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Abstract
An analytical solution has been developed developed in this research for electro-mechanical flexural response of smart lami-
nated piezoelectric composite rectangular plates encompassing flexible-spring boundary conditions at two opposite edges. 
Flexible-spring boundary structure is introduced to the system by inclusion of rotational springs of adjustable stiffness which 
can vary depending on changes in the rotational fixity factor of the springs. To add to the case study complexity, the two 
other edges are kept free. Three advantages of employing the proposed analytical method include: (1) the electro-mechanical 
flexural coupling between the piezoelectric actuators and the plate’s rotational springs of adjustable stiffness is addressed; 
(2) there is no need for trial deformation and characteristic function—therefore, it has higher accuracy than conventional 
semi-inverse methods; (3) there is no restriction imposed to the position, type, and number of applied loads. The Linear 
Theory of Piezoelectricity and Classical Plate Theory are adopted to derive the exact elasticity equation. The higher-order 
Fourier integral and higher-order unit step function differential equations are combined to derive the analytical equations. 
The analytical results are validated against those obtained from Abaqus Finite Element (FE) package. The results comparison 
showed good agreement. The proposed smart plates can potentially be applied to real-life structural systems such as smart 
floors and bridges and the proposed analytical solution can be used to analyze the flexural deformation response.

Keywords  Flexural response · Analytical solution · Smart laminated piezoelectric composite rectangular plates · Flexible-
spring boundary · Higher-order Fourier integral function · Higher-order unit step function

1  Introduction

Composite materials application is rapidly growing in vari-
ous industries. When improved stiffness, weight reduction, 
and greater durability and toughness are simultaneously 
sought, composite materials stand out as the best option [1, 
2]. Laminated fiber reinforced composite structures have 

attracted many engineers in the fields of aerospace, automo-
tive, civil, electrical, mechanical, structural, and biomedical 
engineering [3]. Plates and beams made of composite lami-
nates are used to provide the better stiffness and lightness in 
numerous engineering structures [4]. Piezoelectric materials 
known as smart materials are small, consume less power, 
and rapidly respond when induced by external loads [5], 
which make them ideal to be incorporated with composite 
laminates [6]. Piezoelectric plates are an important part of 
smart engineering structures due to their electro-mechanical 
coupling characteristics. Smart piezoelectric structures have 
many engineering applications in aerospace, telecommuni-
cations, mechanical and civil systems, automotive, medical, 
military, sport, and science [7].

The vibration control of lightweight floor systems made 
of composite materials has recently attracted engineers in 
the construction and infrastructure industries. Some factors 
such as deflection reduction, enhancing the floor stiffness, 
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and appropriate design of boundary conditions have all 
demonstrated to be successful in improving the vibration 
performance of floors [8]. Flexural deformation of floors 
and bridges are of significant importance due to their unsta-
ble geometrical shape (free edges) when subject to a mov-
ing mass and having a particular type of boundaries at the 
opposite edges which are neither clamped support nor sim-
ple support [9]. A floor/bridge system can be modelled as a 
plate with two rotationally flexible edges and two free edges. 
There are several studies regarding mechanical deformation 
of plates made of isotropic/orthotropic materials and under 
mechanical load. Some of the most recent studies are dis-
cussed in the following paragraphs.

There are several studies in which the conventional super-
position and semi-inverse methods were used to derive the 
flexural equations of plates. Bhaskar and Sivaram [10] pro-
posed a superposition method using infinite series equiva-
lent to the complicated closed-form Levy-type solutions to 
calculate the elastic deformation of isotropic and orthotropic 
plates with various boundary conditions. In their study, the 
plates were subjected to concentrated load or uniformly dis-
tributed pressure. However, their analysis demonstrated that 
such procedure does not provide efficient results for ortho-
tropic plates due to small convergence in the conventional 
Levy method. Liu and Li [11] introduced the symplectic 
geometry approach to calculate the rectangular thin plates 
bending under various boundary conditions. They employed 
Hamilton canonical equations in their analysis. The bend-
ing solutions of such problem were accurately calculated 
using the superposition method. Their approach demon-
strated to be more effective and reliable than conventional 
superposition method due to enabling the elimination of the 
deformation function. Bhaskar and Kaushik [12] proposed 
a simple analytical solution using superposition method to 
calculate the mechanical deformation of cross-ply laminated 
plates under arbitrary boundary and loading conditions. The 
authors claimed that their proposed analytical solution was 
simple and straightforward and can conveniently calculate 
deflections and moments induced in laminated composite 
plates with either clamped or simple support boundaries. 
Lim et al. [13] proposed an analytical solution to calculate 
the elastic bending of plates with various boundary con-
ditions. A symplectic elasticity approach was the base of 
their analysis. They developed an eigenvalue equation to 
analyze buckling and vibration of the plates. However, their 
proposed analytical solution was only limited to analysis 
of isotropic plates. Li and Zhong [14] used the symplectic 
geometry to calculate flexural response of thin rectangular 
plates made of laminated composite materials. The plate was 
fixed onto its two opposite edges. Their method provides 
rapid convergence and accurate results and does not require 
a trial function associated with deflection unlike the tradi-
tional semi inverse approaches. Shi et al. [15] and Zhang 

and Xu [16] proposed two distinct analytical solutions to 
inspect the flexural response of rectangular plates under 
mechanical load. They considered the effect of rotationally 
flexible springs at the boundaries. However, their proposed 
analytical solutions did not offer an analysis of smart plates 
integrated with piezoelectric actuators.

Finite integral Fourier transform is another method to 
obtain the flexural response of plates. Li et al. [17] proposed 
an analytical solution by employing the method of finite 
integral Fourier transform to calculate the analytical bend-
ing solutions of thin rectangular plates made of composite 
materials and with fully clamped boundaries. The results 
demonstrated that selecting sufficient Fourier terms leads to 
accurate and efficient results. Their proposed analytical solu-
tion was solvable without any need to obtain the deformation 
function. Li et al. [18] proposed an analytical solution to 
calculate flexural bending of all-edges-free laminated ortho-
tropic plates with arbitrary boundary conditions. The double 
finite integral Fourier transform method was used in their 
analysis. The proposed method offered higher accuracy over 
those available in the literature when sufficient number of 
Fourier terms is selected. An et al. [19] proposed an analyti-
cal solution to calculate flexural response of thin rectangular 
plates made of composite laminates and with fully clamped 
boundary conditions. The generalized integral transform 
technique (GITT) was employed which led to a coupled 
system associated with fourth order differential equations 
(ODEs). The results obtained from their proposed method 
were validated by a numerical simulation using Abaqus FE 
package. Zhang and Shu [10, 16] proposed analytical solu-
tions to calculate the elastic bending of laminated composite 
plates with rotational springs of adjustable stiffness using 
finite integral Fourier transform method. Although their 
proposed method was limited to plate type problems under 
single mechanical load, it demonstrated high accuracy and 
good convergence compared with the studies using the con-
ventional superposition and semi-inverse methods. Gohari 
et al. [20, 21] proposed two analytical solutions to obtain the 
flexural and twisting deformation of laminated cantilevered 
composite plates induced by piezoelectric actuators. The 
higher order Fourier integral transform was the step stone 
of their analysis. The analytical results were later compared 
with and verified by the FE simulation and good agreement 
was observed.

In the present work, an analytical solution was derived 
to obtain the flexural response of smart laminated piezo-
electric composite rectangular plates subjected to flexible-
spring boundary structure at two opposite edges. The com-
bined effect of the number of piezoelectric actuators, the 
fixity factor of springs, and the applied electrical voltage 
were further considered to enhance the structural stiffness 
of the plate. The authors, for the first time, used the higher-
order Fourier integral and higher-order unit step function 
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differential equations to analytically calculate the electro-
mechanical flexural coupling between piezoelectric actuators 
and flexible spring boundary structures in smart composite 
plates. The results obtained from the proposed analytical 
method were verified using Abaqus FE simulation package. 
We addressed the electro-mechanical coupling between the 
piezoelectric actuators and the plate’s rotational springs of 
adjustable stiffness and demonstrated that trial deformation 
and characteristic function could be eliminated from the 
analytical equations. Furthermore, it enabled the calcula-
tion of the elastic bending of smart plates under all kinds of 
loads, including but not limited to, electrical load, mechani-
cal patch loading, concentrated point load eliminating 
any restriction tied to the load position and the number of 
applied loads. The proposed analytical solution can be used 
as a positional guideline for engineers who are interested in 
the design and analysis of smart floors and bridges.

