
Vol.:(0123456789)1 3

Archives of Civil and Mechanical Engineering (2021) 21:98 
https://doi.org/10.1007/s43452-021-00250-2

ORIGINAL ARTICLE

Isogeometric nonlinear bending analysis of porous FG composite 
microplates with a central cutout modeled by the couple stress 
continuum quasi‑3D plate theory

Rui Rao1 · Saeid Sahmani2  · Babak Safaei3

Received: 24 April 2021 / Revised: 17 May 2021 / Accepted: 20 May 2021 / Published online: 2 June 2021 
© Wroclaw University of Science and Technology 2021

Abstract
In the present investigation, by putting the isogeometric finite element methodology to use, the nonlinear flexural response 
of composite rectangular microplates having functionally graded (FG) porosity is predicted incorporating couple stress type 
of small scale effect. To accomplish this analysis, a non-uniform kind of rational B-spline functions are employed for an 
accurate geometrical description of cutouts with various shapes located at the center of microplates. The modified couple 
stress continuum elasticity is implemented within the framework of a new quasi-three-dimensional (quasi-3D) plate theory 
incorporating normal deflections with only four variables. By refining the power-law function, the porosity dependency 
in conjunction with the material gradient are taken into consideration in a simultaneous scheme. The couple stress-based 
nonlinear flexural curves are achieved numerically based upon a parametrical study. It is demonstrated that for a larger plate 
deflection, the role of couple stress type of small scale effect on the nonlinear bending curves of porous FG composite micro-
plates is highlighted. It is seen that the gap between nonlinear flexural responses associated with different through-thickness 
porosity distribution schemes is somehow higher by taking the couple stress effect into account. Also, it is observed that the 
existence of a cutout at the center of composite microplates makes a change in the slope of their nonlinear flexural curve.

Keywords Couple stress continuum mechanics · Quasi-3D plate model · Isogeometric numerical technique · Small scale 
effect · Porous composite material

1 Introduction

In recent years, by the progress of material sciences and 
technologies, a variety of porous systems have been fab-
ricated to produce lightweight and controlled pore struc-
tures with favorable functionality and mechanical charac-
teristics. To do so, a great number of research works have 
been performed. Cheng et al. [1] analyzed the multifaceted 

capabilities of cellulosic porous structures in health, energy 
and environment fields. Wang et al. [2] reviewed the elec-
trocatalytic and photocatalytic applications of 2D porous 
structures. Ansari et al. [3] fabricated porous hollow double-
walled  Mn2O3 cubes capable of enhancing charge diffusion. 
Zhang et al. [4] fabricated porous structures made of hierar-
chical carbon material doped with nitrogen atoms through 
a template free technique to be applied in  CO2 capturing 
systems. Yu et al. [5] prepared porous carbon structures by 
utilizing anode component of corn straw using in lithium 
ion batteries. Lin et al. [6] used graded porous materials to 
fabricate highly stretchable and ultrasensitive strain sensors 
having a sandwich structure.

The application of various small-scale effects to classical 
continuum elasticity is necessary to analyze their effects. 
To do so, researchers have developed a series of non-clas-
sical continuum elasticity theories. Over the last 20 years, 
a lot of research works have been performed to anticipate 
size-dependent mechanical features of various small-scaled 
structural systems. For example, Sahmani and Ansari [7] 
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developed different nonlocal models for nonlinear stabil-
ity analysis of beams at nanoscale using the state-space 
method. Sahmani et al. [8] indicated the size effect of surface 
stress on the free oscillations of postbuckled nanobeams. 
Reddy et al. [9] proposed a nonlocal finite element model 
for axisymmetric nonlinear bending behavior of circular 
nanoplates. Togun and Bagdatli [10] analyzed the nonlinear 
vibrations tensioned Euler–Bernoulli microbeams based on 
the couple stress theory. Lou et al. [11] investigated couple 
stress-based plate model for instability analysis of piezoelec-
tric hybrid microplates. Sahmani et al. [12] studied the effect 
of surface stress on the nonlinear stability of nanoshells 
under simultaneous axial and radial applied compressive 
loads. Malikan [13] investigated the couple stress-based 
shear buckling response of piezoelectric nanoplates under 
electro-mechanical load. Safaei et al. [14] put the nonlocal 
continuum elasticity to use for reporting natural frequen-
cies of nanoplates. She et al. [15] incorporated geometri-
cal nonlinearity in bending and buckling characteristics of 
functionally graded (FG) tubes. Sahmani and Aghdam [16, 
17] employed refined truncated cube cell for nonlocal strain 
gradient bending and forced vibrations of porous microbe-
ams. Arefi et al. [18] constructed a nonlocal sinusoidal shear 
deformable plate model for free vibrations of FG composite 
nanoplates. Sahmani and Fattahi [19] explored the nonlocal 
strain gradient postbuckling of axially loaded FG composite 
microshells. Soleimani and Tadi Beni [20] derived couple 
stress-based axisymmetric shell element equations based 
on a two-node element. Sahmani et al. [21] studied size-
dependent nonlinear large deflection of uniformly loaded 
porous FG composite microbeams using nonlocal strain 
gradient elasticity.

