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Abstract
In this article, the nonlinear free and forced vibration analysis of multi-scale hybrid nano-composites (multi-scale HNC) 
annular plate (multi-scale HNCAP) under hygro-thermal environment and subjected to mechanical loading is presented. The 
material of matrix composite is enhanced by either carbon fibers (CF) or carbon nanotubes (CNTs) at the small or macro-
scale. The multi-scale laminated annular plate’s displacement fields are determined using third-order shear deformation theory 
(third-order SDT) and nonlinearity of vibration behavior of this structure is taken into account considering Von Karman 
nonlinear shell model. Energy method known as Hamilton principle is applied to create the motion equations governed to 
the multi-scale HNCAP, while they are solved using generalized differential quadrature method (GDQM) as well as multi-
ple scale method. The results created from finite-element simulation illustrates a close agreement with the semi-numerical 
method results. Ultimately, the research’s outcomes reveal that increasing value of the moisture change ( ΔH ) and orientation 
angle parameter ( � ), and the rigidity of the boundary conditions lead to an increase in the structure’s frequency. Besides, 
whenever the values of the nonlinear parameter ( � ) are positive or negative, the dynamic behavior of the plate tends to have 
hardening or softening behaviors, respectively. Also, there are not any effects from � parameter on the maximum amplitudes 
of resonant vibration of the multi-scale HNCAP. Last but not least, by decreasing the structure’s flexibility, the plate can be 
susceptible to have unstable responses.
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List of symbols
h, a, and b  Thickness, annular plate’s 

outer and inner radius, 
respectively

F and NCM  Fiber and nanocomposite 
matrix, respectively

�, E, � and G  Density, Young’s modules, 
Poisson’s ratio, and shear 
parameter (Kirchhoff mod-
ules), respectively

VF, VNCM  Volume fractions of fiber and 
matrix, respectively

lCNT, tCNT, dCNT,  
ECNT and VCNT  Indicate the length, thick-

ness, diameter, Younge’s 
modules, and volume frac-
tion of carbon nanotubes, 
respectively.

V∗

CNT
, WCNT  Effective volume fraction 

and weight fraction of the 
CNTs, respectively

Nt, VCNT  Layer number and CNTs’ 
volume fraction

�11 and �22  Thermal expansion coef-
ficients of the multi-scale 
hybrid nanocomposite

�NCM  Thermal expansion coef-
ficient of the nanocomposite 
matrix

�11 and �22  Moisture coefficients of 
the multi-scale hybrid 
nanocomposite

βM  Moisture coefficients of the 
matrix

Ẽ11 , Ẽ22 , G̃12 , �̃�  Young’s modules of CNT, 
shear modules, and mass 
density, respectively

U, V, W  Displacement fields of an 
annular plate

w, u and �  Mid-surface’s displacements 
in orientations of Z and R, as 
well as rotations of the trans-
verse normal in the orienta-
tion of θ, respectively

�RR and ���  Normal strains in R and θ 
directions, respectively

�RZ  Shear strain in the RZ plane
U, T, W, Ḋ  Plate’s strain energy, kinetic 

energy, the work which is 
done by thermal loading, and 
work due to damping energy, 
respectively

C  Damping parameter

qdynamic and F  Dynamical force and force, 
respectively

Ii  Mass inertias
�RR, ��� and �RZ  Normal stress in R and � 

directions, and shear stress in 
the RZ plane, respectively

NH and NT  Applied forces imposed by 
variation of moisture and 
temperature

ΔT and ΔH  Temperature and moisture 
changes, respectively.

Qij , 
−

Qijand�  Stiffness elements, stiffness 
elements relates to orienta-
tion angle, and the orienta-
tion angle, respectively

�L, �L  Linear non-dimensional 
linear natural frequencies, 
respectively

�NL, �NL  Nonlinear non-dimensional 
nonlinear natural frequen-
cies, respectively

P1, P2 and �  The linear part of the fre-
quency, nonlinear part (order 
one) of the frequency, and 
nonlinear part (order two) of 
the frequency, respectively

a  Dimensionless deflection
Ω, � and �  Excitation frequency, detun-

ing parameter, and perturba-
tion parameter, respectively

T0 and T1  Excitation terms
q  The weak form of the exter-

nal force
A and A  Unknown complex conju-

gate and complex functions, 
respectively

A*  Amplitude ratio
�0  Primary resonance
� and �  Amplitude and phase, 

respectively
M  Magnification factor

1 Introduction

To achieve desired thermo-mechanical properties, car-
bon and its derivatives are accounted as the best choices 
to reinforce engineering structures. Choosing the scale of 
reinforcement widely depends on the purpose of the engi-
neer. Some composites are consisted of a matrix and macro-
scale reinforcement such as carbon fibers (CF) oriented in 
specific directions to enrich the mechanical performance of 
the structure. The reinforcement scale highly depends on 
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the aim of the structure which is to be used. Recently, it 
is revealed that composites enriched by multi-scale HNC 
are much more beneficial in real engineering applications. 
Thereby, the dynamics of the composites enhanced by multi-
scale HNC is a significant area of research. Chakrapani et al. 
[1] developed a nonlinear forced vibration model for fiber-
reinforced composites with varying fiber orientations and 
laminated sequences. Furthermore, they conducted experi-
mental research to confirm the numerical results’ accuracy. 
In another investigation, buckling along with the post-
buckling behavior of the fiber-reinforced beam located in a 
hygro-thermal environment has been scrutinized via Reddy’s 
model by Emam and Eltaher [2].

On the other hand, enhancing composite properties using 
nano-scaled fibers instead of macro-sized ones reveals con-
siderable boosting in the mechanics of structures. However, 
many scientists are focusing on the CNT-reinforced struc-
tures. For instance, an FE model is applied by Maghamika 
and Jam [3] to analyze CNTR circular and annular plate’s 
buckling relied on third-order SDT. They claimed that, in 
their method, the critical buckling load is less than those 
calculated based on the classical method, owing to the result 
of taking into consideration shear strain terms. Vibration 
study of continuously graded thick CNTR annular plate 
relying on an elastic foundation utilizing elasticity model 
is conducted by Tahouneh and Yas [4]. For solving the 
governing equations, they used a solution method known 
as differential quadrature method (DQM) in their research 
paper. As another study, Tahouneh and Jam [5] investigated 
natural frequencies of continuously graded CNTR annular 
plate relying on an elastic medium which CNTs are changed 
along with the plate’s thickness. In both papers reported 
above, to estimate the composite annular plate’s elastic 
properties, Eshelby–Mori–Tanaka micro-scaled mechanics 
is applied. Using variational DQM to solve the equations 
governed to this problem, which is extended based on the 
first-order shear deformation theory (FSDT), Ansari et al. 
[6] conducted buckling and vibration characteristics of func-
tionally graded CNT-reinforced annular sector plate covered 
by an elastic foundation under thermal loading.

