jkg
−1K−1) 385.9 129.1 128

�q(ps) 0.4348 0.7438 0.1670
�T (ps) 70.833 89.286 12.097
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To highlight the influence of nonlocal parameter on TED 
value, Fig. 4 depicts the nonlocal TED ratio ( Q−1

Nonlocal
∕Q−1

Local
 ) 

versus the radius of nanoshell. Based on these plots, one can 
deduce that by reduction of nanoshell’s size, the nonlocal 
effect is reinforced. This outcome betokens the importance 
of size-dependency phenomenon at nanosacles. It is also 
apparent that when the radius of nanoshell increases, the 
nonlocal effect shrinks, so that the magnitude of TED pre-
dicted by nonlocal theory tends to that calculated by clas-
sical theory. Similar to what was seen in Fig. 3, for bigger 
amounts of nonlocal parameter � , the nonlocal effect on 
TED value enlarges. In addition, as for the mode numbers 
examined in paper at hand, the maximum and minimum 

nonlocal effect belong to vibration modes (m, n) = (1, 0) and 
(m, n) = (2, 1) , respectively.

6.2.2 � Impact of DPL model on TED

Figure 5 compares normalized values of TED determined 
by means of CTE and DPL models versus the radius of 
nanoshell for some vibration modes. To plot these curves, 
the nonlocal parameter � is assumed to be zero. As it is 
observed, in comparison with CTE model, utilization of 
DPL model leads to smaller amounts of TED. In addition, 
according to these curves, the highest and lowest thermoe-
lastic damping take place in vibration modes (m, n) = (2, 1) 
and (m, n) = (1, 0) , respectively.

(a) (b)

(c) (d)

Fig. 3   Sensitivity of TED value to nonlocal parameter � for some mode numbers a (m, n) = (1, 0) , b (m, n) = (1, 1) , c (m, n) = (2, 0) , d 
(m, n) = (2, 1)
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In Fig. 6, for four different mode numbers, the DPL TED 
ratio (Q−1

DPL
∕Q−1

CTE
) as a function of nanoshell’s radius is dis-

played to focus on the dual-phase-lagging effect on TED. 
The nonlocal parameter � is again considered to be zero. 
It is apparent that by diminution in the radius of nanoshell, 
the effect of DPL model strengthens. This result reveals that 
DPL model has the means to capture small-scale effect in 
heat conduction process. It can be also easily seen that by 
increasing the dimensions of nanoshell, the predictions of 
DPL model converge to those of CTE model. Regarding 
the vibration modes, it is worth noting that the highest and 
lowest dual-phase-lagging effect occurs at mode numbers 
(m, n) = (2, 0) and (m, n) = (1, 1) , respectively.

For some vibration modes, Fig. 7 illustrates the DPL 
TED ratio for a cylindrical nanoshell with fixed thickness 
h = 5nm and variable radius R and length L . The surfaces 
are plotted by taking � = 0nm2 . It is clearly seen that by 

enlargement of radius or length of nanoshell, the impact 
of phase lags on TED dwindles, and the amount of TED 
anticipated by DPL model approaches that specified by CTE 
model. It is also observed that for axisymmetric vibration 
modes (m, n) = (1, 0) and (m, n) = (2, 0) , the variation in the 
length of nanoshell doesn’t lead to a meaningful change in 
the DPL TED ratio.

6.2.3 � Impact of material on TED

The effect of material on TED in cylindrical nanoshells of 
radius R = 45nm is evaluated in Tables 3, 4 and 5 for some 
nonlocal parameters and mode numbers. On the basis of 
these numerical data, nanoshells made of lead and gold 
exhibit the most and least values of TED, respectively. It 
is also clear that in addition to nanoshells made of cop-
per, the nonlocal effect augments TED value in nanoshells 
made of gold and lead.

(a) (b)

(c) (d)

Fig. 4   Nonlocal TED ratio as a function of radius of cylindrical nanoshell for some mode numbers a (m, n) = (1, 0) , b (m, n) = (1, 1) , c 
(m, n) = (2, 0) , d (m, n) = (2, 1)
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Table 6 reveals the dual-phase-lagging effect on TED in 
nanoshells made of copper, gold and lead for four differ-
ent vibration modes. To extract these results, the radius of 
nanoshell is chosen as R = 300nm . The nonlocal param-
eter � is also set to zero. According to DPL TED ratios, 
the maximum and minimum impact of dual-phase-lagging 
on TED belong to nanoshells made of copper and lead, 
respectively. Moreover, similar to copper, the greatest and 
smallest dual-phase-lagging effect on TED in nanoshells 
made of gold and lead is observed at vibration modes 
(m, n) = (2, 0) and (m, n) = (1, 1) , respectively.