Recently, Li et al. [22] established a small scale-depend-
ent beam model considering inhomogeneity in conjunc-
tion with variation of material properties through-length to 
explore axially FG nonlocal strain gradient Euler–Bernoulli 
beams. Sahmani and Aghdam [23] analyzed the axial post-
buckling of FG composite microshells based on a nonlocal 
strain gradient multilayer shell structure. Joshi et al. [24] 
evaluated effect of thermal environment on the fundamen-
tal frequencies of cracked Kirchhoff FG microplates based 
on strain gradient continuum mechanics. Radic and Jeremic 
[25] evaluated stability and oscllation responses of inhomo-
geneous bi-layered graphene nanosheets under hygrothermal 
loadings according to the differential type of nonlocal con-
tinuum mechanics. Using same theory Sahmani and Agh-
dam [26] analyzed the small scale-dependent instability 
of cytoplasm-embedded microtubules. Khakalo et al. [27] 
modeled strain gradient flexural, vibration and buckling of 
Euler–Bernoulli and Timoshenko microscaled beams made 
of 2D triangular multilayer composites. Al-Shujairi et al. 
[28] developed a nonlocal strain gradient continuum beam 
formulation to evaluate the free oscillations and buckling 

of FG multilayer microscaled beams by considering ther-
mal conditions. Ruocco et al. [29] established Hencky bar 
net scheme to investigate the oscillations and buckling of 
nonlocal axially FG beams at nanoscale. Jia et al. [30] stud-
ied the electro-thermo-mechanical stability behaviors of 
FG composite beams at microscale based upon the couple 
stress-based continuum mechanics. Taati [31] studied the 
nonlinear stability behaviors of FG multilayer microbeams 
incorporating the couple stress size effect.

Ghorbani Shenas et al. [32] explored the thermal post-
buckling and prebuckling of pre-twisted rotating FG 
composite beams at microscale under high temperature 
variation according to modified strain gradient continuum 
elasticity. Sarafraz et al. [33] evaluated superharmonic 
subharmonic and excited nanobeam resonances taking into 
account the effect of surface stress. Aria and Friswell [34] 
studied hygro-thermal buckling and vibration responses 
of FG multilayer temperature-dependent beams at micro-
scale. Jun et  al. [35] incorporated three characteristic 
lengths to the nonlocal continuum mechanics to study the 
buckling behaviors of nanobeams. Thai et al. [36] estab-
lished a numerical solution to explore the effect of strain 
gradient size dependency in free vibrations of FG compos-
ite multilayer microplates. Sahmani and Safaei [37] evalu-
ated nonlinear oscillations resonance of bi-directional FG 
composite microbeams according to nonlocal strain gradi-
ent elasticity. Fang et al. [38] developed a novel nonlocal 
beam model in the absence of shear deformation to exam-
ine the thermal buckling and vibrations of FG composite 
nanobeams under thermal conditions. Sarthak et al. [39] 
investigated the dynamic stability of curved nanoscaled 
beams using both third-order shear deformable plate for-
mulation and nonlinear nonlocal finite element method. 
Yuan et al. [40] studied the nonlinear stability stiffness of 
FG composite conical microshells by incorporating dif-
ferent size-dependent continuum models. Thai et al. [41] 
established a size-dependent meshfree numerical model 
for the analysis of the vibration and deformation behaviors 
of FG carbon nanotube-reinforced nanobeams. Yuan et al. 
[42] and Fan et al. [43] predicted the effects of nonlocal 
and surface stress on FG composite nanoplate shear buck-
ling behaviors, respectively. Zhang et al. [44] applied the 
finite element technique using a strain gradient higher-
order shear flexible beam element to perform dynamic and 
static analyses on microbeam structures. Daghigh et al. 
[45] introduced a nonlocal continuum plate formulation 
to study the buckling and nonlinear bending properties of 
nanocomposite plates at the nanoscale. Karamanli and Vo 
[46] studied the free vibrations, buckling and bending of 
FG multilayer microbeams with the aid of improved strain 
gradient continuum mechanics. Guo et al. [47] calculated 
the 3D nonlocal critical stability loads of multilayer nano-
plates containing integrated with quasicrystal-free surface 
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layers. Mao et al. [48] evaluated FG piezoelectric compos-
ite microplate free vibrations based on nonlocal continuum 
elasticity. Fan et al. [49] predicted geometrically nonlin-
ear oscillations of porous FG plates through isogeometric 
analyses. Sahmani and Safaei [50] explored FG composite 
conical nanoshell large-amplitude vibrations taking into 
account surface stress effect.

Herein, through combination of the modified couple 
stress continuum mechanics and a hybrid-type quasi-3D 
model of plate, the geometrical nonlinear flexural charac-
teristics of porous FG composite microplates are investi-
gated through an accurate description of cutouts having 
various shapes located at the center of microplates. By 
employing a porosity-dependent homogenization model, a 
refined approximation of the material properties of micro-
plates are obtained for each pattern of the through-thick-
ness porosity distribution. By performing a parametrical 
study, the influences of different parameters on the micro-
structural-dependent nonlinear flexural response of porous 
FG composite microplates are monitored.

2  Quasi‑3D couple stress‑based modelling 
of porous FG plate

In the current exploration, porous FG composite rectangular 
microplates in the presence and absence of a central cutout 
are supposed. Accordingly, the through-thickness porosity 
distribution is considered in three different patterns as dem-
onstrated in Fig. 1. To have a refined approximation of the 
material properties including the porous-dependency and 
material gradient simultaneously, it is assumed as [51]

where Γ denotes the porosity coefficient (index), and k is the 
index of material gradient.