2 � Problem statement and mathematical 
modelling

The schematic of a laminated piezoelectric composite rec-
tangular plate with flexible-spring boundary structure is 
illustrated in Fig. 1. The plate has rectangular/square geom-
etry, is made of composite laminates, and composed of N 
layers. The top and bottom layers are integrated with single/
multiple pairs of piezoelectric actuator patches. The smart 
plate has flexible-spring boundary structure achieved by 

incorporating rotational springs of adjustable stiffness into 
two opposite edges. Hence, the boundary condition at the 
corresponding edges varies from simple support to clamped 
support depending on changes in the rotationally fixity factor 
of the springs. The other two edges of the plate are kept free. 
The electrical load is applied using piezoelectric actuators. 
The mechanical loading can be in the form of a concentrated 
force, patch loading, uniform pressure, or a combination of 
them. The plate’s width and length are defined as b and a, 
respectively. The length and width of piezoelectric patches 
are defined as La and Wa, respectively. The plate lamination 
with total thickness of H consists of several fiber reinforced 
polymer plies with fiber orientation and thickness defined 
as βk and tk, respectively. The index k stands for the layer 
number in a smart laminated piezoelectric composite plate. 
Each layer could be made of either composite or piezoelec-
tric materials.

In the current research, Kirchhoff hypothesis for small 
displacements within linear elastic zone is employed to 
obtain the displacements as stated in Eqs.1a–c [22, 23]. 
According to the Kirchhoff hypothesis, fibers and matrix 
are perfectly bounded. Furthermore, a linear strain-electric 
filed in the piezoelectric actuators is considered [24, 25]. 

(1a)u(x, y, z) = u0(x, y) − z
�w

�x

(1b)v(x, y, z) = v0(x, y) − z
�w

�y

Fig. 1   Electro-mechanically 
induced bridge-typed laminated 
composite rectangular plate 
integrated with multiple piezo-
electric patches and rotationally 
flexible springs at two opposite 
edges (note: for piezoelectric 
layers tk = ta)
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where, u0, ν0, and w0 stand for the displacements in the mid-
plane of a rectangular plate along the x, y, and z directions, 
respectively [26]. The coordinate z is defined as the distance 
normal to the xy-plane (Fig. 1). Equations 2a–c represents 
the strains and displacements in a composite laminate [27].

where:

where, ε0
xx, ε0

yy, and γ0
xy are the mid-plane strains and εxx

f, 
εyy

f, and γxy
f are the flexural strains. The quantity w0 is the 

mid-plane displacement along the z axis in a composite lam-
inate. Equations 3a, b represents the 2D electro-mechanical 
plate equations when considering the plane stress for piezo-
electric layer (Eq. 3a) and composite layer (Eq. 3b) [24]:

where, Qij are the stiffness matrix elements. The quantities 
eij are piezoelectric moduli of a piezoelectric layer. P3 stands 
for the electrical filed component along the z direction in a 
piezoelectric layer. In Eq. 3b, 1 and 2 stand for the directions 
along the fibers and perpendicular to the fibers in a composite 
material, respectively. The entire stiffness matrix elements and 
piezoelectric components are discussed in Appendix A.

According to the Kirchhoff law (Appendix A), the trans-
verse shear deformation effect is neglected (γ13 = γ23 = 0). The 
boundary condition applied to a rectangular plate with rota-
tional springs of adjustable stiffness at two edges and two free 
edges are expressed in Eqs. 4a–e. Equations 4a, b are based on 
the fact that the bending moment Mxx at far side of the plate at 
x = 0 and x = a is dependent on the rotational fixity factors of the 
spring rx0 and rxa. This relationship was studied in detail in [16].

(1c)w(x, y, z) = w0(x, y)
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where, Mxx and Myy are the bending moment resultants act-
ing over the x and y axes, respectively. Vyy is the total shear 
force resultants [N/m] which acts on yz plane in a plate ele-
ment [28]. The terms rx0 and rxa are the rotational fixity 
factors of the springs at x = 0 and x = b edges, respectively, 
which were proposed by Zhang and Shu [16]. The stiffness 
of the springs changes depending on the r variation between 
0 and 1. For instance, the higher the rotational fixity factor 
is, the stiffer the springs become. r = 0 and r = 1 are two 
special cases in which the springs provide simple support 
and clamped support to the plate, respectively.

Assuming thin symmetrical cross-ply lamination, the 
transverse bending and twisting moments in a smart lami-
nated piezoelectric composite rectangular plate is calculated 
using Eqs. 5a–e [29]:

where:
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where, j = {1,2,6}, H = D12 + 2D66, and D22, D11, D66, and D12 
are defined as the flexural rigidities about the y and x axes and 
torsional rigidity, respectively. The electrical and mechani-
cal loads are defined as Pe(x,y) and Pm(x,y), respectively. In 
Eqs. 5c–e, the terms Q1j, Q2j are the stiffness and Qij with bar 
sign is the transformed stiffness (see Appendix A).

The geometry of a laminated composite rectangular 
plate integrated with the piezoelectric actuators is shown in 
Fig. 1. In this study, we assumed that the composite plate is 
incorporated with infinite number of arbitrarily positioned 
surface-bounded piezoelectric actuators. As such, the elec-
trical bending moments induced along the x and y axes are 
expanded as a function of the higher-order unit step function 
differential equations as stated in Eqs. 6a–c, respectively. 
Equations 6a–c are derived based on the fact that the electri-
cal bending is present at the edges of piezoelectric actuators. 
The detailed discussion can be found in [29].

where, j = {1,2,6}. ULK(x,y) and XL indicate the electrical 
bending moment and the mechanical patch loading posi-
tions, respectively. L presents the piezoelectric actuator 
number and the mechanical patch loading number in a com-
posite plate. The position vectors of mechanical loads are 
defined as x1M, x2M, y1M, and y2M and the position vectors 
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of electrical loads are defined as x1P, x2P, y1P, and y2P, 
respectively.

The mid-plane vertical displacement in a bridge-typed 
plate can be expressed as the double finite integral Fourier 
transform as stated in Eq. 7:

where, m and n are the components of the sine and cosine 
angles in a Fourier series. Practically, selection of the higher 
values for the terms m and n leads to more convergent and 
hence, more accurate results. There is a correlation between 
the boundary value problems and variation of the terms m 
and n in a Fourier series [30].

The inverse of Eq. 7 leads to the displacement of the func-
tion w0(x,y) along the z direction as stated in Eqs. 8a, b [30]:

In Eq. 8b, αm and βn are the angular functions depend-
ing on of m and n terms. The term λn is an author-defined 
coefficient which only takes 0.5 and 1 values depending on 
whether n = {0} or n = {1, 2, 3,…}.

The double integral transform over Eq.  5a leads to 
Eqs. 9a–h, which are the function of w0(x,y).

Equation 9a is rearranged to be represented as the func-
tion of fn(w0(x,y)) as stated in Eq. 9b:
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 where:
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Considering the boundary conditions (Eqs. 4a–e) and 
with the use of higher-order integral transform, the higher-
order partial derivatives of Eqs. 9c–e are expanded as stated 
in Eqs. 10a–c, which are the functions of w0(x,y).
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�
�3w0

�y3

����� y = b

�
−

�
�3w0

�y3

����� y = 0

�
− �2

n
(−1)n

×

�
�w0

�y

����� y = b

�
+ �2

n

�
�w0

�y

����� y = 0

�
+ �4

n

b

∫
0

w0 cos(�ny)dy

⎤⎥⎥⎦
sin(�mx)dx

= (−1)n

a

∫
0

�
�3w0

�y3

����� y = b

�
sin(�mx)dx

−

a

∫
0

�
�3w0

�y3

����� y = 0

�
sin(�mx)dx − �2

n
(−1)n

a

∫
0

�
�w0

�y

����� y = b

�
sin(�mx)dx

+ �2
n

a

∫
0

�
�w0

�y

����� y = 0

�
sin(�mx)dx + �4

n
wmn
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We define Pm(x,y) = P0 which is the uniform distributed 
pressure and/or the magnitude of the patch loading. With 
the use of higher-order integral transform, the partial deriva-
tives of the mechanical load in the higher form are derived 
as stated in Eqs. 11a, b. The partial derivatives are obtained 
for two particular cases: (1) when n = {0} which provides 
an identical case with respect to Fourier term n, and (2) 
n = {1, 2, 3,…} which provides a variable case with respect 
to Fourier term n, i.e.

for n = {0} and m = {1,3,5…}, one has:

(10c)

f3(w0(x, y)) =

a

∫
0

b

∫
0

�4w0

�x2�y2
sin(�mx) cos(�ny)dxdy =

a

∫
0

[
(−1)n

(
�3w0

�x2�y

||||| y = b

)
−

(
�3w0

�x2�y

||||| y = 0

)
− �2

n

b

∫
0

(
�2w0

�x2

)

× cos(�ny)dy
]
sin(�mx)dx = (−1)n

a

∫
0

(
�3w0

�x2�y

||||| y = b

)
sin(�mx)dx −

a

∫
0

(
�3w0

�x2�y

||||| y = 0

)
sin(�mx)dx − �2

n

×

a

∫
0

b

∫
0

(
�2w0

�x2

)
sin(�mx) cos(�ny)dxdy = −�m(−1)

n+m

(
�w0

�y

|||||
x = a

y = b

)
+ �m(−1)

n

(
�w0

�y

|||||
x = 0

y = b

)
− �2

m
(−1)n

×

a

∫
0

(
�w0

�y

||||| y = b

)
sin(�mx)dx + �m(−1)

m

(
�w0

�y

|||||
x = a

y = 0

)
− �m

(
�w0

�y

|||||
x = 0

y = 0

)
+ �2

m

a

∫
0

(
�w0

�y

||||| y = 0

)
sin(�mx)dx

+ �2

m
�2
n
wmn = �2

m

a

∫
0

(
�w0

�y

||||| y = 0

)
sin(�mx)dx − �2

m
(−1)n

a

∫
0

(
�w0

�y

||||| y = b

)
sin(�mx)dx + �2

m
�2
n
wmn

(11a)

I1(x, y) =

a

∫
0

b

∫
0

Pm(x, y) sin(�mx)dxdy

=

a

∫
0

b

∫
0

Mn∑
L=1

P0

[
XL(x − x1M) − XL(x − x2M)

][
XL(y − y1M)

− XL(y − y2M)
]
sin(�mx)dxdy

=

Mn∑
L=1

(
−P0

�m

)[
cos(�mx1M) − cos(�mx2M)

]
L

(
y1M − y2M

)
L

and for n = {1,2,3,…} and m = {1,3,5,…}, one has:

The second derivatives of the electrical bending over the 
x and y axes are obtained according to Eqs. 12a and 12b, 
respectively. Equations 12a–c are obtained through taking 
the derivatives of the unit step functions representing the 
placements of the piezoelectric patches. The detailed dis-
cussions as to how the derivatives of a unit step function are 
taken can be found in [31].

(11b)

I1(x, y) =

a

∫
0

b

∫
0

Pm(x, y) sin(�mx) cos(�ny)dxdy

=

a

∫
0

b

∫
0

Mn∑
L=1

P0

[
XL(x − x1M) − XL(x − x2M)

]

×
[
XL(y − y1M) − XL(y − y2M)

]
sin(�mx) cos(�ny)dxdy

=

Mn∑
L=1

(
−P0

�m�n

)[
cos(�mx1M) − cos(�mx2M)

]
L

×
[
sin(�ny1M) − sin(�ny2M)

]
L

(12a)

�2MP
xx

�x2
=

1

2

Pn∑
L=1

N∑
k=1

∑
j=1,2,6

[
Q1j

]k[
d3j

]k(
h2
k+1

− h2
k

) �2

�x2

([
U

Lk
(x − x

1P
) − U

Lk
(x − x

2P
)
] [
U

Lk
(y − y

1P
) − U

Lk
(y − y

2P
)
])

=
1

2

Pn∑
L=1

N∑
k=1

∑
j=1,2,6

[
Q1j

]k[
d3j

]k(
h2
k+1

− h2
k

)[
�

�

Lk
(x − x

1P
) − �

�

Lk
(x − x

2P
)
][
U

Lk
(y − y

1P
) − U

Lk
(y − y

2P
)
]
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Substituting Eqs. 12a, b into Eqs. 9g, h and then perform-
ing the higher-order integral transforms over Eqs. 12a, b 
result in Eqs. 13a–d.

For n = {0} and m = {1,3,5…}, one has:

and for n = {1,2,3,…} and m = {1,3,5,…}, one has:

(12b)

�2MP
yy

�y2
=

1

2

Pn∑
L=1

N∑
k=1

∑
j=1,2,6

[
Q2j

]k[
d3j

]k(
h2
k+1

− h2
k

) �2

�y2

([
U

Lk
(x − x

1P
) − U

Lk
(x − x

2P
)
] [
U

Lk
(y − y

1P
) − U

Lk
(y − y

2P
)
])

=
1

2

Pn∑
L=1

N∑
k=1

∑
j=1,2,6

[
Q1j

]k[
d3j

]k(
h2
k+1

− h2
k

)[
U

Lk
(x − x

1P
) − U

Lk
(x − x

2P
)
][
�

�

Lk
(y − y

1P
) − �

�

Lk
(y − y

2P
)
]

(13a)
IA
2
(x, y) =

a

∫
0

b

∫
0

(
�2MP

xx

�x2

)
sin(�mx)dxdy =

1

2

a

∫
0

b

∫
0

Pn∑
L=1

N∑
k=1

∑
j=1,2,6

[
Q1j

]k[
d3j

]k(
h2
k+1

− h2
k

)[
�

�

Lk
(x − x

1P
) − �

�

Lk
(x − x

2P
)
]

×
[
ULk(y − y

1P
) − ULk(y − y

2P
)
]
sin(�mx)dxdy =

Tn∑
L=1

�m
[
MP

x

]Θ[
cos(�mx1P) − cos(�mx2P)

]
L

(
y1P − y2P

)
L

(13b)IB
2
(x, y) = 0

(13c)

IA
2
(x, y) =

a

∫
0

b

∫
0

(
�2MP

xx

�x2

)
sin(�mx) cos(�ny)dxdy =

1

2

a

∫
0

b

∫
0

Pn∑
L=1

N∑
k=1

∑
j=1,2,6

[
Q1j

]k[
d3j

]k(
h2
k+1

− h2
k

)[
�

�

Lk
(x − x

1P
)

− �
�

Lk
(x − x

2P
)
][
ULk(y − y

1P
) − ULk(y − y

2P
)
]
sin(�mx) cos(�ny)dxdy =

1

2

Pn∑
L=1

N∑
k=1

∑
j=1,2,6

[
Q1j

]k[
d3j

]k

×
(
h2
k+1

− h2
k

)(�m

�n

)[
cos(�mx1P) − cos(�mx2P)

]
L

[
sin(�ny1P) − sin(�ny2P)

]
L

(13d)

IB
2
(x, y) =

a

∫
0

b

∫
0

(
�2MP

yy

�y2

)
sin(�mx) cos(�ny)dxdy =

1

2

a

∫
0

b

∫
0

Pn∑
L=1

N∑
k=1

∑
j=1,2,6

[
Q2j

]k[
d3j

]k(
h2
k+1

− h2
k

)[
U

Lk
(x − x

1P
)

− U
Lk
(x − x

2P
)
][
�

�

Lk
(y − y

1P
) − �

�

Lk
(y − y

2P
)
]
sin(�mx) cos(�ny)dxdy =

1

2

Pn∑
L=1

N∑
k=1

∑
j=1,2,6

[
Q2j

]k[
d3j

]k

×
(
h2
k+1

− h2
k

)( �n

�m

)[
cos(�mx1P) − cos(�mx2P)

]
L

[
sin(�ny1P) − sin(�ny2P)

]
L

Equations 13a–d (I2
A and I2

B) are combined and then rear-
ranged, leading to Eqs. 14a–e. The electrical intensity field 
along the z direction (through piezoelectric actuator thick-
ness) is assumed to change linearly.

For n = {0} and m = {1, 3, 5…}, one gets:
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 and for n = {1, 2, 3,…} and m = {1, 3, 5,…}, one gets:

where:

where, Va is the electrical voltage and ta is the piezoelectric 
actuators thickness. The index k stands for the piezoelectric 
layer number.