(a) (b)

(c) (d)

Fig. 5   Sensitivity of TED value to phase lags for some mode numbers a (m, n) = (1, 0) , b (m, n) = (1, 1) , c (m, n) = (2, 0) , d (m, n) = (2, 1)

Fig. 6   DPL TED ratio as a function of radius of cylindrical nanoshell 
for some vibration modes
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Fig. 7   Effect of length and radius on DPL TED ratio of a cylindrical shell with thickness h = 5nm for some vibration modes a (m, n) = (1, 0) , b 
(m, n) = (1, 1) , c (m, n) = (2, 0) , d (m, n) = (2, 1)

Table 3   Comparison of values of TED in cylindrical nanoshells made 
of copper for some mode numbers and nonlocal parameters

Mode number 
(m, n)

�
(
nm2

)
Q−1 ∗

(
1015

)
Q−1

Nonlocal
∕Q−1

Local

(1, 0) 0 4.307 1
2 4.462 1.036
4 4.604 1.069

(1, 1) 0 6124 1
2 6283 1.026
4 6442 1.052

(2, 0) 0 945.2 1
2 966.0 1.022
4 984.9 1.042

(2, 1) 0 5448 1
2 5519 1.013
4 5622 1.032

Table 4   Comparison of values of TED in cylindrical nanoshells made 
of gold for some mode numbers and nonlocal parameters

Mode number 
(m, n)

�
(
nm2

)
Q−1 ∗ (1015) Q−1

Nonlocal
∕Q−1

Local

(1, 0) 0 1.690 1
2 1.727 1.022
4 1.763 1.043

(1, 1) 0 4419 1
2 4494 1.017
4 4574 1.035

(2, 0) 0 753.1 1
2 762.1 1.012
4 771.2 1.024

(2, 1) 0 4256 1
2 4299 1.010
4 4333 1.018
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7 � Conclusions

By considering small-scale effect on structural and ther-
mal areas via nonlocal continuum theory and dual-phase-
lag (DPL) heat conduction model, thermoelastic damp-
ing (TED) in thin circular cylindrical nanoshells has been 
appraised in the paper at hand. Donnell–Mushtari–Vlasov 
(DMV) equations have also been exploited to model the 
nanoshell. By choosing time-harmonic asymmetric vibra-
tions of nanoshell, and solving the size-dependent motion, 
compatibility and heat conduction equations, an analytical 
relation for evaluation of TED in cylindrical nanoshells 
with arbitrary boundary conditions has been presented. 

For the sake of surveying the validity of developed model, 
a comparison study between the results of current arti-
cle with those available in the literature has been carried 
out. To this aim, the nonclassical structural and thermal 
parameters (i.e. � , �q and �T  ) have been ignored in the 
provided formulation so that the results of this paper can 
be compared with those of Lu et al. [14]. In this particular 
case, the outcomes of the two studies have been in close 
agreement with each other. In general, the size-dependent 
results of the current article have been qualitatively similar 
to the results reported in [14]. For instance, in both papers, 
irrespective of the elasticity theory and heat conduction 
model used, thermoelastic damping has been intensified 
with the increase of dimensions of shell at nanoscales. 
Additionally, among the four modes examined, in both 
studies, the most energy dissipation has occurred in 
modes (1, 1) , (2, 1) , (2, 0) and (1, 0) , respectively. Despite 
the qualitative similarity of the results, by incorporating 
scale parameters into calculations, the classical and size-
dependent results have been quantitatively different from 
each other. Accordingly, an in-depth parametric study 
has been conducted to illuminate the influence of nonlo-
cal parameter, phase lags, vibration modes and type of 
material on TED in simply supported circular cylindrical 
nanoshells. The substantial findings of present research 
can be enumerated as follows:

•	 By capturing nonlocal effect, the magnitude of TED in 
circular cylindrical nano-sized shells rises.

•	 For larger values of nonlocal parameter � , energy dissipa-
tion originated by TED ascends.

•	 DPL model estimates lower amounts of TED in compari-
son with CTE model.

•	 With the increase of dimensions of cylindrical 
nanoshell, small-scale effect on both structure and heat 
conduction dwindles and TED value specified via pre-
sented size-dependent model in this work tends to that 
anticipated by means of classical model.

•	 Depending on the purpose of its usage, the choice of 
material can be a determining factor in the design of 
nanoshells. Among the materials appraised in paper 
at hand, namely copper, gold and lead, cylindrical 
nanoshells made of lead and gold exhibit the most and 
least amounts of TED, respectively.