In accordance with the refined approximation rule, the 
effective values of Poisson’s ratio ( � ) and Young’s modulus 
( E ) associated with the porous FG composite microplates 
can be estimated for different schemes of the through-thick-
ness porosity distribution as below

(1)
P(z) = Pc

[
(1∕2 + z∕k)k − Γ∕2

]
+ Pm

[
1 − (1∕2 + z∕h)k − Γ∕2

]

Fig. 1  Representation schematically a porous FG composite microplates having square and circular central located cutouts
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where

The refined approximated Young’s modulus is varied with 
the thickness as well as the porosity index of porous FG 
composite microplates. The dimensionless form ( E(z)∕Ec ) of 
these variations are plotted in Figs. 2, 3, 4 relevant to various 
material gradient indexes.

By separating the transverse plate deflection into the 
shear components and bending, the components of the 
quasi-3D displacement vector can be defined. In addition, 

(2a)E(z) =
(
Ec − Em

)
�1(z) + Em −

(
Ec + Em

)
Γ�2(z)

(2b)�(z) =
(
�c − �m

)
�1(z) + Em −

(
�c + �m

)
Γ�2(z)

(3)

�1(z) = (1∕2 + z∕h)k,�2(z) =

⎧
⎪⎨⎪⎩

1∕2U − PFGM

1∕2 − �z�∕hO − PFGM

−�z�∕hX − PFGM

using a transverse normal shape function to implement the 
normal deformations along the plate thickness, it yields

where u(x, y), v(x, y) in order are the variables of mid-plane 
deformation along x-axis and y-axis, and wb(x, y) and ws(x, y) 
stand for the bending and shear variables of deformation, 
respectively. Moreover, the shear deformations as well as 
the through-thickness normal strains are implemented via 
the transverse and normal shape functions of � (z) and �(z) , 
which are related to � (z) and �(z) in the following forms

(4a)Ux(x, y, z) = u(x, y) − zwb,x(x, y) + (� (z) − z)ws,x(x, y)

(4b)Uy(x, y, z) = v(x, y) − zwb,y(x, y) + (� (z) − z)ws,y(x, y)

(4c)Uz(x, y, z) = wb(x, y) + (1 + �(z))ws(x, y)

(5a)� (z) = � (z) − z = sin(�z∕h) − z

(5b)�(z) = 1 + �(z) = 1 + (5∕12�)cos(�z∕h)]

Fig. 2  Dimensionless through-thickness variation of Young’s modulus of a porous FG composite microplate having various material gradient 
indexes (U-PFGM pattern)
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In contrast to the first-order shear flexible formulations, 
the present hybrid quasi-3D plate model has the capabil-
ity to satisfy the  C0-continuuity requirement without any 
shear-locking problem. Also, using the trigonometric nor-
mal shape function, the through-thickness displacement 
can be accounted accurately and independently with the 
transverse shear function.

So, in the presence of nonlinearity in the von-Karman 
form, the components of the classical strain tensor in 
terms of the developed quasi-3D displacement field can 
be achieved as below

�xx = u,x +
(
wb,x + ws,x

)2
∕2 − zwb,xx + � (z)ws,xx

�yy = v,y +
(
wb,y + ws,y

)2
∕2 − zwb,yy + � (z)ws,yy

�zz = �,z(z)ws

Thereafter, the constitutive relationships between compo-
nents of the classical stress and strain tensors can be given as

where

(6)
�xy = u,y + v,x +

(
wb,x + ws,x

)(
wb,y + ws,y

)
− 2zwb,xy + 2� (z)ws,xy

�xz =
(
�,z(z) + �(z)

)
ws,x

�yz =
(
�,z(z) + �(z)

)
ws,y

(7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�xx
�yy
�zz
�xy
�yz
�xz

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎣

Q11(z) Q12(z) Q13(z) 0 0 0

Q12(z) Q22(z) Q23(z) 0 0 0

Q13(z) Q23(z) Q33(z) 0 0 0

0 0 0 Q44(z) 0 0

0 0 0 0 Q55(z) 0

0 0 0 0 0 Q66(z)

⎤⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�xx
�yy
�zz
�xy
�yz
�xz

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Fig. 3  Dimensionless through-thickness variation of Young’s modulus of a porous FG composite microplate having various material gradient 
indexes (O-PFGM pattern)
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Within the framework of the modified couple stress elas-
ticity of mechanics [52], the rotation gradient tensor can be 
obtained as follows

where the components of the rotation vector can be given 
as below

Q11(z) = Q22(z) = Q33(z) =
(1 − �(z))E(z)

(1 − 2�(z))(1 + �(z))

(8)Q12(z) = Q13(z) = Q23(z) =
�(z)E(z)

(1 − 2�(z))(1 + �(z))

Q44(z) = Q55(z) = Q66(z) =
E(z)

2(1 + �(z))

(9)� =
[
∇� + (∇�)T

]
∕2

By inserting Eq. (4) in Eq. (10), the components of the 
rotation gradient tensor are achieved as below

(10)

� =

⎧
⎪⎨⎪⎩

�x
�y
�z

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

�
Uz,y − Uy,z

�
∕2�

Ux,z − Uz,x

�
∕2�

Uy,x − Ux,y

�
∕2

⎫
⎪⎬⎪⎭

=

⎧⎪⎨⎪⎩

�
2wb,y +

�
�(z) − �,z(z)

�
ws,y

�
∕2�

−2wb,x −
�
�(z) − �,z(z)

�
ws,x

�
∕2�

v,x − u,y
�
∕2

⎫⎪⎬⎪⎭

�xx = �x,x =
[
2wb,xy +

(
�(z) − �,z(z)

)
ws,xy

]
∕2

�yy = �y,y =
[
−2wb,xy −

(
�(z) − �,z(z)