In the field of the nonlinear statics as well as dynamics 
of a circular annular plate, Keleshteri et al. [7] analyzed 
major bending responses of an functionally graded (FG) 
annular plate which is enhanced through employing CNTs 
and surrounded by an elastic foundation. They believed that 
in their mathematical approach, the applied von Karman and 
shear deformation models result in better accuracy. Further-
more, to solve equations obtained via energy methods, they 
employed the GDQM along with Newton–Raphson algo-
rithm. Their emphasized outcome is that thickness and the 
value fraction of CNT may play a prominent role when it 
comes to annular disk’s nonlinear frequency. Ansari and 
Torabi [8] analyzed nonlinear forced and free dynamics of 

an FG disk using the von Kármán method as well as thin 
SDT. They emphasized mainly on the modified GDQ model 
to solve the FG disk’s governing equation and reported a 
structure’s large-amplitude vibration. Keleshteri et al. [9, 
10] conducted a study on the post-buckling of the FG-
CNT-reinforced circular sector plate with consideration of 
a piezoelectric layer utilizing GDQM, Von Karman nonlin-
earity, and FSDT. By taking into account the same process, 
Keleshtary et al. [11] investigated the FG-CNT-reinforced 
circular plate’s significant amplitude performance covered 
by piezoelectric layer and placed on an elastic medium. Tor-
abi and Ansari [12] reported large-amplitude analysis of the 
FG-CNT-reinforced circular plate. Ansari et al. [13] reported 
a mathematical model for the investigation of the nonlin-
ear dynamic responses of the compositional disk, which 
is rested on an elastic medium. The composite disk which 
they modeled is a CNT-reinforced FG annular plate. They 
employed the thick von Karman model and SDT for con-
sidering the nonlinearity. Gholami et al. [14] presented the 
nonlinear static behavior of a graphene platelet-reinforced 
annular plate under a dynamically load and the structure is 
covered with the Winkler–Pasternak media. They applied 
Newton–Raphson algorithm and a modified GDQ method 
to access the nonlinear bending behavior of the graphene 
reinforced disk.

Recently, in the field of stability analysis of the struc-
tures, in Ref [15] is presented the stability of a micro-sized 
beam with the aid of generalized thermoelasticity theory. 
Shaterzadeh et al. [16] studied nonlinear thermal buckling 
stability of imperfect FG shells. This structure was covered 
by a nonlinear elastic medium. Moreover, nonlinear forced 
vibrations of a micro-scaled beam employing analytical and 
numerical models were scrutinized by Ref. [17]. Besides, 
Truong-Thi et al. [18] studied stability analyses of CNT-rein-
forced plates with the aid of cell-based smoothed discrete 
shear gap method. In this work, they found that boundary 
condition, nanotube volume fraction, different distribution of 
carbon nanotubes, and plates’ width-to-thickness ratio have 
an important role in the buckling and vibrational character-
istics of a CNT-reinforced plate.

According to the best scientific reports, large-amplitude 
behavior of the multi-scale HNCAP exposed to the hygro-
thermal loadings is not explored, yet. In our work, the prop-
erties of multi-size levels of HNCAP are calculated upon 
the Halpin–Tsai model integrated with a micromechanical 
model. The motion equations are created using third-order 
SDT and geometrical Von-Karman nonlinearity. Based on 
PM and GDQM, the equations of motion are solved. The 
results created from finite-element simulation illustrates a 
close agreement with our semi-numerical method results. 
Ultimately, the outcomes demonstrate that some prominent 
physical and geometrical elements play a vital influence on 
the nonlinear dynamics of the multi-scale HNCAP.



 Archives of Civil and Mechanical Engineering (2021) 21:4

1 3

4 Page 4 of 25

2  Formulations and models

2.1  The problem

Figure 1 illustrates an HNCAP with a thickness of h, the 
outer radius b, and the inner radius a. on what has already 
been mentioned in this paper, CFs and CNTs are employed 
as macro-scale and nano-scale reinforcement, respectively. 
3D coordinates of annular plate are presented as, R, � , and 
Z that show the radial, circumferential, and thickness direc-
tions, respectively.

2.2  The homogenization procedure of multi‑scale 
HNCAP

Two key stages are involved in the homogenization method 
according to the micromechanical theory as well as the 

Halpin–Tsai method. At the first stage, composite’s effec-
tive has to be calculated, that is [19, 20]

(1a)E11 = VFE
F
11
+ VNCME

NCM

(1b)

1

E22

=
1

EF
22

+
VNCM

ENCM
− VFVNCM

−

(�F)2ENCM

EF
22

+
(�NCM)2EF

22

EM
− 2�F�NCM

VFE
F
22
+ VNCME

NCM

(1c)
1

G12

=
VF

GF
12

+
VNCM

GNCM

(1d)� = VF�
F
+ VNCM�

NCM

Fig. 1  Schematic view of the multi-scale HNCAP under hygro-thermal loading, related parameters, and coordination
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The adding result of the carbon fiber’s volume fraction 
indicated by  VF and the nanocomposite matrix’s volume 
fraction shown by  VNCM is should be equal to 1 [20], namely:

At the second stage, nanocomposite’s effective proper-
ties can be calculated employing the developed Halpin–Tsai 
micromechanics model demonstrated as below [20]:

in which βdd and βdl are given by [20]:

The CNTs’ volume fraction may be computed due to its 
weight fraction  (WCNT) written as follows [20]:

where one pattern distributed uniformly along with three FG 
models has been taken into account based in Fig. 2 and sub-
sequent relations. In the mentioned models, CNTs are dis-
tributed along the multi-scale HNCAP’s thickness. FG-UD 
is an isotropic homogeneous plate that CNTs are regularly 
distributed. FG-X shows that CNTs weight fraction changes 
from layer to layer along the thickness. As shown in FG-X 
weight fraction in the midplane is the lowest and increases 
from the mid layer to the top and bottom layers. FG-A shows 
an asymmetrical CNTs in which weight fraction increases 
from top surface to the bottom surface. In contrast to FG-A, 
according to FG-V, weight fraction of CNT decreases from 
top surface to the bottom surface. The function of distribu-
tion can be written as below [21]:

(1e)�12 = VF�
F
+ VNCM�

NCM

(2)VF + VNCM = 1

(3)

ENCM
= EM

[
5

8

(
1 + 2�ddVCNT

1 − �ddVCNT

)
+

3

8

(
1 + 2(lCNT∕dCNT)�dlVCNT

1 − �dlVCNT

)]

(4)

�dl =
(ECNT

11
∕EM

) − (dCNT∕4tCNT)

(ECNT
11

∕EM) + (lCNT∕2tCNT)
,

�dd =
(ECNT

11
∕EM

) − (dCNT∕4tCNT)

(ECNT
11

∕EM) + (dCNT∕2tCNT)
.

(5)V∗

CNT
=

WCNT

WCNT +

(
�CNT

�M

)
(1 −WCNT)

,

(6)

VCNT = 4V∗

CNT

|||�j
|||

h
FG - X

VCNT = V∗

CNT

(
1 +

2�j

h

)
FG - V

VCNT = V∗

CNT

(
1 −

2�j

h

)
FG - A

VCNT = V∗

CNT
FG - UD,

where �j =
(

1

2
+

1

2Nt

−
j

Nt

)
h j = 1,2,...,Nt . Based on the pre-

viously mentioned note, the total adding results of  VM and 
 VCNT as the two nanocomposite matrix’s components should 
be equal to 1 [20]:

The corresponding nanocomposite matrix’s shear mod-
ules, mass density, and Poisson’s ratio may be obtained using 
the following relations [20]:

Furthermore, the expansion factors of the multi-scale HNC 
are obtained by employing a couple of equations as below [22]:

(7)VCNT + VM = 1

(8a)GNCM
=

ENCM

2
(
1 + �NCM

)

(8b)�NCM = VCNT�
CNT

+ VM�
M

(8c)�NCM = �M

(9a)�11 =
Vf E

f

11
�
f

11
+ VNCME

NCM�NCM

E
f

11
Vf + ENCMVNCM

(9b)�22 = (1 + Vf )Vf�
f

22
+ (1 + VNCM)VNCM�NCM − �12�11

Fig. 2  Meshed FE annular plate model
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where �NCM represents the nanocomposite matrix’s thermal 
expansion factor which can be calculated based on equation 
written as below [23]:

Since all water contents can be absorbed by the matrix 
due to its absorption property, it is fully revealed that 
the moisture impact on the composites’ fiber or CNTs is 
neglectable. Thereby, the composite’s moisture factors can 
be calculated as [19]:

2.3  Kinematic relations

The classical plate theory and first-order shear deforma-
tion theory (FSDT) are the simplest equivalent single layer 
theories [24]. The third-order SDT represents the kinematics 
more realistically and does not require to correction factor 
that the FSDT requires. The third-order SDT is based on a 
displacement field that includes the cubic term in the thick-
ness coordinate (z); hence, the transverse shear strain and 
hence stress are represented as quadratic through the plate 
thickness and also satisfy the stress-free conditions on the 
bounding planes (top and bottom surfaces) of the plate. In 
spite of relatively more complex algebraic equations and 
computational effort compared to the classical and FSDT 
theories, the third-order SDT yields results that are close to 
3D elasticity solutions. There are some articles that incor-
porate the third-order plate theory to obtain more accurate 
results [25]. Due to the third-order SDT, the fields of dis-
placement can be reported as [7]:

(10)
�NCM =

1

2

(
VCNTE

CNT
11

�CNT
11

+ VmEm�m

VCNTE
CNT
11

+ VmEm

)
(1 − �NCM)

+ (1 + �m)�mVm + (1 + �CNT)�CNTVCNT.

(11)
�11 =

ENCM�MVNCM +f E
f

11
V

VfE
f

11
+ ENCMVNCM

�22 = (1 + �NCM)VNCM�
M
− �12�11

(12)

U(R, z, t) = u(R, t) +

(
�(R, t) +

�w(R, t)

�R

)(
z − c1z

3
)
− z

�w(R, t)

�R

V(R, z, t) = 0

where U, V, and W are the total displacements in the (R, 
z) coordinates. In Eq. (12), u, v, and w are displacements 
of a point on the midplane. Also, u1 and v1 are rotations of 
transverse normal on the midplane. Also, c1 =

4

3h2
 . In this 

research, the cylindrical coordinate system ( R, �, z ) and axial 
symmetry in loading and geometry are taken into account. 
Also, it is assumed that the structure is an ideal annular 
plate that does not have any imperfection. Therefore, the 
geometrical nonlinearity of von Karman model and the cor-
responding strain components including�RR , ��� , and �RZ may 
be shown as:

where Eq. (13) is shown as:

2.4  Obtaining the governing equations using 
energy methods

The presented research extracts the governing equations 
employing the energy method know as Hamilton’s principle:

The equation shown below reveals the elements involved 
in the procedure of extracting the aforementioned annular 
plate’s strain energy:

W(R, z, t) = w(R, t)

(13)

⎧
⎪⎨⎪⎩

�RR
���
�RZ

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

�0
RR

�0
��

�0
RZ

⎫
⎪⎬⎪⎭
+ z

⎧
⎪⎨⎪⎩

�RR
���
�RZ

⎫
⎪⎬⎪⎭
+ z2

⎧
⎪⎨⎪⎩

�∗

RR

�∗

��

�∗

RZ

⎫
⎪⎬⎪⎭
+ z3

⎧
⎪⎨⎪⎩

�∗∗

RR

�∗∗

��

�∗∗

RZ

⎫
⎪⎬⎪⎭

(14)

⎧⎪⎨⎪⎩

�0
RR

�0
��

�0
RZ

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩

�u

�R
+

1

2

�
�w

�R

�2

u

R
�u

�z
+

�w

�R

⎫⎪⎬⎪⎭
,

⎧⎪⎨⎪⎩

�RR
���
�RZ

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩

��

�R
1

R
�

��

�z

⎫⎪⎬⎪⎭
,

⎧⎪⎨⎪⎩

�∗

RR

�∗

��

�∗

RZ

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩

0

0

−3c1

�
�w

�R
+ �

�
⎫⎪⎬⎪⎭
,

⎧⎪⎨⎪⎩

�∗∗

RR

�∗∗

��

�∗∗

RZ

⎫⎪⎬⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

−c1

�
�2w

�R2
+

��

�R

�

−
c1

R

�
�w

�R
+ �

�

−c1

�
�2w

�z�R
+

��

�z

�

⎫⎪⎪⎬⎪⎪⎭

.

(15)∫
t2

t1

(
𝛿T − 𝛿U + 𝛿W1 + 𝛿W2 + 𝛿Ḋ

)
dt = 0.
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The moment and the force can be obtained as:

Since, in this study, we have work induced by the external 
energy, the former can be calculated as [19]:

where Nhyg are written as [19]:

NT and NH are written as [19]:

It can be mentioned that three various patterns are taken 
into consideration for the moisture and temperature changes 
along the thickness, namely, sinusoidal temperature rise 
(STR), linear one (LTR), and uniform one (UTR), which 
can be described as follows [22]:

(16)�U =
1

2 ∫
V

�ij��ijdV =

R2

∫
R1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
�NRR

�R
−

N��

R

�
�u

+

⎧
⎪⎨⎪⎩

�MRR

�R
−

M��

R
− c1

�PRR

�R
+

c1

R
P��

−
�
QRZ − 3c1SRZ

�
⎫
⎪⎬⎪⎭
��

+

⎧
⎪⎨⎪⎩

c1
�2PRR

�R2
−

c1

R

�P��

�R
+

�
�QRZ

�R
− 3c1

�SRZ

�R

�

+
�

�R

�
NRR

�w

�R

�
⎫
⎪⎬⎪⎭
�w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dR

(17a)
{
NRR,MRR,PRR

}
= ∫z

�RR
{
1, z, z3

}
dz

(17b)
{
N�� ,M�� ,P��

}
= ∫z

���
{
1, z, z3

}
dz

(17c)
{
QRz, SRz

}
= ∫z

�Rz
{
1, z2

}
dz

(18)�W1 =

R2

∫
R1

[
��w

�x

�w

�x
Nhyg

]
dR

(19)Nhyg
= NT

+ NH

(20a)NT
= ∫

h∕2

−h∕2

(Q11�11 + Q12�22) (T(z) − T0)dz

(20b)NH
= ∫

h∕2

−h∕2

(Q11�11 + Q12�22) (H(z) − H0)dz

The work variation induced by the external loads should 
be obtained as:

where qdynamic can be defined as follows:

The applied work due to the damping can be presented 
as below:

where C presents damping coefficient. Since the dynamics 
of the structure is analyzed, we have kinetic energy which 
can be obtained using Eq. (24a). Moreover, its variation can 
be obtained using Eq. (24b):

(21a)UTR:

{
T(z)

H(z)

}
=

{
T0
H0

}
+

{
ΔT

ΔH

}
,

(21b)
LTR:

�
T(z)

H(z)

�
=

⎧⎪⎨⎪⎩

ΔT
�

1

2
+

z

h

�
+ T0

ΔH
�

1

2
+

z

h

�
+ H0

⎫⎪⎬⎪⎭
,

(21c)

STR:

�
T(z)

H(z)

�
=

⎧⎪⎨⎪⎩

ΔT
�
1 − cos

�

2

�
1

2
+

z

h

��
+ T0

ΔH
�
1 − cos

�

2

�
1

2
+

z

h

��
+ H0

⎫⎪⎬⎪⎭
.

(22a)�W2 =

R2

∫
R1

qdynamic�wdR,

(22b)qdynamic = F cos (Ωt).

