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Abstract
In this paper, the effects of plane pre-stresses on the free vibration and static analyses of circular and annular sandwich pan-
els are examined based on an accurate formulation, as first time. It is assumed that initially pre-stresses consist of in-plane 
normal (tensile/compressive) and pure bending stresses. New first-order shear deformation theory together with a layerwise 
approach for sandwich panel is utilized. The sandwich panels are made up of either orthotropic or heterogeneous polar ortho-
tropic materials. Furthermore, piecewise-defined linear local in-plane displacements are adopted based on zigzag theory. 
The governing partial differential equations are extracted by implementing principle of minimum total potential energy. A 
unified analytical solution procedure is developed based on power series method for the analysis of heterogeneous initially 
stressed annular and circular sandwich panels with arbitrary boundary conditions. The transverse shear stress is precisely 
calculated by considering three-dimensional theory of elasticity. To validate the proposed formulation, the obtained results 
are compared with those of finite element method. After numerically demonstrating the accuracy of the method, the effects 
of different geometrical and material parameters, boundary conditions and in-plane pre-stresses on the free vibration and 
static behavior of circular and annular sandwich panels are investigated.

Keywords Pre-stress · Sandwich panel · Unified analytical solution · Heterogeneous orthotropic facing · Natural frequency · 
Bending

1 Introduction

Heterogeneous orthotropic materials have been used exten-
sively in various and modern marine, nuclear and military 
industries. Nowadays, in some industries, heterogeneous 
functionally graded (FG) materials are just now becoming a 
primary choice for material. On the other hand, due to manu-
facturing process, initial stresses are presented in the struc-
tures which cannot be neglected. The initial stress may have 
some advantageous or disadvantages for some applications 

of laminated composite and/or sandwich panel. As a result, 
it is important to consider the effect of initial stress on the 
static and vibration behavior of laminated composite and 
sandwich panels.

Most of the presented studies on the initially stressed struc-
tures were carried out using equivalent single layer theories. 
Based on the first-order shear deformation theory (FSDT), 
some researchers investigated the vibration and buckling 
behavior of initially stressed plates with simply supported 
edges [1–11]. Brunelle and Robertso studied free vibra-
tion of thick plates by considering bending and extensional 
stresses [1]. The random vibration of an initially stressed 
simply supported plate on elastic foundation was studied by 
Chonan [2]. He obtained lowest buckling load for uniformly 
stressed rectangular plates. Yang [3] considered buckling and 
bending behavior of antisymmetric cross-ply laminates. He 
solved the governing equations analytically for simply sup-
ported boundary conditions. Nayar et al. [4] studied axisym-
metric free vibration analysis of initially stressed annular 
plates by using the finite element method (FEM). Chen and 
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Doong [5] considered effect of non-uniform initial stress in 
large amplitude analysis of transversely isotropic moderately 
thick plate. Chen et al. [6] investigated vibration behavior of 
transversely isotropic circular thick plates in the presence of 
initial stress based on the FSDT. In other work, Chen et al. [7] 
used Runge–Kutta method to analyze nonlinear large vibra-
tion of rectangular cross-ply laminated plates. Yang and Shieh 
[8] investigated vibration of orthotropic circular thick plate 
with initial by considering transverse shear and rotary inertia 
effects. Fung and his co-workers [9]– [12] studied the large 
amplitude vibration of initially stressed rectangular plates. 
They used Galerkin method to transform the partial differential 
equations to ordinary differential equations. Furthermore, they 
implemented the Runge–Kutta method to obtain the ratio of 
nonlinear to linear frequency. Chen [13] studied the buckling 
and vibration of composite plates. The effects of initial stresses 
on the natural frequencies and buckling loads of simply sup-
ported functionally graded plates were performed by Doong 
et al. [14] and Chen et al. [15] based on higher order deforma-
tion theory. Nayak et al. [16] studied the dynamic response 
of composite sandwich plates subjected to initial stresses 
based on a higher order deformation theory and using finite 
element method. Natural frequencies and mode shapes of in-
plane pre-stressed sandwich panels with a viscoelastic core 
were investigated by Malekzadeh et al. [17]. Malekzadeh and 
Farajpour [18] investigated the initial radial stress effects on 
the axisymmetric free and forced vibrations of circular single- 
and double-layered nano-plates based on the nonlocal consti-
tutive equations in conjunction with the classical plate theory 
and using Galerkin’s method. According to the classical plate 
theory, Khalili et al. [19] studied the static indentation response 
of an in-plane pre-stressed composite sandwich plate subjected 
to a rigid blunted indenter. Pichal et al. [20] determined critical 
buckling load and post-buckling path in pre-stressed columns 
using two- and three-dimensional FEM. Rahmani [21] derived 
governing equations of initially pre-stressed beam using Ham-
ilton principle and presented analytical solution for vibration 
of nanobeam. Li [22] considered pre-stressed beams and deter-
mined natural frequency of them using Fast Fourier Trans-
formation (FFT) and Hilbert–Huang Transform (HHT). Wu 
et al. [23] studied the instability behavior of beam–columns 
subjected to pre-stressed loads analytically and verified their 
model with FE solution.