)
ws,xy

]
∕2

(11)

�xy = �x,y + �y,x

=
[
wb,yy − wb,xx +

(
�(z)∕2 − �,z(z)∕2

)(
ws,yy − ws,xx

)]
∕2

Fig. 4  Dimensionless through-thickness variation of Young’s modulus of a porous FG composite microplate having various material gradient 
indexes (X-PFGM pattern)
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Consequently, the non-classical constitutive relation-
ships between components of the rotation stress tensor and 
rotation gradient tensor can be presented as

where l represents the internal length scale parameter.
Therefore, the expression associated with the couple 

stress-based strain energy variation of a porous FG com-
posite microplate modeled includes two separate parts of 
the classical and non-classical ones in the following form

In addition, the applied distributed load ∐ induces a vir-
tual work as below

Via employing the variational rules, and inserting Eqs. (7) 
and (12) in Eq. (13), one will have

in which

�xy = �x,z + �z,x =
[
v,xx − u,xy +

(
�,z(z) − �,zz(z)

)
ws,y

]
∕4

�yz = �y,z + �z,y =
[
v,xy − u,yy −

(
�,z(z) − �,zz(z)

)
ws,x

]
∕4

�zz = �z,z = 0

(12)

⎧
⎪⎪⎨⎪⎪⎩

�xx

�yy

�xy

�yz

�xz

⎫
⎪⎪⎬⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l2E(z)

1+�(z)
0 0 0 0

0
l2E(z)

1+�(z)
0 0 0

0 0
l2E(z)

1+�(z)
0 0

0 0 0
l2E(z)

1+�(z)
0

0 0 0 0
l2E(z)

1+�(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎨⎪⎪⎩

�xx

�yy

�xy

�yz

�xz

⎫
⎪⎪⎬⎪⎪⎭

(13a)�ΠC = ∫ S∫
h

2

−
h

2

{
�xx��xx + �yy��yy + �zz��zz + �xy��xy + �yz��yz + �xz��xz

}
dzdS

(13b)�ΠNC = ∫ S∫
h

2

−
h

2

{
�xx��xx + �yy��yy + �xy��xy + �yz��yz + �xz��xz

}
dzdS

(14)�ΠW = ∫ S

∐�wdS

(15)∫ S

{
�
(
𝔓T

b

)
�b𝔓b + �

(
𝔓T

s

)
�s𝔓s + �

(
ℜT

b

)
�b�1ℜb + �

(
ℜT

s

)
�sℜs +∐

}
dS = 0

�b =

⎡⎢⎢⎢⎢⎣

u,x +
�
wb,x + ws,x

�2
∕2 −wb,xx ws,xx 0

v,y +
�
wb,y + ws,y

�2
∕2 −wb,yy ws,yy 0

u,y + v,x +
�
wb,x + ws,x

��
wb,y + ws,y

�
−2wb,xy 2ws,xy 0

0 0 0 ws

⎤⎥⎥⎥⎥⎦

T

�
b16 =

⎡⎢⎢⎢⎣

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

⎤⎥⎥⎥⎦
,�

s
=

�
ws,x

ws,y

�
,

�
s
= ∫

h

2

−
h

2

�
�,z(z) + �(z)

�2�Q44(z) 0

0 Q55(z)

�
dz

(16)

ℜb =

⎡⎢⎢⎣

wb,xy −ws,xy∕2 ws,xy∕2

−wb,xy ws,xy∕2 −ws,xy∕2�
wb,yy − wb,xx

�
∕2 −

�
ws,yy − ws,xx

�
∕4

�
ws,yy − ws,xx

�
∕4

⎤⎥⎥⎦

�b =

⎡
⎢⎢⎣

Ab Bb Eb
Bb Db Fb

Eb Fb Hb

⎤
⎥⎥⎦
,�1 =

⎡
⎢⎢⎣

�1 0 0

0 �1 0

0 0 �1

⎤
⎥⎥⎦
,�1 =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 2

⎤
⎥⎥⎦

ℜs =

[ (
v,xx − u,xy

)
∕4 −ws,y∕4 ws,y∕4(

v,xy − u,yy
)
∕4 ws,x∕4 ws,x∕4

]

where

�s =

⎡⎢⎢⎣

As Bs Es
Bs Ds Fs

Es Fs Hs

⎤⎥⎥⎦
,�2 =

⎡⎢⎢⎣

�2 0 0

0 �2 0

0 0 �2

⎤⎥⎥⎦
,�2 =

�
2 0

0 2

�

�
��,��,��

�
= ∫

h

2

−
h

2

{1, z, � (z)}

⎡⎢⎢⎢⎣

Q11(z) Q12(z) 0 Q13(z)

Q12(z) Q22(z) 0 Q23(z)

0 0 Q66(z) 0

Q31(z) Q32(z) 0 Q33(z)

⎤⎥⎥⎥⎦
dz
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3  Isogeometric type of numerical solving 
process

A finite element-based of solution methodology namely as 
isogeometric technique has been attracted the attention of 
numerus researchers. Based upon this discretizing technique 
for a one-dimensional problem, a knot vector having a non-
decreasing feature is introduced as

�
��,��,��,��

�
= ∫

h

2

−
h

2

�
z
2
,�,z(z), z� (z), z�,z(z)

�

×

⎡
⎢⎢⎢⎣

Q11(z) Q12(z) 0 Q13(z)

Q12(z) Q22(z) 0 Q23(z)

0 0 Q66(z) 0

Q31(z) Q32(z) 0 Q33(z)