Equations 10a–c and 14a, b are then substituted into 
Eq. 9b to find the relationship between the electro-mechan-
ical coupling and the vertical displacements as stated in 
Eqs.15a–d:

(14a)I2 = IA
2
+ IB

2
= 2

Tn∑
L=1

�m
[
MP

x

]Θ[
cos(�mx1P) − cos(�mx2P)

]
L

(
y1P − y2P

)
L

(14b)
I2 = IA

2
+ IB

2
=

Tn�
L=1

⎡
⎢⎢⎢⎣

�
MP

x

�Θ
�2
m
+
�
MP

y

�Θ
�2
n

�m�n

⎤
⎥⎥⎥⎦

�
cos(�mx1P) − cos(�mx2P)

�
L

�
sin(�ny1P) − sin(�ny2P)

��
L

(14c)
[
MP

x

]Θ
=

1

2

N∑
k=1

∑
j=1,2,6

[
Q1j

]k[
d3j

]k(
h2
k+1

− h2
k

)

(14d)
[
MP

y

]Θ
=

1

2

N∑
k=1

∑
j=1,2,6

[
Q2j

]k[
d3j

]k(
h2
k+1

− h2
k

)

(14e)Pk
3
=

Vk
a

tk
a

(15a)

− D11�m(−1)
m

b

∫
0

�
�2w0

�x2

������ x = a

�
cos(�ny)dy + D11�m

b

∫
0

�
�2w0

�x2

������ x = 0

�
cos(�ny)dy + D11�

4

m
w

mn
+ D22

× (−1)n

a

∫
0

�
�3w0

�y3

������ y = b

�
sin(�mx)dx − D22

a

∫
0

�
�3w0

�y3

������ y = 0

�
sin(�mx)dx − D22�

2

n
(−1)n

a

∫
0

�
�w0

�y

������ y = b

�

× sin(�mx)dx + D22�
2

n

a

∫
0

�
�w0

�y

������ y = 0

�
sin(�mx)dx + D22�

4

n
wmn + 2H�2

m

a

∫
0

�
�w0

�y

������ y = 0

�
sin(�mx)dx − 2H

× �2

m
(−1)n

a

∫
0

�
�w0

�y

������ y = b

�
sin(�mx)dx + 2H�2

m
�2
n
wmn =

Mn�
L=1

C1

mn

�
−Po

�m�n

��
cos(�mx1M) − cos(�mx2M)

�
L

×
�
sin(�ny1M) − sin(�ny2M)

�
L
+

Tn�
L=1

C2

mn

⎡
⎢⎢⎢⎣

�
MP

x

�Θ
�2
m
+
�
MP

y

�Θ
�2
n

�m�n

⎤
⎥⎥⎥⎦

�
cos(�mx1P) − cos(�mx2P)

�
L

×
�
sin(�ny1P) − sin(�ny2P)

�
L

 where:

Above, C1
mn and C2

mn are the electro-mechanical coef-
ficients which are dependent on the m and n terms of the 
higher-order Fourier series.

Performing single finite sine transform over the bound-
ary conditions in Eq. 4e, and integrating both sides, result 
in Eqs. 16a, b:

(15b)

n = 0,m = 1, 3, 5, ... → C1

mn
= �n

[
y1M − y2M

sin(�ny1M) − sin(�ny2M)

]

L

(15c)

n = 0,m = 1, 3, 5, ... → C2

mn
=

2
[
MP

x

]Θ
�2
m
�n

[
MP

x

]Θ
�2
m
+
[
MP

y

]Θ
�2
n[

y1P − y2P

sin(�ny1P) − sin(�ny2P)

]

L

(15d)n = 1, 2, 3, ...,m = 1, 3, 5, .. → C1

mn
= C2

mn
= 1

(16a)a

∫
0

(
�3w0

�y3

||||| y = 0

)
sin

(
�mx

)
dx =

(
H + 2D66

)
D22

�2

m

a

∫
0

(
�w0

�y

||||| y = 0

)
sin

(
�mx

)
dx
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Equation 17 is derived by substituting Eqs. 16a, b into 
Eq. 15a:

In the next stage, four unknown functions Ωm, ∆m, Ψn, and 
Πn are defined as stated in Eqs. 18a–d, respectively. Ωm and 
∆m functions are merely dependent on the term m while Ψn 
and Πn functions are merely dependent on the term n.

(16b)
a

∫
0

(
�3w0

�y3

||||| y = b

)
sin

(
�mx

)
dx =

(
H + 2D66

)
D22

�2

m

a

∫
0

(
�w0

�y

||||| y = b

)
sin

(
�mx

)
dx

(17)

�
2H�2

m
+ D22�

2

n
−

�2
m
(H + 2D66)

D22

� a

∫
0

�
�w0

�y

����� y = 0

�
sin(�mx)dx +

�
−D22(−1)

n�2
n
+

(−1)n�2
m
(H + 2D66)

D22

− 2H�2

m
(−1)n

� a

∫
0

�
�w0

�y

����� y = b

�
sin(�mx)dx +

�
D11�m

� b

∫
0

�
�2w0

�x2

����� x = 0

�
cos(�ny)dy +

�
−D11�m(−1)

m
�

×

b

∫
0

�
�2w0

�x2

����� x = a

�
cos(�ny)dy +

�
D11�

4

m
+ 2H�2

m
�2
n
+ D22�

4

n

�
wmn =

Mn�
L=1

C1

mn

�
−Po

�m�n

��
cos(�mx1M)

− cos(�mx2M)
�
L

�
sin(�ny1M) − sin(�ny2M)

�
L
+

Tn�
L=1

C2

mn

⎡⎢⎢⎢⎣

�
MP

x

�Θ
�2
m
+
�
MP

y

�Θ
�2
n

�m�n

⎤⎥⎥⎥⎦

�
cos(�mx1P)

− cos(�mx2P)
�
L

�
sin(�ny1P) − sin(�ny2P)

�
L

(18a)Ωm =

a

∫
0

(
�w0

�y

||||| y = 0

)
sin(�mx)dx

(18b)Δm =

a

∫
0

(
�w0

�y

||||| y = b

)
sin(�mx)dx

Equation 19 is derived by substituting the unknown func-
tions (Eqs. 18a–d) into Eq. 17:

(18c)Ψn =

b

∫
0

(
�2w0

�x2

||||| x = 0

)
cos(�ny)dy

(18d)
Πn =

b

∫
0

(
�2w0

�x2

||||| x = a

)
cos(�ny)dy

(19)

�
2H�2

m
+ D22�

2

n
−

�2
m
(H + 2D66)

D22

�
Ωm +

�
−D22(−1)

n�2
n
+

(−1)n�2
m
(H + 2D66)

D22

− 2H�2

m
(−1)n

�
Δm

+
�
D11�m

�
Ψn +

�
−D11�m(−1)

m
�
Πn +

�
D11�

4

m
+ 2H�2

m
�2
n
+ D22�

4

n

�
wmn =

Mn�
L=1

C1

mn

�
−Po

�m�n

�

×
�
cos(�mx1M) − cos(�mx2M)

�
L

�
sin(�ny1M) − sin(�ny2M)

�
L
+

Tn�
L=1

C2

mn

⎡⎢⎢⎢⎣

�
MP

x

�Θ
�2
m
+
�
MP

y

�Θ
�2
n

�m�n

⎤⎥⎥⎥⎦
×
�
cos(�mx1P) − cos(�mx2P)

�
L

�
sin(�ny1P) − sin(�ny2P)

�
L
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Rearranging Eq. 19 yields Eqs. 20a–f which present the 
double finite integral Fourier transform associated with the 
vertical displacements wmn in the mid-plane, i.e.

where:

Performing single finite cosine transform over the bound-
ary conditions in Eqs. 4a, b, and integrating both sides, result 
in Eqs. 21a, b, respectively, one obtains:

(20a)wmn = F1

mn
Ωm + F2

mn
Δm + F3

mn
Ψn + F4

mn
Πn + F5

mn
,

(20b)
F1

mn
=

[
�2
m
(H + 2D66)

D22

− 2H�2

m
− D22�

2

n

]

[
D11�

4

m
+ 2H�2

m
�2
n
+ D22�

4

n

]−1

(20c)

F2

mn
=

[
2H�2

m
(−1)n + D22(−1)

n�2
n
−

(−1)n�2
m
(H + 2D66)

D22

]

[
D11�

4

m
+ 2H�2

m
�2
n
+ D22�

4

n

]−1

(20d)F3

mn
=
[
−D11�m

][
D11�

4

m
+ 2H�2

m
�2
n
+ D22�

4

n

]−1

(20e)F4

mn
=
[
D11�m(−1)

m
][
D11�

4

m
+ 2H�2

m
�2
n
+ D22�

4

n

]−1

(20f)

F5

mn
=

�
Mn�
L=1

C1

mn

�
−Po

�m�n

��
cos(�mx1M) − cos(�mx2M)

�
L

�
sin(�ny1M) − sin(�ny2M)