(23)𝛿Ḋ =

b

∫
a

C
𝜕 w

𝜕 t
𝛿w dR,
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where 
{
Ii
}
= ∫ h

2

−
h

2

�NCM
{
zi
}
dz, i = 0, 1, ..., 6 represent iner-

tias of the mass. Substituting Eqs. (24c), (23), (22a), (18), 
and (16) into Eq.  (15), the Euler–Lagrange relations of 
multi-scale HNCAP can be defined as below:

The BCs extracted from energy methods can be indicated 
as:

(24a)T = ∫
A

1

2
�

[(
�U

�t

)2

+

(
�W

�t

)2

+

(
�V

�t

)2
]
dRdZ

(24b)�T = ∫
b

a

�

[
�U

�t

��U

�t
+

�V

�t

�V

�t
+

�W

�t

��W

�t

]
dR

(24c)�T =

b

∫
a

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
−IO

�2u

�t2
− I1

�2�

�t2
+ I3c1

�
�2�

�t2
+

�3w

�R�t2

��
�u +

�
−I1

�2u

�t2
− I2

�2�

�t2
+ I4c1

�
�3w

�t2�R
+

�2�

�t2

��
��

+

⎧
⎪⎨⎪⎩

c1I3
�2u

�t2
+ c1I4

�2�

�t2
−

I6c
2
1

�
�3�

�R�t2
+

�3w

�R�t2

�
⎫
⎪⎬⎪⎭
�� +

⎧
⎪⎨⎪⎩

−c1I3
�3u

�R�t2
− c1I4

�3�

�R�t2

+I6c
2
1

�
�3�

�R�t2
+

�4w

�R2�t2

�
⎫
⎪⎬⎪⎭
�w +

�
−IO

�2w

�t2

�
�w

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dR

(25a)

�u∶
�NRR

�R
−

N��

R
= I0

�2u

�t2
+ I1

�2�

�t2
− c1I3

(
�3w

�R�t2
+

�2�

�t2

)
,

(25b)

�w∶c1
�2PRR

�R2
−

c1

R

�P��

�R
+

�QRz

�R
− 3c1

�SRz

�R
+

�

�R

(
NRR

�w

�R

)

−qdynamic + C
�w

�t
− (NT

+ NH
)
�2w

�R2
= c1I3

�3u

�R�t2

+c1I4
�3�

�R�t2
− c2

1
I6

(
�3�

�R�t2
+

�4w

�R2�t2

)
+ I0

�2w

�t2
,

(25c)

��∶
�MRR

�R
− c1

�PRR

�R
−

M��

R
+

c1

R
P�� − QRz + 3c1SRz

= I1
�2u

�t2
+ I2

�2�

�t2
− c1I4

(
�3w

�t2�R
+

�2�

�t2

)

−c1I3
�2u

�t2
− c1I4

�2�

�t2
+ c2

1
I6

(
�2�

�t2
+

�3w

�R�t2

)
.

(26)

�u = 0 or NRRnR = 0

�w = 0 or

⎡⎢⎢⎢⎣

c1
�PRR

�R
− c1

P��

R
+ QRZ − 3c1SRZ

+NRR

�w

�R
+ q

�w

�R
− KP

�w

�R
+ NT �w

�R

⎤⎥⎥⎥⎦
nR = 0.

�� = 0 or
�
MRR − c1PRR

�
nR = 0

2.5  Governing equations

The corresponding stress–strain equation of the orthotropic 
composites would be shown as [26]:

with

where � is the orientation angle and [26, 27]:

Finally, inserting Eq. (27) in Eqs. (17a–17c) and past-
ing it in Eqs. 25a–25c, and governing equations of multi-
scale HNCAP can be obtained using the following standard 
equations:

(27)

⎧⎪⎨⎪⎩

�RR
���
�RZ

⎫⎪⎬⎪⎭
=

⎡⎢⎢⎣

Q11 Q12 0

Q12 Q22 0

0 0 Q55

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

�RR
���
�RZ

⎫⎪⎬⎪⎭
,

(28)

Q11 = Q11 cos
4 � + 2Q12 cos

2 � sin2 � + Q22 sin
4 �Q12

= Q12

(
cos4 � + sin

4 �
)
+

(
Q22 + Q11

)
cos2 � sin2 �

Q22 = Q22 cos
4 � + 2Q12 cos

2 � sin2 � + Q11 sin
4 �

Q55 = Q55 cos
2 �,

(29)

Q11 =
E11

1 − �21�12
, Q12 =

�12E22

1 − �21�12
, Q22 =

E22

1 − �12�21
, Q55 = G12.

(30a)

�u ∶

{
A11

�2u

�R2
+ B11

�2�

�R2
− D11c1

(
�2�

�R2
+

�3w

�R3

)
+ A11

�2w

�R2

�w

�R

}

+

{
A12

R

�u

�R
+

B12

R

��

�R
−

D12c1

R

(
��

�R
+

�2w

�R2

)}

−

{
A12

R

�u

�R
+

B12

R

��

�R
−

D12c1

R

(
��

�R
+

�2w

�R2

)
+

A12

2R

(
�w

�R

)2
}

−

{
A22

R2
u +

B22

R2
� −

D22c1

R

(
�

R
+

1

R

�w

�R

)}

= I0
�2u

�t2
+ I1

�2�

�t2
− I3c1

(
�2�

�t2
+

�3w

�R�t2

)
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(30b)

�w ∶ c1

⎧
⎪⎪⎨⎪⎪⎩

D11

�3u

�R3
+ E11

�3�

�R3
− G11c1

�
�3�

�R3
+

�4w

�R4

�

+ D11

�3w

�R3

�w

�R
+ D11

�
�2w

�R2

�2

⎫
⎪⎪⎬⎪⎪⎭

+ c1

�
D12

R

�2u

�R2
+

E12

R

�2�

�R2
−

G12c1

R

�
�2�

�R2
+

�3w

�R3

��

−
c1

R

�
D12

�2u

�R2
+ E12

�2�

�R2
− G12c1

�
�2�

�R2
+

�3w

�R3

�
+ D12

�2w

�R2

�w

�R

�

−
c1

R

�
D22

R

�u

�R
+

E22

R

��

�R
−

G22c1

R

�
��

�R
+

�2w

�R2

��

+
�
A55 − 3c1C55

����

�R
+

�2w

�R2

�
− 3c1

�
C55 − 3c1E55

�
�
��

�R
+

�2w

�R2

�
+ A11

�2u

�R2

�w

�R
+ A11

�u

�R

�2w

�R2
+

B11

�2�

�R2

�w

�R
+ A11

��

�R

�2w

�R2
− D11c1

⎛⎜⎜⎜⎜⎝

�w

�R

�2�

�R2
+
��

�R

�2w

�R2

+
�3w

�R3

�w

�R
+

�
�2w

�R2

�2

⎞⎟⎟⎟⎟⎠
+ A11

�2w

�R2

�
�w

�R

�2

+ A11

�
�w

�R

�2 �2w

�R2
+
A12

R

�u

�R

�w

�R

+
A12

R
u
�2w

�R2
+
B12

R

��

�R

�w

�R
+

B12

R
�
�2w

�R2

−
D12c1

R

�
��

�R

�w

�R
+�

�2w

�R2
+ 2

�w

�R

�2w

�R2

�
− qdynamic + C

�w

�t
− (NT

+ NH
)
�2w

�R2

= c1I3
�3u

�R�t2
+ c1I4

�3�

�R�t2
− c2

1
I6

�
�3�

�R�t2
+

�4w

�R2�t2

�
+ I0

�2w

�t2

(30c)