⎤
⎥⎥⎥⎦
dz

�
��,��, �b

�
= ∫

h

2

−
h

2

�
� 2(z), � (z)�,z(z),

�
�,z(z)

�2�

×

⎡
⎢⎢⎢⎣

Q11(z) Q12(z) 0 Q13(z)

Q12(z) Q22(z) 0 Q23(z)

0 0 Q66(z) 0

Q31(z) Q32(z) 0 Q33(z)

⎤
⎥⎥⎥⎦
dz

�
Ab,Bb,Db

�
= ∫

h

2

−
h

2

�
1, �,z(z),

�
�,z(z)

�2�
⎡⎢⎢⎢⎣

l2E(z)

1+�(z)
0 0

0
l2E(z)

1+�(z)
0

0 0
l2E(z)

1+�(z)

⎤⎥⎥⎥⎦
dz

(17)

�
Eb,Fb,Hb

�
= ∫

h

2

−
h

2

�
�(z),�(z)�,z(z),�

2(z)
�⎡⎢⎢⎢⎣

l2E(z)

1+�(z)
0 0

0
l2E(z)

1+�(z)
0
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(18)�(�) =
{
�1, �2, �3,… , �m+n+1

}

where m is the number of B-spline basis function and n 
denotes the order of it. Also, each ith knot should be selected 
in such a way that 0 ≤ �i ≤ 1.

Therefore, with the aid of the Cox-de Boor formula, the 
B-spline formulation of the associated basis function can be 
defined in recursive form as follows

Accordingly, for a two-dimensional problem, the associated 
B-spline formulation of the basis function can be extracted via 
the tensor product as below

in which Pi stands for the ith control node within the two-
directional net of control, and

in which Xi,p(�) and Xj,q(�) are, respectively, the p th order 
and q th order shape functions associated with directions of 
� and � . Furthermore, �i,j represents the appropriate weight 
coefficient. Consequently, to carry out the derivative calcula-
tions relevant to Xj,q(�) shape function, the �(�) vector as a 
knot type of vector is put to use.

Accordingly, the isogeometric type of discretization scheme 
results in an accurate estimation for the components of the 
microplate deformation (using cubic elements as shown in 
Fig. 5) as follows

where

On the basis of Eq. (6) together with Eq. (23), the compo-
nents of the classical strain tensor can be discretized in the 
following form

(19)Xi,0(𝜉) =
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0else
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(24)Ti(x, y) =
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�i(x, y) 0 0 0

0 �i(x, y) 0 0

0 0 �i(x, y) 0

0 0 0 �i(x, y)
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where
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Fig. 5  Discretized square microplates with cubic elements: (a) In the absence of cutout, (b) in the presence of a square cutout, (c) in the presence 
of circular cutout [72]
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Following this discretization scheme, the discretized form 
of the non-classical rotation gradient tensor can be written as

in which

As a result, the variation of the strain tensor as well as the 
rotation gradient tensor can be achieved as

Finally, by applying the introduced discretization procedure 
for the derived couple stress-based nonlinear differential equa-
tions, it yields
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where the matrix of global stiffness, �(�) , can be separated 
to linear and nonlinear expressions as follows

On the hand, to express the load vector, one will have

Now, to apply the Newton–Raphson kind of iterative 
solving process to Eq. (30), the vector of residual force is 
defined in the following form

To continue the associated iteration, an incremental form 
for the microplate deformation is taken into account as

where

and the matrix of geometric stiffness, �G , can be written 
as below

in which

and Nx , Ny denote, respectively, the force-type resultants in 
x-axis and y-axis directions.

4  Numerical results and discussion

Herein, the non-dimensional couple stress elasticity-
based porosity- and size-dependent nonlinear bending 
characteristics of the porous FG composite microplates 
under external uniform distributed load. The results are 
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presented in the presence and absence of a cutout with 
various shapes located at the center of microplates. The 
material gradient of porous FG composite microplates is 
supposed in such a way to make a ceramic-rich top surface 
and a metal-rich bottom surface, having the properties of: 
Ec = 210GPa , � = 0.24 associated with the ceramic com-
ponent, Em = 70GPa , � = 0.35 associated with the metal 
component [53]. In addition, the dimensionless distributed 
load and plate deflection are defined as P = PL2

1
∕Emh

3 , 

W = w∕h . Also, the geometric of rectangular microplates 
is selected as h = 20�m,L1 = 50h, L1∕L2 = 1.

At the beginning, the proposed solving procedure is 
validated. In accordance with this purpose, the terms asso-
ciated with the small-scale effect are ignored, and then 
the nonlinear bending behavior of a homogenous plate at 
macroscale is achieved and compared with that reported 
previously by Wu et al. [54] using Carrera unified formula-
tion (CUF). The comparison study is made with the both 
two-node linear and three-node quadratic of expansion 

Fig. 6  Comparison study on 
the nonlinear bending behavior 
of a square plate at macro-
scale subjected to a uniform 
distributed load and simply 
supported boundary conditions 
( h∕L = 0.1)

Fig. 7  Classical and couple stress-based nonlinear flexural response 
of porous FG composite microplates corresponding to different 
internal length scale parameters ( Γ = 0.4 , k = 0.5 , a∕L = d∕L = 0 , 
U-PFGM pattern)

Fig. 8  Classical and couple stress-based nonlinear flexural response 
of porous FG composite microplates corresponding to different mate-
rial gradient indexes. ( Γ = 0.4 , a∕L = d∕L = 0 , U-PFGM pattern)
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functions through the plate thickness. As displayed in 
Fig. 6, the matched results confirm the accuracy and cor-
rection of the introduced quasi-3D plate model as well as 
numerical solution methodology.