�
L
+

Tn�
L=1

C2

mn

×

⎡⎢⎢⎢⎣

�
MP

x

�Θ
�2
m
+
�
MP

y

�Θ
�2
n

�m�n

⎤⎥⎥⎥⎦

�
cos(�mx1P) − cos(�mx2P)

�
L

�
sin(�ny1P) − sin(�ny2P)

�
L

⎫⎪⎬⎪⎭
×
�
D11�

4

m
+ 2H�2

m
�2
n
+ D22�

4

n

�−1

(21a)
b

∫
0

(
�w0

�x

||||| x = 0

)
cos

(
�ny

)
dy =

D11a(1 − rx0)

3D11rx0

b

∫
0

(
�2w0

�2x

||||| x = 0

)
cos

(
�ny

)
dy =

a(1 − rx0)

3rx0
Ψn

(21b)
b

∫
0

(
�w0

�x

||||| x = a

)
cos

(
�ny

)
dy = −

D11a(1 − rxa)

3D11rxa

b

∫
0

(
�2w0

�2x

||||| x = a

)
cos

(
�ny

)
dy = −

a(1 − rxa)

3rxa
Πn

Performing single finite sine transform over the bound-
ary conditions in Eq. 4d, and integrating both sides, result 
in Eqs. 22a, b:

Performing the inverse finite cosine Fourier transform 
with respect to y of Eq. 8 results in Eq. 23. In particular 
cases when y = {0, b}, Eq. 23 is simplified to Eqs. 24a, b, 
respectively:

(22a)

a

∫
0

(
�2w0

�y2

||||| y = 0

)
sin

(
�mx

)
dx

=
D12

D22

�2

m

a

∫
0

(
w0

||||| y = 0

)
sin

(
�mx

)
dx

(22b)

a

∫
0

(
�2w0

�y2

||||| y = b

)
sin

(
�mx

)
dx

=
D12

D22

�2

m

a

∫
0

(
w0

||||| y = b

)
sin

(
�mx

)
dx
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Considering the principle of series higher derivatives 
[32], the second-order derivatives of Eqs. 24a, b can be cal-
culated as stated in Eqs. 25a, b, respectively:

  Substituting Eqs.  22a, b into Eqs.  25a, b results in 
Eqs. 26a, b, respectively:

(23)

a

∫
0

w0 sin(�mx)dx =
2

b

∞∑
n=0

�nwmn cos(�ny)

(24a)

a

∫
0

(
w0

||||| y = 0

)
sin(�mx)dx =

2

b

∞∑
n=0

�nwmn

(24b)

a

∫
0

(
w0

||||| y = b

)
sin(�mx)dx =

2

b

∞∑
n=0

�n(−1)
nwmn

(25a)

2

b

∞�
n=0

�n

⎡
⎢⎢⎣
(−1)n

a

∫
0

�
�w0

�y

����� y = b

�
sin(�mx)dx −

a

∫
0

�
�w0

�y

����� y = 0

�
sin(�mx)dx − �2

n
wmn

⎤⎥⎥⎦

=

a

∫
0

�
�2w0

�y2

����� y = 0

�
sin(�mx)dx =

2

b

∞�
n=0

�n
�
(−1)nΔm − Ωm − �2

n
wmn

�

(25b)

2

b

∞�
n=0

(−1)n�n

⎡
⎢⎢⎣
(−1)n

a

∫
0

�
�w0

�y

����� y = b

�
sin(�mx)dx −

a

∫
0

�
�w0

�y

����� y = 0

�
sin(�mx)dx − �2

n
wmn

⎤⎥⎥⎦

=

a

∫
0

�
�2w0

�y2

����� y = b

�
sin(�mx)dx =

2

b

∞�
n=0

(−1)n�n
�
(−1)nΔm − Ωm − �2

n
wmn

�

Table 1   Material properties of piezoelectric patches and composite laminates

Material properties E11 [GPa] E22 [GPa] v12 G12 [GPa] G13 [GPa] d31 [nm/V] d32 [nm/V] ρz [nF/m]

PZT G1195N [34] 63 63 0.3 24.23 24.23 0.254 0.254 15
T300/976 GFRP [35] 150 9 0.3 7.1 2.5 0 0 0

Table 2   Mesh refinement study associated with Abaqus FE simulation

Support type Case 1 Case 2 Case 3 Case 4

Piezoelec-
tric patches

Laminated 
composite 
plate

Piezoelec-
tric patches

Laminated 
composite 
plate

Piezoelec-
tric patches

Laminated 
composite 
plate

Piezoelec-
tric patches

Laminated 
composite 
plate

Simply supported edges 1250 2888 272 4556 180 528 1250 2888
Clamped supported edges 1250 2888 272 4556 180 528 1250 2888

 Substituting Eqs. 24a, b into Eqs. 26a, b and rearranging 

both sides result in Eqs. 27a, b, respectively:

(26a)

2

b

∞∑
n=0

�n
[
(−1)nΔm − Ωm − �2

n
wmn

]

=
D12

D22

�2

m

a

∫
0

(
w0

||||| y = 0

)
sin

(
�mx

)
dx

(26b)

2

b

∞∑
n=0

(−1)n�n
[
(−1)nΔm − Ωm − �2

n
wmn

]

=
D12

D22

�2

m

a

∫
0

(
w0

||||| y = b

)
sin

(
�mx

)
dx

(27a)
∞∑
n=0

�n

{[
(−1)nΔm − Ωm

]
−

[
D12

D22

�2

m
+ �2

n

]
wmn

}
= 0
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Performing the inverse finite sine Fourier transform with 
respect to x of Eq. 8 results in Eq. 28:

Considering the principle of the series higher derivatives 
[30], the first-order derivatives of Eq. 28 at x = {0,a} can be 
calculated as stated in Eqs. 29a, b, respectively:

(27b)

∞∑
n=0

(−1)n�n

{[
(−1)nΔm − Ωm

]
−

[
D12

D22

�2

m
+ �2

n

]
wmn

}
= 0

(28)

a

∫
0

w0 cos(�ny)dy =
2

a

∞∑
n=0

wmn sin(�mx)

 Substituting Eqs. 21a, b into Eqs. 29a, b and rearranging 
both sides result in Eqs. 30a, b, respectively:

(29a)

b

∫
0

(
�w0

�x

||||| x = 0

)
cos(�ny)dy =

2

a

∞∑
m=1

�mwmn

(29b)
b

∫
0

(
�w0

�x

||||| x = b

)
cos(�ny)dy =

2

a

∞∑
m=1

(−1)m�mwmn

Fig. 2   3D flexural response of four-layered laminated composite plate 
induced by one pair of piezoelectric patches when rx0 = rxa = 0 at two 
opposite edges: (a) proposed analytical solution and (b) FE simula-

tion. Note that the piezoelectric patches and laminated composite 
plate meshed with 1250 Abaqus C3D8E and 2888 Abaqus SC8R ele-
ments, respectively

Fig. 3   3D flexural response of four-layered laminated composite plate 
induced by one pair of piezoelectric patches when rx0 = rxa = 1 at two 
opposite edges: (a) proposed analytical solution and (b) FE simula-

tion. Note that the piezoelectric patches and laminated composite 
plate meshed with 1250 Abaqus C3D8E and 2888 Abaqus SC8R ele-
ments, respectively
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 Substututing Eq. 20a into Eqs. 27a, b and 30a, b finally 
leads to Eqs. 31a–d which can be defined as four finite sys-
tems of linearized equations as the function of higher-order 
Fourier series and four unknown variables Ωm, ∆m, Ψn, and 
Πn, namely:

(30a)
∞∑
m=1

�mwmn =
a2(1 − rx0)

6rx0
Ψn

(30b)
∞∑
m=1

(−1)m�mwmn = −
a2(1 − rxa)

6rxa
Πn

(31a)

∞∑
n=0,1,2,...

S1
mn
Ωm +

∞∑
n=0,1,2,...

S2
mn
Δm +

∞∑
n=0,1,2,...

S3
mn
Ψn

+

∞∑
n=0,1,2,...

S4
mn
Πn =

∞∑
n=0,1,2,...

S5
mn

(31b)

∞∑
n=0,1,2,...

S6
mn
Ωm +

∞∑
n=0,1,2,...

S7
mn
Δm +

∞∑
n=0,1,2,...

S8
mn
Ψn

+

∞∑
n=0,1,2,...

S9
mn
Πn =

∞∑
n=0,1,2,...

S10
mn

(31c)
∞∑

m=1,2,3,...

S11
mn
Ωm +

∞∑
m=1,2,3,...

S12
mn
Δm +

[
−a2(1 − rxo)

6rxo
+

∞∑
m=1,2,3,...