�� ∶

{
B11

�2u

�R2
+ C11

�2�

�R2
− E11c1

(
�2�

�R2
+

�3w

�R3

)
+ B11

�2w

�R2

�w

�R

}

+

{
B12

R

�u

�R
+

C12

R

��

�R
−

E12

R
c1

(
��

�R
+

�2w

�R2

)}

− c1

{
E11

�2�

�R2
+ D11

�2u

�R2
− G11c1

(
�2�

�R2
+

�3w

�R3

)
+ D11

�w

�R

�2w

�R2

}

− c1

{
D12

R

�u

�R
+

E12

R

��

�R
−

G12

R
c1

(
��

�R
+

�2w

�R2

)}

−
1

R

{
B12

�u

�R
+ C12

��

�R
− E12c1

(
��

�R
+

�2w

�R2

)
+

B12

2

(
�w

�R

)2
}

−
1

R

{
B22

u

R
+ C22

�

R
− E22c1

(
�

R
+

1

R

�w

�R

)}

+
c1

R

{
D12

�u

�R
+ E12

��

�R
− G12c1

(
��

�R
+

�2w

�R2

)
+

D12

2

(
�w

�R

)2
}

+
c1

R

{
D22

u

R
+ E22

�

R
− G22c1

(
�

R
+

1

R

�w

�R

)}

−
(
A55 − c13C55

)(
� +

�w

�R

)
+ 3c1

(
−c13E55 + C55

)(
� +

�w

�R

)

= I1
�2u

�t2
+ I2

�2�

�t2
− I4c1

(
�2�

�t2
+

�3w

�R�t2

)

− I3c1
�2u

�t2
− I4c1

�2�

�t2
+ I6

(
�3w

�t2�R
+

�2�

�t2

)
c
2

1
.

The terms that are introduced in Eqs. (30a–30c) can be 
presented as follows:

As a result, Eqs. (30a–30c) can be formulated as follows 
(for details see ‘Appendix’):

(30d)

{
Gij,Fij,Eij,Dij,Cij,Bij,Aij

}
= ∫

h

2

−
h

2

{
z6, z5, z4, z3, z2, z1, 1

}
Qijdz.

(31a)
L11u(t) + L12w(t) + L13𝜙(t) = M11ü(t) +M12ẅ(t) +M13�̈�(t)

(31b)
L21u(t) + L22w(t) + L23ẇ(t) + L24w

3
(t) + L25𝜙(t) =

M21ü(t) +M22ẅ(t) +M23�̈�(t) + F cos (Ωt)

(31c)
L31u(t) + L32w(t) + L33𝜙(t) = M31ü(t) +M32ẅ(t) +M33�̈�(t).
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3  Solution procedure

3.1  GDQM

A range of numerical methods has been presented for solving 
the differential equations including FEM [23], Ritz method 
[28], deep collocation method [29], etc. In the current paper, 
we used the differential quadrature method (DQM), which 
has been presented by Bellman et al. [30, 31], and Grid 
points’ numbers are involved in this solution approach. The 
importance of choosing the most proper grid-points’ num-
bers is revealed in scholars’ research papers. For instance, 
Shu [32] has reported an effective method for obtaining the 
weighting factors for a grid-points’ infinite number called 
generalized differential quadrature method (GDQM). The 
domain decomposition model has been utilized by Shu and 
Richards [33] to be implemented in multi-domain equations. 
Estimation of the rth derivative of f(x) can be expressed as 
[34, 35]:

where gij can be formulated as follows [36]:

with

The weighting factors are obtained via relations explained 
below when it comes to higher order derivatives:

This study, however, chooses a grid-points’ non-uniform 
set which is written as below:

(32)
�rf (x)

�Rr

||||x=xp
=

n∑
j=1

g
(r)

ij
f (Ri),

(33)

g
(1)

ij
=

M
(
Ri

)
(
Ri − Rj

)
M
(
Rj

) j ≠ i and j, i = 1, 2, ..., n

g
(1)

ij
= −

n∑
i≠j,j=1

C
(1)

ij
j = i

(34)M
(
Ri

)
=

n∏
j≠i,j=1

(
Ri − Rj

)
.

(35)

g
(r)

ij
= r

⎡
⎢⎢⎣
g
(r−1)

ij
g
(1)

ij
−

g
(r−1)

ij�
R
i
− R

j

�
⎤
⎥⎥⎦
2 ≤ r ≤ n − 1, j ≠ i

and j, i = 1, 2, ..., ng
(r)

ii

= −

n�
i≠j,j=1

g
(r)

ij
1 ≤ r ≤ n − 1 and j, i = 1, 2, ..., n.

(36)

Rj =
b − a

2

(
1 − cos

(
(j − 1)(
Nj − 1

)�
))

+ a j = 1, 2, 3, … ,Nj.

3.2  Multiple scales method

To determine the dynamic response of the system via mul-
tiple scales method, before solving the governing equation, 
displacement components are presented in the following 
standard form to separate time and space variables:

Now, by substituting Eq. (37) into Eqs. (30a–30c) and 
using Eq. (32) for solving the unknown functions u(t), and 
�x(t) in terms of w(t), the nonlinear differential equation of 
annular plate can be extracted as:

where:

Subsequently, the linear annular plate oscillation can be 
defined as:

and �L = �Lb
2
√

�m

Em

 , where the initial boundary conditions 

can be identified as:

By replacing w(t) in Eq. (38) with g(t), and by consider-
ing F(t) and C equal to zero, one has the following equation:

in which

By implementing the homotopy perturbation method, the 
solution for Eq. (42) can be given as:

where � ∈ [0, 1] is an integrated variable. When � = 0 , 
Eq.  (44) will be representing linear differential relation 
which is shown as:

Above

(37)
u(R, t) = u(R)ei�mnt, w(R, t) = w(R)ei�mnt, �x(R, t) = �x(R)e

i�mnt.

(38)
ẅ(t) + Cẇ(t) + P1w(t) + P2w

2
(t) + 𝛾w3

(t) = F(t) cos (Ωt),

(39)� = −
M21 +M22 +M23

L24
.

(40)�L =

√
P1,

(41)W(0) =
w

h
,
dw(t)

dt

||||t=0 = 0.

(42)d2g(t)

dt2
+ P1

{
g(t) + �g3(t)

}
= 0,

(43)� =
�

P1

(44)

d2g(t)

dt2
+ �2

NL
g(t) + �

{(
P1 − �2

NL

)
g(t) + P1�g

3
(t)
}
= 0,

(45)d2g(t)

dt2
+ �2

NL
g(t) = 0.
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It should be the following.
Substituting Eq. (45) into Eq. (46), we get:

Hence, computing Eq. (47a) results in:

Utilizing Eqs. (47b) and (48), the following expression 
can be achieved as shown below:

Hence, elimination of g0(t) yields the equation:

in which the nonlinear form of the frequency of the multi-
scale HNCAP can be formulated as:

where A∗
=

w

h2

3.3  Primary resonance

In the presented case, it is guessed that �L is near to Ω . 
Therefore, an element of σ is presented for demonstrating 
the closeness of Ω to �0 as:

To study the oscillations and bifurcations of the nonlin-
ear plate, the multi-scale method is presented to investigate 
the nonlinear vibration characteristics of the nanocompos-
ite circular plate. The estimated solutions of Eq. (38) are 
determined as:

(46)g(t) = g0(t) + �g1(t) + �2g2(t) +⋯ .

(47a)

�0 ∶
d2g0(t)

dt2
+ �2

NL
g0(t) = 0, g0

||t=0 = w

h
,
dg0(t)

dt

||||t=0 = 0,

(47b)

�1 ∶
d2g1(t)

dt2
+ �2

NL
g1(t) +

{(
P1 − �2

NL

)
g0(t) + P1g

3
0
(t)
}
= 0

, g1
||t=0 = w

h
,
dg1(t)

dt

||||t=0 = 0.

(48)g0(t) =
w

h
cos

(
�NLt

)
, a=

w

h
.