In Fig. 7, the classical and couple-stress-based nonlinear 
flexural curves of porous FG composite microplates in the 
absence of a central cutout are illustrated corresponding to 
different internal length scale parameters and edge supports. 
By comparing the couple stress-based curves with the clas-
sical counterparts, it can be reached to this point that the 
role of couple stress size dependency incorporating an extra 
stiffness due to deriving the gradient of rotation leads to 
decrease the maximum deflection of the microplate under a 
specific value of uniform load which confirms the stiffening 
manner of it. The obtained tendency is repeated for the both 
types of the considered plate edge supports including fully 
clamped (CCCC) and fully simply supported (SSSS).

Figure 8 depicts the classical and couple stress-based 
nonlinear flexural curves of porous FG composite micro-
plates in the absence of a central cutout relevant to various 
values of the material gradient index. It is found that by 
changing the properties from the full ceramic component to 
the full metal one, a significant reduction in the slope of the 
nonlinear flexural response occurs. Moreover, the difference 
between the classical and couple stress-based obtained plots 
gets larger by moving from microplate made of the full metal 
components to that made of full ceramic one.

The nonlinear flexural feature of porous FG compos-
ite microplates in the absence of a central located cutout 
is displayed in Fig. 9 relevant to various through-thickness 
porosity distribution schemes. It is observed that the gap 

between nonlinear flexural responses associated with dif-
ferent porosity patterns is somehow higher by considering 
the couple stress size effect. Furthermore, this observation is 
repeated for all dispersion schemes, and both types of plate 
edge supports.

Fig. 9  Classical and couple stress-based nonlinear flexural behav-
ior of porous FG composite microplates corresponding to different 
through-thickness porosity distribution schemes ( Γ = 0.4 , k = 0.5 , 
a∕L = d∕L = 0)

Table 1  Classical and couple stress-based dimensionless distributed 
loads of porous FG composite microplates relevant to different mate-
rial gradient indexes ( Γ = 0.4)

k l(�m) U-PFGM O-PFGM X-PFGM

SSSS boundary conditions
0.5 w∕h = 0.4

0 0.0553 0.0515 0.0591
40 0.0600 (+ 8.56%) 0.0559 (+ 8.56%) 0.0642 (+ 8.56%)
80 0.0761 

(+ 37.63%)
0.0708 

(+ 37.63%)
0.0813 (+ 37.63%)

w∕h = 0.8

0 0.2662 0.2478 0.2846
40 0.2885 (+ 8.37%) 0.2685 (+ 8.37%) 0.3084 (+ 8.37%)
80 0.3640 

(+ 36.76%)
0.3389 

(+ 36.76%)
0.3892 (+ 36.76%)

2 w∕h = 0.4

0 0.0518 0.0483 0.0554
40 0.0563 (+ 8.61%) 0.0524 (+ 8.61%) 0.0602 (+ 8.61%)
80 0.0714 

(+ 37.85%)
0.0664 

(+ 37.85%)
0.0763 (+ 37.85%)

w∕h = 0.8

0 0.2496 0.2324 0.2669
40 0.2705 (+ 8.42%) 0.2518 (+ 8.42%) 0.2892 (+ 8.42%)
80 0.3414 

(+ 36.98%)
0.3178 

(+ 36.98%)
0.3650 (+ 36.98%)

CCCC boundary conditions
0.5 w∕h = 0.4

0 0.0715 0.0666 0.0765
40 0.0776 (+ 8.49%) 0.0722 (+ 8.49%) 0.0830 (+ 8.49%)
80 0.0982 

(+ 37.29%)
0.0914 

(+ 37.29%)
0.1050 (+ 37.29%)

w∕h = 0.8

0 0.3961 0.3687 0.4234
40 0.4290 (+ 8.33%) 0.3994 (+ 8.33%) 0.4587 (+ 8.33%)
80 0.5409 

(+ 36.56%)
0.5035 

(+ 36.56%)
0.5782 (+ 36.56%)

2 w∕h = 0.4

0 0.0671 0.0624 0.0717
40 0.0728 (+ 8.53%) 0.0677 (+ 8.53%) 0.0778 (+ 8.53%)
80 0.0921 

(+ 37.46%)
0.0857 

(+ 37.46%)
0.0985 (+ 37.46%)

w∕h = 0.8

0 0.3714 0.3458 0.3971
40 0.4024 (+ 8.36%) 0.3746 (+ 8.36%) 0.4302 (+ 8.36%)
80 0.5072 

(+ 36.71%)
0.4722 

(+ 36.71%)
0.5423 (+ 36.71%)
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Tables 1 and 2 give the classical and couple stress-based 
applied uniform loads relevant to various porosity and 
material gradient indexes, respectively, as well as a spe-
cific value of the porous FG composite microplate deflec-
tion in the absence of a central cutout. The significance 

of the small scale effect is indicated by the percentages 
written in parentheses. It is found that by inducing a 
higher deformation, the role of the couple stress size effect 
becomes less essential. This anticipation is repeated for 
all material gradient and porosity indexes. Additionally, it 
is seen that for all induced plate deformation, the couple 
stress size effect on the necessary applied load is some-
how more considerable for a simply supported porous FG 
composite microplate than a clamped one. Among differ-
ent schemes of the through-thickness porosity distribution, 