S13
mn

]
Ψn +

∞∑
m=1,2,3,...

S14
mn
Πn =

∞∑
m=1,2,3,...

S15
mn

where, Si
mn are twenty coefficients in four finite systems 

of the linearized equations. Once the unknown constants 
defined in Eqs. 18a–d are found from Eqs. 31a–d, they are 
substituted into Eq. 20a to obtain the higher order Fourier 
integral function of the mid-plane vertical displacement.

3 � Results and discussions

Several case study examples are considered in this section 
to gauge the accuracy of the proposed analytical method. As 
such, the smart laminated piezoelectric composite rectangu-
lar plates are first subjected to pure electrical load induced 
by the bounded piezoelectric actuators and the final example 
(Case study 4) provides some insights into the application 
of electro-mechanical load. Matlab software [33] is used 

(31d)

∞∑
m=1,2,3,...

S16
mn
Ωm +

∞∑
m=1,2,3,...

S17
mn
Δm

+

[
a2(1 − rxa)

6rxa
+

∞∑
m=1,2,3,...

S18
mn

]
Ψn

+

∞∑
m=1,2,3,...

S19
mn
Πn =

∞∑
m=1,2,3,...

S20
mn

Fig. 4   2D flexural response of the SLCSP induced by one pair of 
piezoelectric patches at y = 0 (hollow circle and solid circle graphs) 
and y = b/2 (full line and dash line graphs). SS (rx0 = rxa = 0) and C 
(rx0 = rxa = 1) stand for simple support and clamped support, respec-
tively

Table 3   Results comparison between the proposed analytical solution 
and the FE simulations in Fig. 4: SS (rx0 = rxa = 0) and C (rx0 = rxa = 1) 
stand for simple support and clamped support, respectively

a e = |||
X
1
−X

2

X
1

||| × 100 , where X1 and X2 are the data from the proposed 
analytical and the FE simulation studies, respectively

Analytical 
(present 
study)

FE 
simulation 
(Abaqus)

Error (e)a [%]

W

(
a

6
,
b

2

)
[mm]

SS 0.37 0.35 5.40

W

(
a

3
,
b

2

)
[mm]

0.77 0.74 3.89

W

(
a

2
,
b

2

)
[mm]

1.04 1.03 0.96

W

(
a

6
,
b

2

)
[mm]

C 0.82 0.86 4.65

W

(
a

3
,
b

2

)
[mm]

0.33 0.31 6.06

W

(
a

2
,
b

2

)
[mm]

0.55 0.52 5.45
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to solve Eqs. 31a–d. If m and n terms associated with each 
set of multivariable equations are sufficient, for example 
m = n = 50, the higher results accuracy can be achieved. In 
each case study, the composite laminate contains a particu-
lar stacking sequence configuration which is represented as 
[β1, β2,…, βk], where, β stands for the fiber angle orien-
tation with respect to x-direction in a composite layer and 
k stands for the layer number (see Fig. 1). For instance, a 
stacking sequence configuration [0, 90, 90, 0] represents a 
four-layered composite laminate with each layer from top to 
bottom having the fiber angle orientation of 0, 90, 90, and 
0, respectively.

3.1 � FE simulations

To validate the results obtained from the analytical approach 
developed in Sect. 2, a series of FE simulations are per-
formed using the material parameters summarized in Table 1 
[34, 35], and with the aid of Abaqus FE commercial code. 
In the FE simulations conducted in this work, Abaqus eight-
node, hexahedron, reduced integration, three-dimensional 
continuum shell elements (SC8R) with hourglass control, 
and Abaqus eight-node, linear, piezoelectric three-dimen-
sional brick elements (C3D8E) have been assigned to the 
laminated composite plates and piezoelectric patches, 
respectively. The SC8R elements with three displacement 

Fig. 5   3D flexural response of four-layered laminated composite plate 
induced by one pair of piezoelectric patches when rx0 = rxa = 0 at two 
opposite edges: (a) proposed analytical solution and (b) FE simula-

tion. Note that the piezoelectric patches and laminated composite 
plate meshed with 272 Abaqus C3D8E and 4556 Abaqus SC8R ele-
ments, respectively

Fig. 6   3D flexural response of four-layered laminated composite plate 
induced by one pair of piezoelectric patches when rx0 = rxa = 1 at two 
opposite edges: (a) proposed analytical solution and (b) FE simula-

tion. Note that the piezoelectric patches and laminated composite 
plate meshed with 272 Abaqus C3D8E and 4556 Abaqus SC8R ele-
ments, respectively
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degrees of freedoms (DOFs) per node totally possess 24 
DOFs, and the C3D8E elements with three displacement 
DOFs and one electric voltage DOF per node have a total of 
thirty two DOFs to be specified during the numerical solu-
tion process [36].

The piezoelectric patches are attached to the laminated 
composite plate using the tie constraints available in Abaqus/
Standard [36] which allows the existence of a mesh non-
conformity between the piezoelectric patches and laminated 
composite plate.

To minimize the approximation error in the numeri-
cal analysis, a mesh refinement study has been performed 
to find the appropriate mesh densities. Based on the mesh 
convergence studies reported in Table  2, these mesh 

densities result in the most computationally-optimal solu-
tion, that is, the best balance between solution accuracy and 
computational time. Although, while adequate efforts have 
been made to preclude the approximation and discretiza-
tion errors, the present verification needs more quantitative 
investigations due to the paucity of detailed numerical error 
analysis. Such analysis may require the application of the 
non-commercial software for parametric convergence stud-
ies and/or adaptive analysis to determine and control the 
numerical error, respectively. This is indeed an exciting topic 
for further investigation that is out of the scope of the pre-
sent work. Refer to [37–40] for further details of numerical 
techniques used to model the electro-mechanical response 
of the piezoelectric structures.

3.2 � Case study examples

3.2.1 � Case study 1

In this example, it is assumed that a smart laminated com-
posite square plate (SLCSP) is induced by a pair of piezo-
electric patches bounded to the top and bottom layers of 
the plate. The geometrical specifications of the composites 
plates are a = b = 0.3 [m], tp = 1.2 [mm], and [0/90/90/0]. The 
geometrical specifications of the piezoelectric actuators are 
ta = 0.3 [mm] and La = wa = 0.1 [m]. 300 [V] and − 300 [V] 
are applied to the piezoelectric patches bounded to the top 
and bottom layers of the composite laminate, respectively. 
The piezoelectric patches are positioned at x1 = y1 = 0.1 [m] 
and x2 = y2 = 0.2 [m].

Fig. 7   2D flexural response of the SLCRP induced by one pair of pie-
zoelectric patches at y = 0 and y = b/2 when rx0 = rxa = 0

Fig. 8   2D flexural response of the SLCRP induced by one pair of pie-
zoelectric patches at y = 0 and y = b/2 when rx0 = rxa = 1

Table 4   The results comparison between the proposed analytical 
solution and the FE simulation in Figs. 7, 8: SS (rx0 = rxa = 0) and C 
(rx0 = rxa = 1) stand for simple support and clamped support, respec-
tively

Analytical 
(present study)

FE simula-
tion (Abaqus)

Error [%]

W

(
a

4
, 0

)
[mm]

SS 0.58 0.54 6.89

W

(
a

4
,
b

2

)
[mm]

0.62 0.59 4.83

W

(
a

2
, 0

)
[mm]

0.87 0.83 4.59

W

(
a

2
,
b

2

)
[mm]

0.97 0.95 2.06

W

(
a

4
, 0

)
[mm]

C 0.11 0.10 9.09

W

(
a

4
,
b

2

)
[mm]

0.18 0.17 5.55

W

(
a

2
, 0

)
[mm]

0.22 0.23 4.34

W

(
a

2
,
b

2

)
[mm]

0.31 0.32 3.12
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The rotational fixity factor of the springs are first chosen 
to be rx0 = rxa = 0, which causes the plate to have simple sup-
port boundaries at two opposite edges. The 3D results of the 
plate’s flexural response using the proposed analytical solu-
tion and Abaqus in the simple support case are illustrated in 
Fig. 2a, b, respectively. In the next attempt, the rotational fix-
ity factor of the springs are chosen to be rx0 = rxa = 1, which 
causes the plate to have the clamped support boundaries at 
two opposite edges. The 3D results of the plate’s flexural 
response using the proposed analytical solution and Abaqus 
in the clamped case are illustrated in Fig. 3a, b, respectively. 
The comparison of the 3D results of both simple support and 
clamped support cases shows good agreement in terms of 3D 
flexural shape deformation. To evaluate the accuracy of the 

proposed analytical solution, the 2D results obtained from 
both approaches are compared together at the particular path 
w0(x,b/2) (Fig. 4) which are in a good agreement. The results 
comparison between the proposed analytical solution and 
the FE simulation presented in Table 3 also demonstrates 
the accuracy of the analytical solution. The results clearly 
demonstrate that flexural response of the smart plate is sig-
nificantly affected by variation in the rotational fixity factor 
of the springs. As such, flexural deformation is much higher 
in the simple support case than in the clamped support case, 
regardless of the effect of actuation voltage.