(49)

d2g1(t)

dt2
+ P1g1(t) +

(
P1 − �2

NL
+

3

4
a2�P1

)
a cos

(
�NLt

)

+
1

4
P1a

3� cos
(
3�NLt

)
= 0.

(50)P1 − �2
NL

+
3

4
a2�P1 = 0,

(51)�NL =

(√
1 +

3

4
a2�

)
�L,

(52)�NL = �L

√
1 +

3

4
h2�A∗2.

(53)Ω = �0 + ��.

where T0 = t and T1 = εt. The excitation in variations of T0 
and T1 is explained as:

Then, the derivatives can be obtained using t as a 
parameter:

where D0 =
�

�T0
, D1 =

�

�T1
, and D0D1 =

�2

�T0�T
 . Substitut-

ing Eqs. (54–56a) into Eq. (38) and equating the factors of 
ε equal to 0 yields the following differential relations:

The solution of Eq. (57a) may be suggested as:

The governing equations for A are gained by demanding 
w1 in the periodic form in T0 and deriving secular parameters 
which are factors of e±iω0T0 the equation can be obtained as:

where

Inserting Eq. (60) to Eq. (59) and separating imaginary 
and real parts enable us to have the following relations:

In the above equation, � = �T1 − � . Now, by consider-
ing steady-state condition ( a� = 0, and �� = 0 ) and squar-
ing, then combining the above relations, one can result in 
determining frequency relation as follows [37]:

(54)
w = w0

(
T0, T1, T2,…

)
+ �w1

(
T0, T1, T2,…

)
+ �2w2

(
T0, T1, T2,…

)
,

(55)F(t) = �q cos
(
�0T0 + �T1

)
.

(56a)
d

dt
= D0 + �D1,

(56b)d2

dt2
= D2

0
+ 2�D0D1 + �2

(
D2

1
+ 2D0D1

)
,

(57a)�0 ∶ D2
0
w0 + p1w0 = 0

(57b)

�1 ∶ D
2

0
w1 + p1w1 = − 2D0D1w0 − 2CD0w0

− �w3

0
− q cos

(
�0T0 + �T1

)
,

(58)
w0

(
T0, T1, T2,…

)
= A

(
T1
)
exp

(
iT0

)
+ A

(
T1
)
exp

(
−iT0

)
.

(59)2i�0(A + CA) + 3�A2A −
1

2
q exp

(
−i�T1

)
= 0,

(60)A =
1

2
� exp (i�).

(61a)��
= −C� +

1

2

q

�0

sin (�)

(61b)��� =
3

8

�

�0

�3
+

1

2

q

�0

cos (�).
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Substituting Eqs. (61a–61b) for steady-state condition 
to Eq.  (62) and inserting it to Eq.  (60) and substituting 
this result into Eqs. (58) and (54), one may obtain the first 
approximation:

For obtaining the stability/instability responses of the 
system and using Eq. (62), we present magnification factor 
that can be expressed as:

According to Eq. (53), � can be achieved. By substitut-
ing � in Eq. (64a), the maximum value of the magnification 
factor could be found using Eq. (64b), so:

The above relation can be solved for d�
dΩ

 as:

This derivative vanishes (and so does dM
dΩ

 ) when:

By considering dΩ
dM

= 0 , the values of the critical points Ω1 
and Ω2 can be obtained [38]. By considering the denomina-
tor of Eq. (66) equal to zero, the instability responses of the 
system ( Ω1 and Ω2 ) can be achieved. Therefore:

And finally have:

(62)

[(
� −

3

8

�

�0

�2

)2

+ C2

]
�2

=
q
2

4�2
0

.

(63)w = � cos
(
�0t + ��t − �

)
+ O(�).

(64a)
M =

�

||q||
=

1

2�0

√(
� −

3

8

�

�0

�2

)
+ C2

(64b)dM

dΩ
= 0,

d2M

dΩ2
< 0.

(65)

1

32
�
(
3��2

− 8Ω + 8�0

)(
3��

d�

dΩ
− 4

)

+

(
C
2
+
(
Ω − �0 − 3��2

)2) d�

dΩ
= 0.

(66)

d�

dΩ
=

8a
(
3��2

− 8Ω + 8�0

)

27�2�4 − 96
(
Ω − �0

)
��2 + 64

(
C2 +

(
Ω − �0

)2) .

(67)(
3��2

− 8Ω + 8�0

)
= 0 ⇒ �p =

√
8
(
Ω − �0

)
3�

.

(68)
27�2�4

− 96
(
Ω − �0

)
��2

+ 64
(
C2

+
(
Ω − �0

)2)
= 0.

(69)Ω1,2 =
1

8

�
8�0 + 6��2

−

√
9�2�4 − 64C2

�
.

4  Numerical results and discussion

In this research, famous reinforcement called multi-scale 
HNC is employed to enhance the annular plate dynamics. 
The thermo-mechanical properties of epoxy and a reinforce-
ment are shown in Table 1 [22].

4.1  Validation

To evaluate the reliability of the proposed method, the cir-
cular plate’s dimensionless natural frequency acquired in 
this paper is compared with results provided by Ref. [39] in 
Table 2. As can be seen in a broad range of CNT distribu-
tion pattern, and  WCNT, there is a good agreement between 
the results. Regarding the table, this research anticipates the 
vibration characteristics of the circular plate very similar and 
close to the results given in Ref. [39]. It should be mentioned 
that the model described in Ref. [39] is a linear model, but 
the current research is a nonlinear model of Ref. [39] as well 
as considering viscoelastic foundation. As can be seen, the 
discrepancy between the two results is less than 1.5% that is 
acceptable for verification. Also, in Ref. [39], the influences 
of hygro-thermal loading, viscoelastic, and c1 parameters 
are ignored.

For another verification for this work, according to 
Table 3, it is revealed that the proposed modeling can pro-
vide good agreement with Ref. [13] where the influences 
of thermal loading and viscoelastic parameters are ignored.

4.2  Finite‑element modeling

For further validation and shape mode analysis of the multi-
scale HNCAP, finite-element analyses have been presented 
with the aid of ABAQUS, where solid element C3D8R 
with 8-node, reduced integration, and hourglass control is 
employed to create the mesh for the shell model. Besides, 
the perfect bonding between neighboring layers has been 
considered. Figure 2 presents the model after meshing. In 
addition, boundary conditions are applied to the nodes at 
the inner and outer edges of the multi-scale HNCAP. It is 
well known that if we want to have an accurate FE model, 
we should pay attention to the mesh convergence [40]. For 
this reason, the number of elements is increased as long 
as the natural frequency of the structure does not have any 
noticeable change and the optimum number of elements is 
selected. According to Fig. 3, such a convergence criterion is 
met when there are more than 40,000 elements in the mesh. 
A validation study between our numerical results and finite-
element outcomes is presented in Table 4. As it can be seen, 
the maximum relative discrepancies between our numerical 
results and the FEM results are less than 4%. In addition, 
with respect to Table 4, one can see that the best pattern in 
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the frequency issue of the structure is pattern 2, and the more 
rigid the structure is, the more boosted the frequency of the 
multi-scale HNC annular plate. Also, with the aid of the FE 
model, the first four mode shapes of a multi-scale HNCAP 
for b/a = 5 are shown in Fig. 4.

4.3  Parametric results

The impacts of various factors (including CNT’s distri-
bution patterns, the plate’s geometrical ratios, the CNT’s 
weight fraction, carbon fibers’ volume fraction, viscoelastic-
ity factor, and gradient of temperature) on the multi-sized 
HNCAP’s frequency characteristics are investigated.