Table 2  Classical and couple stress-based dimensionless distributed 
loads of porous FG composite microplates relevant to different poros-
ity indexes ( k = 2)

Γ  l 
(μm)

U-PFGM O-PFGM X-PFGM

SSSS boundary conditions
0.3 w∕h = 0.4

0 0.0587 0.0559 0.0616
40 0.0638 (+ 8.56%) 0.0607 (+ 8.56%) 0.0669 (+ 8.56%)
80 0.0808 

(+ 37.63%)
0.0769 

(+ 37.63%)
0.0848 (+ 37.63%)

w∕h = 0.8

0 0.2828 0.2690 0.2966
40 0.3065 (+ 8.37%) 0.2915 (+ 8.37%) 0.3214 (+ 8.37%)
80 0.3868 

(+ 36.76%)
0.3679 

(+ 36.77%)
0.4057 (+ 36.77%)

0.5 w∕h = 0.4

0 0.0518 0.0471 0.0566
40 0.0563 (+ 8.56%) 0.0511 (+ 8.56%) 0.0615 (+ 8.56%)
80 0.0713 

(+ 37.62%)
0.0648 

(+ 37.63%)
0.0779 (+ 37.63%)

w∕h = 0.8

0 0.2495 0.2265 0.2725
40 0.2704 (+ 8.37%) 0.2455 (+ 8.37%) 0.2954 (+ 8.37%)
80 0.3413 

(+ 36.76%)
0.3098 

(+ 36.76%)
0.3727 (+ 36.77%)

CCCC boundary conditions
0.3 w∕h = 0.4

0 0.0760 0.0723 0.0797
40 0.0824 (+ 8.49%) 0.0784 (+ 8.49%) 0.0865 (+ 8.49%)
80 0.1043 

(+ 37.29%)
0.0992 

(+ 37.29%)
0.1094 (+ 37.29%)

w∕h = 0.8

0 0.4208 0.4003 0.4413
40 0.4559 (+ 8.33%) 0.4336 (+ 8.33%) 0.4781 (+ 8.33%)
80 0.5747 

(+ 36.56%)
0.5466 

(+ 36.56%)
0.6027 (+ 36.56%)

0.5 w∕h = 0.4

0 0.0670 0.0609 0.0732
40 0.0727 (+ 8.49%) 0.0660 (+ 8.49%) 0.0794 (+ 8.49%)
80 0.0921 

(+ 37.29%)
0.0836 

(+ 37.29%)
0.1005 (+ 37.29%)

w∕h = 0.8

0 0.3713 0.3371 0.4055
40 0.4022 (+ 8.33%) 0.3652 (+ 8.33%) 0.4393 (+ 8.33%)
80 0.5071 

(+ 36.56%)
0.4603 

(+ 36.56%)
0.5538 (+ 36.56%)

Fig. 10  Couple stress-based nonlinear flexural behavior of porous FG 
composite microplates corresponding to different porosity indexes 
( l = 60�m , k = 0.5 , a∕L = d∕L = 0)

Fig. 11  Role of existence a central located square cutout in the cou-
ple stress-based nonlinear flexural behavior of porous FG composite 
microplates ( l = 60�m , Γ = 0.4 , k = 0.5 , U-PFGM pattern)
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the O-PFGM and X-PFGM microplates have, respectively, 
the minimum and maximum nonlinear flexural stiffness.

In Fig. 10, the couple stress-based nonlinear flexural 
behaviors of porous FG composite microplates having 
O-PFGM and X-PFGM schemes and in the absence of a 
central cutout are highlighted relevant to different porosity 
indexes. It can be found by considering a higher porosity 
index for a porous FG composite microplate, an increment 
occurs in the difference between couple stress-based nonlin-
ear flexural responses of microplates having O-PFGM and 
X-PFGM through-thickness porosity schemes.

The role of existence a cutout having various shapes 
located at the center of porous FG composite microplate 
in the couple stress-based nonlinear flexural response of it 
is represented in Figs. 11 and 12. So, the nonlinear flexural 
plats of porous FG composite microplates having, respec-
tively, square and circular cutouts located at their center are 
shown. It can be found the tendency and slope of the non-
linear flexural response can be changed in the presence of a 
central cutout. In accordance with this point, the existence 
of a central cutout results in to achieve a specific value of the 
external uniform load, corresponding to which the predicted 
shift of tendency occurs. The cutout geometry parameters as 
well as the type of edge supports play important role in the 
value of this extracted applied load. This behavior may be 
related to this fact that for very small applied load and asso-
ciated induced deflection, the supports of cutout edges at the 
center of microplate plays the prominent role in the bending 
stiffness which cause to enhance it. However, by increasing 
the applied load and the induced deflection, the influence of 
the reduced stiffness due to the existing a central cutout in 
the plate geometry becomes more important.