Fig. 9   3D flexural response of four-layered laminated composite plate 
induced by two pairs of piezoelectric patches when rx0 = rxa = 0 at two 
opposite edges: (a) proposed analytical solution and (b) FE simula-

tion. Note that the piezoelectric patches and laminated composite 
plate meshed with 180 Abaqus C3D8E and 528 Abaqus SC8R ele-
ments, respectively

Fig. 10   3D flexural response of four-layered laminated composite 
plate induced by two pairs of piezoelectric patches when rx0 = rxa = 1 
at two opposite edges: (a) proposed analytical solution and (b) FE 

simulation. Note that the piezoelectric patches and laminated com-
posite plate meshed with 180 Abaqus C3D8E and 528 Abaqus SC8R 
elements, respectively
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3.2.2 � Case study 2

In this example, a smart laminated composite rectangular 
plate (SLCRP) is induced by a pair of piezoelectric patches 
bounded to the top and bottom layers of the plate. The geo-
metrical specifications of the composites plates are a = 0.2 
[m], b = 0.1 [m], tp = 1.2 [mm], and [0/90/90/0]. The geo-
metrical specifications of the piezoelectric actuators are 
ta = 0.3 [mm], La = 0.1 [m], and wa = 0.05 [m]. 300 [V] and 
− 300 [V] are applied to the piezoelectric patches bounded 
to the top and bottom layers of the composite laminate, 

respectively. The piezoelectric patches are positioned at 
x1 = 0.05 [m], x2 = 0.15 [m], y1 = 0.025 [m], and y2 = 0.075 
[m].

In the first attempt, the rotational fixity factor of the 
springs are chosen to be rx0 = rxa = 0, which causes the plate 
to have simple support boundaries at the corresponding 
edges. The 3D results of the plate’s flexural response using 
the proposed analytical solution and Abaqus in the simple 
support case are illustrated in Fig. 5a, b, respectively. In the 
next attempt, the rotational fixity factor of the springs are 

Fig. 11   2D flexural response of the SLCRP induced by two pairs of 
piezoelectric patches at y = 0 and y = b/2 when rx0 = rxa = 0

Fig. 12   2D flexural response of the SLCRP induced by two pairs of 
piezoelectric patches at y = 0 and y = b/2 when rx0 = rxa = 1

Table 5   The results comparison between the proposed analytical 
solution and the FE simulation in Figs. 11, 12: SS (rx0 = rxa = 0) and 
C (rx0 = rxa = 1) stand for simple support and clamped support, respec-
tively

Analytical 
(present study)

FE simula-
tion (Abaqus)

Error [%]

W

(
a

4
, 0

)
[mm]

SS 0.19 0.18 5.26

W

(
a

4
,
b

2

)
[mm]

0.23 0.25 8.00

W

(
a

2
, 0

)
[mm]

0.28 0.27 3.57

W

(
a

2
,
b

2

)
[mm]

0.34 0.35 2.85

W

(
a

4
, 0

)
[mm]

C 0.031 0.032 3.12

W

(
a

4
,
b

2

)
[mm]

0.065 0.068 4.41

W

(
a

2
, 0

)
[mm]

0.061 0.065 6.15

W

(
a

2
,
b

2

)
[mm]

0.102 0.108 5.55

Fig. 13   Flexural control of the SLCSP induced by one pair of piezo-
electric patches at y = b/2 when rx0 = rxa = 0
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chosen to be rx0 = rxa = 1, which causes the plate to have the 
clamped support boundaries at the corresponding edges. The 
3D results of the plate’s flexural response using the proposed 
analytical solution and Abaqus in the clamped case are illus-
trated in Fig. 6a, b, respectively. The comparison of the 3D 
results of both simple support and clamped support cases 
shows good agreement between two approaches in terms 
of 3D flexural deformation. In the next step, the 2D results 
are compared together at two particular paths (w0(x,b/2) and 
w0(x,0)) to evaluate and verify the accuracy of the proposed 
analytical solution. The overall results in the simple sup-
port case (Fig. 7) and in the clamped support case (Fig. 8) 
show good agreement. The results comparison between the 
proposed analytical solution and the FE simulation can be 
found in Table 4.

3.2.3 � Case study 3

In this example, the flexural response of a SLCRP incor-
porated with several piezoelectric patches is evaluated. 
The geometrical specifications of the composites plates are 
a = 0.2 [m], b = 0.1 [m], tp = 1.2 [mm], and [0/90/90/0]. The 
geometrical specifications of the piezoelectric actuators are 

ta = 0.3 [mm], La = 0.1 [m], and wa = 0.05 [m]. 300 [V] and 
− 300 [V] are applied to the piezoelectric patches bounded 
to the top and bottom layers of the composite laminate, 
respectively. The first pair of piezoelectric patches are posi-
tioned at x1 = 0.05 [m], x2 = 0.1 [m], y1 = 0.0375 [m], and 
y2 = 0.0625 [m] and the second pair of piezoelectric patches 
are positioned at x1 = 0.125 [m], x2 = 0.175 [m], y1 = 0.0375 
[m], and y2 = 0.0625 [m].

The rotationally fixity factor of the springs are chosen to 
be the same as case study 2 (rx0 = rxa = 0 in the first attempt 
and rx0 = rxa = 1 in the second attempt). The 3D results of 
the plate’s flexural response using the proposed analytical 
solution and Abaqus in the simple support case are illus-
trated in Fig. 9a, b, respectively and in the clamped case in 
Fig. 10a, b, respectively. The comparison of the 3D results of 
both simple support and clamped support cases shows good 
agreement between two approaches in terms of 3D flexural 
deformation. In the next step, the 2D results are compared 
together at two particular paths (w0(x,b/2) and w0(x,0)). The 
overall results in the simple support case (Fig. 11) and in the 
clamped support case (Fig. 12) show good agreement. The 
results comparison between the proposed analytical solu-
tion and the FE simulation can be found in Table 5 which 
also demonstrates the proposed analytical solution accuracy 
when multiple piezoelectric patches are considered.

3.2.4 � Case study 4

In the forth and final case study example, the effect of both 
piezoelectric patches and flexible-spring boundary structure 
on shape control of a SLCSP is investigated. The SLCSP 
is induced by one pair of piezoelectric patches. The shape 
control is based on classical trial and error techniques.

In the first attempt, a SLCRP is subjected to a mechanical 
patch loading (x1 = y1 = 0.05 [m], x2 = y2 = 0.15 [m], Pxy = − 6 
[KPa]). The geometrical specifications of the composites 
plate are a = b = 0.2 [m], tp = 1.2 [mm], and [0/90/90/0]. The 
geometrical specifications of the piezoelectric actuators are 
ta = 0.3 [mm], La = wa = 0.05 [m]. The piezoelectric patches 
are positioned at x1 = y1 = 0.075 [m] and x2 = y2 = 0.125 [m]. 
Piezoelectric patches are then activated by applying electri-
cal voltages to them to induce stiffness in the plate and to 
ultimately control an undesired flexural deformation caused 
by the mechanical patch loading. − 400 [V] and 400 [V] are 
applied to the piezoelectric patches bounded to the top and 

Table 6   The results comparison 
between the proposed analytical 
solution and the FE simulation 
in Fig. 13

Shape control mode Analytical (present 
study)

FE simulation 
(Abaqus)

Error [%]

W

(
a

2
,
b

2

)
[mm]

PZT off − 1.26 − 1.32 4.54

W

(
a

2
,
b

2

)
[mm]

PZT on − 0.038 − 0.035 7.89

Fig. 14   Flexural control of the SLCSP induced by one pair of piezo-
electric patches at y = b/2 considering various rotational fixity factors 
for springs at x = 0 and x = a 
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bottom layers of the composite laminate, respectively. To 
observe the sole effect of the piezoelectric patches on shape 
control task, the rotational fixity factors of the springs are 
kept at rx0 = rxa = 0. It can be observed from the 2D results 
in Fig. 13 that the piezoelectric patches have significantly 
flexural deformation under pure mechanical patch load-
ing. Comparison of the tip deflection results between the 
proposed analytical solution and the FE simulation can be 
found in Table 6. This table also presents the accuracy of 
the proposed analytical solution for shape control tasks. In 
the absence of electrical voltage, the plate’s maximum tip 
deflection reaches to − 1.26 [mm] and − 1.32 [mm] accord-
ing to the proposed analytical solution and Abaqus, respec-
tively. However, when the piezoelectric patches are activated 
by applying the electrical voltage, the bending stiffness of 
the plate considerably improves and the tip deflection mag-
nitude reduces to 0.038 [mm] and 0.035 [mm] according to 
the proposed analytical solution and Abaqus, respectively. 