Figure 5 provides a relevant result where, for the method 
of GDQ, an adequate grid points’ number is essential to 
achieve precise outcomes.

For diverse boundary conditions and a range of materi-
als, the convergence analysis is carried out. As a general-
ized result, it is obvious that the structure with clamped-
free (CF) BCs is more flexible than the structure with 
clamped–clamped (CC) BCs, resulting in a lower nonlin-
ear frequency. Besides, in accordance with Fig. 5, the grid 
points’ optimum number for the structure with clamped-free 
(CF) BCs is obtained as 12, while, for an annular plate with 
clamped–clamped, clamped–simply, and simply–simply 
BCs, this number is six. By having detailed attention to 
Fig. 5, it is clear that a decrease of the rigidity of the circular 
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Table 2  Comparison of non-dimensional natural frequency 
( �2

= �b2
√
�∕E ) of the multi-scale HNCAP versus CNT pattern 

with b/a = 4, h/b = 0.2, �=�∕4 , and c = 0

CNT distribu-
tion

WCNT

0.02 0.08

Presented 
study

Ref. [2] Presented 
study

Ref.  [2]

FG-X 2.69874563 2.7059 3.41917452 3.4195
FG-V 2.75698752 2.7869 3.40056987 3.4018
FG-A 2.81569854 2.8217 3.45852365 3.4589
FG-UD 2.79562369 2.8089 3.44395698 3.4439

Table 3  Comparison of fundamental natural frequencies (Hz) of 
an isotropic annular plate based on the HSDT ( � = 7800kg∕m3 , 
E = 2.1 × 1011Pa , � = 0.3 , b = 3 m, a = 1 m, and h = a/10)

Clamped–
clamped

Clamped-simply Simply-simply

Present study 238.059865874 182.6796325698 115.4179635486
Ref. [3] 238.049 182.684 115.417
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plate leads to the limitation of an increase in grid points 
number so as to retain convergence in the GDQ method.

As it can be seen in Fig. 6, the highest and lowest val-
ues of the nonlinear frequency correspond to the structures 

which are made by FG-A and FG-X. Generally, each 
increase in amplitude ratio (A*) will be a reason for boost-
ing the nonlinear reinforced annular plate’s frequency and 
this is a fact for all FG patterns.

The main reflection from Fig. 7 is that by encountering 
the composite annular plate with the sinusoidal and uniform 
temperature patterns, we can see the highest and the lowest 
nonlinear frequency, respectively.

Figure  8 gives an investigation about the impact of 
changes in moisture ( ΔH ) on the frequency ratio of the cir-
cular annular plate for C–S, S–S, C-F, and C–C boundary 
conditions. For each BCs and all amounts of the A* element, 
a direct relationship exists between the frequency ratio of the 
annular plate and ΔH , which means that raising the amount 
of the ΔH element results in improving the frequency ratio 
of the multi-scale HNCAP-reinforced annular plate. By hav-
ing an exact glance at Fig. 8, one may find an applicable out-
come which is that the impact of ΔH factor on the structure’s 
nonlinear dynamics for simple–simple (S–S) BCs is by far 
more significant than for the cases of other BCs. Another 
interesting result is that ΔH parameter does not affect the 
frequency ratio when the clamped–simply boundary condi-
tions are considered.

Figure 9 illustrates the impacts of varying fibers’ orienta-
tion angle ( �parameter ) on the nonlinear frequency charac-
teristics of the circular plate for boundary conditions of C-F, 
C–C, S–S, and C–S. The prominent result which is coming 
up from this fig is that for each value of A* factor and all 
BCs, through rising the � parameter, the annular plate’s non-
linear frequency declines and this matter is more substantial 
at higher values of the deflection and for C-F BCs. It is not 
remarkable by maintaining that at the larger amount of the 
A* factor one can observe the influence of � factor on the 
structure’s nonlinear dynamics, particularly in the case of 
clamped-free (CF) BCs. The other obtained result is that by 
changes in the condition of the annular plate from C-F to 
C–C, structure’s frequency raises owing to a decrease in the 
structure’s flexibility.

Fig. 3  Convergence study for the FE multi-scale HNCAP model for 
the first and second modes

Table 4  Validation of numerical results with finite-element outcomes

Refs. [13, 22, 39]

Numerical result 
for pattern 1

FEM result 
for pattern 1

Numerical result 
for pattern 2

FEM result 
for pattern 2

Numerical result 
for pattern 3

FEM result 
for pattern 3

Numerical result 
for pattern 4

FEM result 
for pattern 4

FG-A
 C–C 7.36E + 05 7.13E + 05 7.38E + 05 7.83E + 05 7.34E + 05 7.11E + 05 7.36E + 05 7.12E + 05
 C–S 5.87E + 05 5.69E + 05 5.89E + 05 4.65E + 05 5.86E + 05 5.68E + 05 5.87E + 05 5.68E + 05

FG-X
 C–C 7.48E + 05 7.17E + 05 7.50E + 05 7.27E + 05 7.47E + 05 7.17E + 05 5.97E + 05 5.73E + 05
 C–S 5.97E + 05 5.72E + 05 5.99E + 05 5.81E + 05 5.96E + 05 5.72E + 05 7.48E + 05 7.18E + 05
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Fig. 4  The first four mode 
shapes for multi-scale HNCAP 
with h = a/10, ϴ = π/4, 
WCNT = 0.02, VF = 0.2, FG-X, 
and = ΔT0
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(a) (b)

(c) (d)

Fig. 5  Convergence of the current structure for various boundary conditions with b/a = 4, h/b = 0.1, FG-X, Ti = 273 [K], To = 300 [K], 
WCNT = 0, VF = 0, ϴ = π/4, UTR, and β = 1

Fig. 6  The impact of CNT distribution on the nonlinear non-dimen-
sional frequency of the simply supported multi-scale HNCAP with 
b/a = 4, h/b = 0.3, Ti = 273 [K], To = 300 [K], ϴ = π/4, WCNT = 0.02, 
VF = 0.2, and β = 1

Fig. 7  The impact of temperature change pattern on the nonlin-
ear non-dimensional frequency of the simply supported multi-scale 
HNCAP with b/a = 4, h/b = 0.1, FG-X, Ti = 273 [K], To = 300 [K], 
ϴ = π/4, WCNT = 0.02, VF = 0.2, and β = 1
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Comprehensive research is reported in Fig.  10 for 
investigation of the impacts of conditions at the edges and 
increasing temperature of the environment on the nonlinear 
dynamics of the nanocomposite-reinforced annular plate. If 
one pays attention to Fig. 10, one can see that boosting the 
temperature makes a decrease in the annular plate’s nonlin-
ear frequency and this matter is true for each A*. It is also 
true that temperature of the thermal environment negatively 
affects the frequency of the plate, but we should consider 
that this impact is more remarkable in a structure with the 
simply–simply boundary conditions.