Fig. 12  Role of existence a central located circular cutout in the cou-
ple stress-based nonlinear flexural behavior of porous FG composite 
microplates ( l = 60�m , Γ = 0.4 , k = 0.5 , U-PFGM pattern)

Table 3  Role of the existence a central located cutout on the couple 
stress-based nonlinear flexural response of U-PFGM square micro-
plates with SSSS boundary conditions ( k = 0.5,Γ = 0.4)

l (μm) a/L Dimensionless load d∕L Dimensionless load

40 w∕h = 0.4

0 0.0600 0 0.0600
0.1 0.0638 (+ 6.40%) 0.1 0.0617 (+ 2.92%)
0.2 0.0695 (+ 15.84%) 0.2 0.0673 (+ 12.28%)
0.3 0.0749 (+ 24.91%) 0.3 0.0727 (+ 21.19%)
w∕h = 0.8

0 0.2885 0 0.2885
0.1 0.2688 (− 6.65%) 0.1 0.2713 (− 5.79%)
0.2 0.2642 (− 8.22%) 0.2 0.2663 (− 7.50%)
0.3 0.2521 (− 12.43%) 0.3 0.2534 (− 11.97%)

80 w∕h = 0.4

0 0.0761 0 0.0761
0.1 0.0810 (+ 6.54%) 0.1 0.0783 (+ 3.01%)
0.2 0.0883 (+ 16.10%) 0.2 0.0856 (+ 12.49%)
0.3 0.0953 (+ 25.31%) 0.3 0.0924 (+ 21.54%)
w∕h = 0.8

0 0..3640 0 0.3640
0.1 0.3399 (− 6.55%) 0.1 0.3429 (− 5.72%)
0.2 0.3345 (− 8.04%) 0.2 0.3370 (− 7.36%)
0.3 0.3195 (− 12.15%) 0.3 0.3211 (− 11.73%)

Table 4  Role of the existence a central located cutout on the couple 
stress-based nonlinear flexural response of U-PFGM square micro-
plates with CCCC boundary conditions ( k = 0.5,Γ = 0.4)

l (μm) a/L Dimensionless load d∕L Dimensionless load

40 w∕h = 0.4

0 0.0776 0 0.0776
0.1 0.0849 (+ 9.51%) 0.1 0.0835 (+ 7.71%)
0.2 0.0912 (+ 17.66%) 0.2 0.0893 (+ 15.20%)
0.3 0.0967 (+ 24.82%) 0.3 0.0951 (+ 22.71%)
w∕h = 0.8

0 0.4290 0 0.4290
0.1 0.4047 (− 5.47%) 0.1 0.4127 (− 3.61%)
0.2 0.3939 (− 8.01%) 0.2 0.3978 (− 7.09%)
0.3 0.3693 (− 13.76%) 0.3 0.3754 (− 12.33%)

80 w∕h = 0.4

0 0.0982 0 0.0982
0.1 0.1076 (+ 9.69%) 0.1 0.1058 (+ 7.85%)
0.2 0.1158 (+ 17.97%) 0.2 0.1133 (+ 15.47%)
0.3 0.1230 (+ 25.29%) 0.3 0.1208 (+ 23.14%)
w∕h = 0.8

0 0.5115 0 0.5409
0.1 0.4594 (− 5.38%) 0.1 0.5213 (− 3.53%)
0.2 0.4361 (− 7.84%) 0.2 0.5029 (− 6.94%)
0.3 0.3962 (− 13.51%) 0.3 0.4750 (− 12.11%)
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In Tables 3 and 4, the couple stress-based applied uni-
form loads corresponding to specific values of the porous FG 
composite microplate deflection in the presence of, respec-
tively, square and circular central cutouts are presented for 
CCCC and SSSS edge supports. The percentages written in 
parentheses stand for the gap between the distributed loads 
in the presence of a central cutout and its counterpart in the 
absence of it. The change in the trend of load–deflection 
response due to a central cutout is obvious again, as for a 
lower plate deflection, the presence of a cutout causes to 
increase the dimensionless load, while by moving to deeper 
region of the bending response, it results in to decrease 
the bending stiffness. It can be found that the reduction in 
the bending stiffness of a porous FG composite microplate 
due to the existence of a square central located cutout is 
higher than that of a circular one with the same aspect ratio 
( a∕L = d∕L ). This anticipation is similar for different small 
scale parameter as well as various boundary conditions. In 
addition, it is observed that by changing the edge supports 
from SSSS type to CCCC one, the influence of a central 
cutout on the reduction of the couple stress-based bending 
stiffness of a microplate decreases.

5  Concluding remarks

In the current work, in the context of a new quasi-3D plate 
theory together with the modified couple stress continuum 
mechanics, the porosity- and size-dependent nonlinear 
flexural response of porous FG composite microplates in 
the presence and absence of a cutout with various shapes 
located at their center was investigated. A numerical solu-
tion methodology based upon the isogeometric finite ele-
ment approach was employed to fulfill effectively the higher 
continuity requirements.

It was deduced that the role of couple stress size depend-
ency incorporating an extra stiffness due to deriving the gra-
dient of rotation leads to decrease the maximum deflection 
of the microplate under a specific value of uniform load. It 
was found that by inducing a higher deformation, the role 
of the couple stress size effect becomes less essential. This 
anticipation is repeated for all material gradient and porosity 
indexes. In addition, it was pointed out that among differ-
ent schemes of the through-thickness porosity distribution, 
the O-PFGM and X-PFGM microplates have, respectively, 
the minimum and maximum nonlinear flexural stiffness. 
Moreover, it was observed that the tendency and slope of 
the nonlinear flexural response can be changed in the pres-
ence of a central cutout. In accordance with this point, the 
existence of a central cutout results in to achieve a specific 
value of the external uniform load, corresponding to which 
the predicted shift of tendency occurs. It was seen that the 

reduction in the bending stiffness of a porous FG composite 
microplate due to a square central located cutout is higher 
than that of a circular one with the same aspect ratio. In 
addition, it was revealed that the reduction in the bending 
stiffness of a porous FG composite microplate due to the 
existence of a square central located cutout is a bit higher 
than that of a circular central cutout with the same aspect 
ratio ( a∕L = d∕L).
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