Appendix

The free vibration of a nonlocal Euler–Bernoulli beam is 
governed by the following equation:

Table 5   Comparison of values of TED in cylindrical nanoshells made 
of lead for some mode numbers and nonlocal parameters

Mode number 
(m, n)

�
(
nm2

)
Q−1 ∗

(
1015

)
Q−1

Nonlocal
∕Q−1

Local

(1, 0) 0 396.707 1
2 426.460 1.075
4 458.197 1.155

(1, 1) 0 72,930.4 1
2 77,160.4 1.058
4 81,390.3 1.116

(2, 0) 0 53,230.1 1
2 55,731.9 1.047
4 58,393.4 1.097

(2, 1) 0 177,002 1
2 183,551 1.037
4 189,215 1.069

Table 6   Dual-phase-lagging effect on TED in cylindrical nanoshells 
for some materials and mode numbers

Material Mode 
number 
(m, n)

Q−1
DPL

∗
(
1013

)
Q−1

CTE
∗
(
1013

)
Q−1

DPL
∕Q−1

CTE

Copper (1, 0) 4.6809 7.6224 0.6141
(1, 1) 1967.2 2162.2 0.9098
(2, 0) 995.23 1671.0 0.5956
(2, 1) 4057.4 5456.4 0.7436

Gold (1, 0) 1.2821 1.7099 0.7498
(1, 1) 919.18 967.25 0.9503
(2, 0) 557.76 757.83 0.7360
(2, 1) 2061.2 2436.1 0.8461

Lead (1, 0) 29.042 29.103 0.9979
(1, 1) 4932.7 4933.7 0.9998
(2, 0) 3896.1 3905.1 0.9977
(2, 1) 12,390 12,400 0.9992
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in which I and A represent the area moment of inertia of 
cross sections and cross section area of the beam. By adopt-
ing simple harmonic form w(x, t) =

∑∞

m=1
Wm(x)e

i�mt , sub-
stituting it into equation above, and simplifying the result, 
one can get:

where

The general solution of Eq. (60) has the following form:

in which C1 , C2 , C3 and C4 are integration constants. Substi-
tution of relation above into Eq. (60) and solving the obtained 
equation gives:

Boundary conditions of three common types of beams, 
namely doubly simply supported (SS), doubly clamped (CC) 
and cantilever (CF) are expressed by [38]:

By inserting Eq. (62) into Eqs. (64)–(66), using Eq. (61) 
and setting the determinant of the coefficient matrix of the 
obtained algebraic equations for C1 , C2 , C3 and C4 to zero, one 
can attain the following characteristic equations:

(59)EI
�4w

�x4
− ��A

�4w

�x2�t2
+ �A

�2w

�t2
= 0,

(60)
�4Wm

�x4
+ ��4

m

�4Wm

�x2
− �4

m
Wm = 0,

(61)�4
m
=

�A

EI
�2

m
.

(62)
Wm = C1sin

(
�1x

)
+ C2cos

(
�1x

)
+ C3sinh

(
�2x

)
+ C4cosh

(
�2x

)
,

(63)
�2
1
=

1

2

(
��4

m
+

√
�2�8

m
+ 4�4

m

)
and

�2
2
=

1

2

(
−��4

m
+

√
�2�8

m
+ 4�4

m

)
.

(64)SS ∶ Wm(0) =
d
2Wm

dx2
(0) = Wm(L) =

d
2Wm

dx2
(L) = 0,

(65)CC ∶ Wm(0) =
dWm

dx
(0) = Wm(L) =

dWm

dx
(L) = 0,

(66)

CF ∶ Wm(0) =
dWm

dx
(0) = EI

d
2
Wm

dx2
(L) + ��A�2

m
Wm(L)

= EI
d
3
Wm

dx3
(L) + ��A�2

m

dWm

dx
(L) = 0.

(67)SS ∶ sin(�1L) = 0,

(68)

CC ∶ 2 cos
(
�1L

)
cosh

(
�2L

)
+

(
�1

�2
−

�2

�1

)
sin(�1L) sinh(�2L) − 2 = 0,

By considering the relation of �1 and �2 with �m through 
relation (63) and solving the equations above, �1 and �2 are 
extracted, and by inserting them in Eq. (62), the mode shape 
of nonlocal beams with mentioned boundary conditions is 
obtained. Since the model of Lu et al. [14] has been provided 
in the context of classical continuum theory (i.e. � = 0 ) for CC 
boundary conditions, according to Eq. (63), the comparison 
study must be conducted on the basis of �1 = �2 = �m . Hence, 
by considering Eq. (68), the characteristic equation of a clas-
sical CC beam becomes:

On the other hand, by imposing boundary conditions (65) 
on Eq. (62) and letting �1 = �2 = �m , the mode shape of a 
classical CC beam is obtained as follows:
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