Figures 11, 12, 13, and 14 are consistent with the lit-
erature which shows influences of nonlinear parameter ( � ) 

and increasing value of excitation frequency on the nonlin-
ear amplitude responses of the multi-scale HNC-reinforced 
annular plate for various boundary conditions. Based on 
Figs. 11, 12, 13, and 14, it may be observed that for all BCs, 
when the value of the � parameter is positive or negative, 
the dynamic behavior of the plate tends to have a harden-
ing or softening behaviors, respectively. It is well known 
that the � is the parameter of the cubic nonlinearity; when 
this parameter is zero, there is not hardening or softening 
behavior for the plate, because this behavior appears in the 
nonlinear plates. Moreover, by rising the positive or nega-
tive amounts of the � parameter, the hardening or softening 
behaviors of the multi-scale HNC-reinforced annular plate 

(a) (b)

(c) (d)

Fig. 8  The impact of different moisture on the non-dimensional natural frequency ratio of the multi-scale HNCAP for various boundary condi-
tions with b/a = 4, h/b = 0.3, Ti = 273 [K], To = 300 [K], FG-X, STR, ϴ = π/4, and β = 1
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(a) (b)

(c) (d)

Fig. 9  The impact of different orientation angle on the non-dimensional natural frequency ratio of the system for various boundary conditions 
with b/a = 4, h/b = 0.3, Ti = 273 [K], To = 300 [K], FG-X, ϴ = π/4, WCNT = 0.02, VF = 0.2, and β = 1

one can find an applicable result, which is that when the 
structure’s rigidity decreases by shifting the boundary con-
ditions from C–C to C-F ones, the effect of  � parameter on 
the hardening or softening behaviors of the plate is intensi-
fied. In addition to the results mentioned above, as the main 
point which comes from Figs. 11, 12, 13, and 14, one can 
see that for C–C and C–S boundary conditions, the unsta-
ble responses appear in the backbone curve of the nonlin-
ear model; however, in the cases of S–S and C-F boundary 
conditions, the backbone curve of the plate corresponds to 

are intensified. According to Figs. 11 and 12, for C–C along 
with C–S boundary conditions, no effects from � parameter 
on the maximum amplitudes of resonant vibration of the 
multi-scale HNC-reinforced annular plate. In contrast, by 
having detailed attention to Figs. 13 and 14, one can find that 
for S–S and C-F boundary conditions, there is an impres-
sive influence of the nonlinearity parameter on the backbone 
curve, and especially on the frequency–amplitude responses 
of the multi-scale HNC-reinforced annular plate could be 
seen. By comparing Figs. 11 and 12 with Figs. 13 and 14, 
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(a) (b)

(c) (d)

Fig. 10  The impact of boundary condition and applied temperature of the top surface on the nonlinear non-dimensional natural frequency of the 
system for various boundary conditions with b/a = 4, FG-X, h/b = 0.3, ϴ = π/4, WCNT = 0.02, VF = 0.2, and β = 1

Fig. 11  Variation of the ampli-
tude response with respect to 
the excitation frequency for dif-
ferent values of the � of multi-
scale HNCAP and clamped–
clamped boundary conditions 
with b/a = 4, h/b = 0.3, Ti = 273 
[K], To = 300 [K], STR, ϴ = π/4, 
WCNT = 0.02, VF = 0.2, β = 1, and 
−

q= 0.3
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Fig. 12  Variation of the 
amplitude response with respect 
to the excitation frequency 
for different values of the � 
of multi-scale HNCAP and 
clamped–simply boundary con-
ditions with b/a = 4, h/b = 0.3, 
Ti = 273 [K], To = 300 [K], STR, 
ϴ = π/4, WCNT = 0.02, VF = 0.2, 
β = 1, and 

−

q= 0.3

Fig. 13  Variation of the ampli-
tude response with respect to 
the excitation frequency for 
different values of the � of 
multi-scale HNCAP and sim-
ply–simply boundary conditions 
with b/a = 4, h/b = 0.3, Ti = 273 
[K], To = 300 [K], STR, ϴ = π/4, 
WCNT = 0.02, VF = 0.2, β = 1, and 
−

q= 0.3

stable conditions. Another important result is that for C–C 
and C–S boundary conditions, by increasing the value of the 
nonlinearity parameter, the unstable range at the backbone 
curve of the plate increases. It can be concluded from these 
figures that by decreasing the structure’s flexibility, the plate 
can be susceptible to having unstable responses.

Figures 15, 16, 17, and 18 present the impact of eternal 
force ( 

−

q parameter) and increasing the value of excitation 
frequency on the nonlinear amplitude responses of the multi-
scale HNC-reinforced annular plate for C–C, C–S, S–S, and 
C-F boundary conditions.
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Fig. 14  Variation of the 
amplitude response with respect 
to the excitation frequency 
for different values of the � 
of multi-scale HNCAP and 
clamped-free boundary condi-
tions with b/a = 4, h/b = 0.3, 
Ti = 273 [K], To = 300 [K], STR, 
ϴ = π/4, WCNT = 0.02, VF = 0.2, 
β = 1, and 

−

q= 0.3

Fig. 15  Variation of the ampli-
tude response with respect to 
the excitation frequency for 
different values of the external 
force and clamped–clamped 
boundary conditions with 
b/a = 4, h/b = 0.3, Ti = 273 [K], 
To = 300 [K], STR, ϴ = π/4, 
WCNT = 0.02, VF = 0.2, β = 1, and 
� = 0.5

Taking a brief glance at Figs. 15, 16, 17, and 18, it is 
obvious that increasing the 

−

q parameter gives rise to getting 
better hardening behavior and boosts the pick amplitudes 
at the backbone curves of the nonlinear plate. In other 
words, when the external force increases, the frequency 

of the backbone curve shifts to the side of the larger value 
of the extension frequency. With respect to Figs. 15 and 
16, an increase of the number of external forces results in 
widening the insatiable area at the backbone curves of the 
nonlinear disks.
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Fig. 16  Variation of the ampli-
tude response with respect to 
the excitation frequency for 
different values of the external 
force and clamped–simply 
boundary conditions with 
b/a = 4, h/b = 0.3, Ti = 273 [K], 
To = 300 [K], STR, ϴ = π/4, 
WCNT = 0.02, VF = 0.2, β = 1, and 
� = 0.5

Fig. 17  Variation of the ampli-
tude response with respect to 
the excitation frequency for 
different values of the external 
force and simply–simply bound-
ary conditions with b/a = 4, 
h/b = 0.3, Ti = 273 [K], To = 300 
[K], STR, ϴ = π/4, WCNT = 0.02, 
VF = 0.2, β = 1, and � = 0.5

5  Conclusion

In this paper, we studied the nonlinear free and forced vibra-
tional characteristics of the multi-scale HNCAP under the 
hygro-thermal environment. Also, a modified Halpin–Tsai 
model was presented to predict the effective properties of 

the multi-scale HNCAP. The strain–displacement relation 
of the current system was obtained via the third-order SDT 
and with the aid of Von Karman nonlinear shell theory. The 
minimum potential energy method was employed to estab-
lish the governing equations of motion, which were solved 
with the aid of GDQM and PM. The results created from 
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finite-element simulation illustrate a close agreement with 
our semi-numerical method results. The numerical results 
revealed that:

• The best FG distribution for obtaining the highest non-
linear dynamic response of a multi-scale HNC reinforced 
annular plat was FG-A.

• The effect of Tt parameter on the nonlinear frequency of 
the structure with the S–S boundary conditions was much 
more significant than of other BCs. The lowest effect of 
Tt parameter was seen for the structure with C-F bound-
ary conditions.

• Increasing value of the ΔH parameter leads to improve-
ment in the frequency ratio of the multi-scale HNCAP-
reinforced annular plate.

• ΔH parameter has no effect on the frequency ratio when 
the clamped–simply boundary conditions are considered.

• When the rigidity of the structure decreases by changing 
the boundary conditions from C–C to C-F ones, the effect 
of  � parameter on the hardening or softening behaviors 
of the plate is intensified.
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Appendix

In Eqs. (31a–31c), Lij and Mij are expressed as follows:
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Fig. 18  Variation of the ampli-
tude response with respect to 
the excitation frequency for 
different values of the external 
force for clamped-free bound-
ary conditions with b/a = 4, 
h/b = 0.3, Ti = 273 [K], To = 300 
[K], STR, ϴ = π/4, WCNT = 0.02, 
VF = 0.2, β = 1, and � = 0.5
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