In the second attempt, the effect of flexible-spring bound-
ary structure on shape control task is investigated. − 400 
[V] and 400 [V] are applied to the piezoelectric patches 
bounded to the top and bottom layers of the composite 
laminate, respectively. The geometrical specifications of 
the composites plate are a = b = 0.2 [m], tp = 1.2 [mm], and 
[0/90/90/0]. The geometrical specifications of the piezo-
electric actuators are ta = 0.3 [mm], La = wa = 0.05 [m]. The 
piezoelectric patches are positioned at x1 = y1 = 0.075 [m] 
and x2 = y2 = 0.125 [m]. Several rotational fixity factors for 
the springs are considered and their effect on the shape con-
trol of the plate is explored. As seen in Fig. 14, an increase 
in the rotational fixity factor can improve flexural deflec-
tion according to both approaches. Therefore, by adapting a 
proper approach toward controlling both the electrical volt-
age and rotational fixity factor, one can achieve a highly 
desirable shape control performance of the plate versus 
arbitrary loads.

Fig. 15   Flexural control of the SLCSP induced by one pair of piezoelectric patches at y = b/2 considering the combined effects of rotational fix-
ity factors for springs at x = 0 and x = a and piezoelectric patches position: (a) rx0 = 0 and rxa = 1, (b) rx0 = 0.5 and rxa = 1, and (c) rx0 = rxa = 1
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In the third attempt, the combined effects of rotational 
fixity factors for springs and the position of piezoelectric 
patches on shape control are investigated. The geometri-
cal specifications of the composites plate are a = 0.2 [m] 
and b = 0.1 [m], tp = 1.2 [mm], and [0/90/90/0]. The geo-
metrical specifications of the piezoelectric actuators are 
ta = 0.3 [mm], La = 0.1 [m] and wa = 0.05 [m]. The piezo-
electric patches are positioned at x1 = 0.05 [m], x2 = 0.15 [m], 
y1 = 0.025 [m], and y2 = 0.075 [m]. 400 [V] and − 400 [V] 
are applied to the piezoelectric patches bounded to the top 
and bottom layers of the composite laminate, respectively. 
In this example, the piezoelectric patches are either bounded 
to the top and bottom surfaces or only bounded to the top 
surface of the plate. The positional effect of piezoelectric 
patches coupled with the effect of rotational fixity factor is 
demonstrated to be significant as shown in Fig. 15a–c. In 
all cases, using a pair of piezoelectric patches rather than 
a single piezoelectric patch is shown to be more effective 
in improving the flexural deflection. The flexural deflection 
can further be using an appropriate rotational fixity factor. 
When the highest rotational fixity factor (rx = 1) and a pair of 
piezoelectric patches are considered the flexural deflection 
is significantly reduced.

4 � Concluding remarks

This paper proposed an analytical solution for flexural 
response of smart laminated piezoelectric composite plates 
with flexible-spring boundary structure. Rotational springs 
encompassing adjustable stiffness are integrated with the 
smart plates to provide flexible boundaries at two opposite 
edges which vary depending on the rotational fixity fac-
tors of the springs. As such, the plate could have simple 
support, clamped support, and neither simple support nor 
clamped support boundary conditions at the corresponding 
edges. The proposed analytical solution enables (1) obtain-
ing coupled electro-mechanical bending moments due to 
electro-mechanical load and (2) calculating flexural response 
which matches the particular type of boundary condition. 
The accuracy and the reliability of the proposed analytical 
solution are evaluated and qualitatively verified using the 
results achieved from Abaqus FE simulation. The findings 
reported in this study are summarized as follows:

1.	 The results comparison between the proposed analytical 
solution and the FE simulation showed good agreement.

2.	 The proposed analytical solution demonstrated that 
the trial deformation and characteristic function can be 
eliminated which leads to comparatively higher accu-
racy than employing conventional semi-inverse meth-
ods. Furthermore, it can be used to cover more general 
case study examples such as combined concentrated load 

and patch loading as well as electrical load applied by 
multiple piezoelectric actuators without any restriction 
to the load position and the number of loads applied.

3.	 The results obtained using the proposed analytical solu-
tion demonstrated that piezoelectric actuators and rota-
tional fixity factor of springs can significantly influence 
flexural response of smart laminated piezoelectric com-
posite plates.

4.	 The shape control using classical trial and error tech-
nique can be adopted to reduce the flexural deformation 
of plates which depends on the number of piezoelectric 
actuators, the fixity factor of springs, and the applied 
electrical voltage.

Future research will combine the expertise of the authors 
in analytical modeling, machine learning and artificial neural 
network algorithms [41–43], FEA, biomechanics and experi-
mental protocol.

Appendices

Appendix A

The relation between the global and local stresses in a com-
posite layer is stated in Eq. 32. The transformation matrix 
[T] is calculated using Eq. 33 [44]:

 where:

where, c and s stand for cosine and sine of function β and β 
is the fiber angle of each composite layer.

The terms Qij present in Eqs. 3a, b stand for the elastic 
stiffness in composite and piezoelectric layers as stated in 
Eqs. 34–37 [45], i.e.

(32)
[
�xx �yy �xy

]T
k
= [T]−1

[
�11 �22 �12

]T
k

(33)[T] =

⎡⎢⎢⎣

c2 s2 2cs

s2 c2 −2cs

−cs cs
�
c2 − s2

�
⎤⎥⎥⎦

(34)Q11 =
E11

1 − �12�21

(35)Q22 =
E22

1 − �12�21

(36)Q12 =
�12E22

1 − �12�21

(37)Q66 = G12



	 Archives of Civil and Mechanical Engineering (2021) 21:33

1 3

33  Page 22 of 25

where, E11, E22 are elastic modules along and perpendicular 
to fibers, respectively and v12, and G12 are the Poisson’s ratio 
and shear modules, respectively. The global stresses-strains 
in a composite layer is calculated using Eq. 38 [46]:

where, σxx, σyy, and τxy are the global stress and strain com-
ponents in the x and y directions, respectively. Q ij

k in a 
composite layer are the transformed stiffness matrix terms 
which are calculated using Eqs. 39–44 [46]:

The piezoelectric modules in a piezoelectric layer are 
calculated using Eqs. 45–47 [24, 47]:

(38)
⎡
⎢⎢⎣

�xx
�yy
�xy

⎤
⎥⎥⎦

k

=

⎡
⎢⎢⎣

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

⎤
⎥⎥⎦

k⎡
⎢⎢⎣

�xx
�yy
�xy

⎤
⎥⎥⎦

k

(39)Q11 = Q11c
4 + 2(Q12 + 2Q66)c

2s2 + Q22s

(40)Q12 = (Q11 + Q22 − 4Q66)c
2s2 + Q12(c

4 + s4)

(41)Q22 = Q11s
4 + 2(Q12 + 2Q66)c

2s2 + Q22c
4

(42)Q16 = −Q22cs
3 + Q11c

3s − (Q12 + 2Q66)(c
2 − s2)cs

(43)Q26 = −Q22c
3s + Q11cs

3 − (Q12 + 2Q66)(c
2 − s2)cs

(44)Q66 = (Q11 + Q22 − 2Q12)c
2s2 + Q66(c

2 − s2)2

(45)e31 = Q11d31 + Q12d32

(46)e32 = Q12d31 + Q22d32

where, dij stand for the piezoelectric dielectric constants 
under constant stress in a piezoelectric layer.

The electro-mechanical bending-twisting couplings are 
calculated using Eq. 48 [28]:

where, [Mxx]P and [Myy]P are defined as the bending 
moments and [Mxy]P is the twisting moment induced by 
electrical load, respectively [48].

Appendix B

The twenty coefficients (Si
mn), i = {1,2,…,20} in four finite 

systems of the linear equations (Eqs. 31a–d) are as follows:

(47)e36 = 0
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