On the other hand, structures made of heterogeneous mate-
rials have been extensively used in many engineering fields. 
So, investigation of these structures and development of the 
mathematical modeling for accurate analysis are essential. The 
effect of material non-homogeneity on the mechanical behav-
iors of a thick-walled sandwich cylindrical structure embed-
ded with a FG interlayer was investigated by Wang and Wei 
[24]. Aragh et al. [25] studied the free vibration and obtained 
vibrational displacements of two-dimensional (2-D) FG 
fiber-reinforced curved panels with six-parameter power-law 

distribution using the 2-D generalized differential quadrature 
method (DQM). Nie et al. [26] analyzed an orthotropic FG 
beam with different material distribution along the thick-
ness direction. Based on the exponential variation of material 
properties, Shariyat and Asemi [27] investigated buckling of 
rectangular orthotropic FGM plates. Thai et al. [28] analyzed 
the bending, buckling and free vibration of sandwich plates 
composed of FG face sheets and isotropic homogeneous core, 
based on a new FSDT. Fazzolari and Carrera [29] examined 
free vibration of anisotropic composite plates and isotropic/
sandwich FGM plates by combining refined hierarchical plate 
models and a trigonometric Ritz method. Using state space 
differential quadrature method, static and free vibration analy-
ses of functionally graded sandwich plates were performed by 
Alibeigloo and Alizadeh [30]. Pandey and Pradyumna [31] 
used a layerwise finite element formulation for free vibration 
analysis of FG sandwich plates in thermal environment. The 
non-linear free vibration and static deformations of FG ortho-
tropic cylindrical shells with exponential variation of material 
properties were analyzed by Sofiyev [32, 33], Nie and Batra 
[34], respectively. Based on the modified strain gradient theory 
and the spline finite strip method, buckling and free vibra-
tions of the FGM thin micro-plate were studied by Mirsalehi 
et al. [35]. Free vibration and damping analyses of viscoelastic 
two-directional functionally graded plates were performed by 
Shariyat and Alipour [36]. Alipour and Shariyat [37] devel-
oped the power series solution for axisymmetric bending and 
stress analysis of circular functionally graded sandwich plates. 
Alipour presented new analytical method for bending and 
stress analysis of elastically restrained sandwich circular [38] 
and annular [39] plates with FG face sheets and core. Alipour 
[40] investigated transient bending analysis of a sandwich plate 
with viscoelastic edge that sandwich plate is fabricated from 
heterogeneous face sheets. Akbarov et al. [41] investigated the 
effect of initial stresses in the natural frequency of sphere. They 
considered that the sphere is made from FGM and filled with 
compressive fluid.

According to the above literature survey, a few works 
dedicated to the effect of initial pre-stresses in static and 
vibration of laminated sandwich panels. In this regard, the 
presented study investigates effect of in-plane pre-stresses 
on the static and free vibration response of sandwich circular 
and annular plates with FG polar orthotropic face sheets. 
The main novelties or superiorities of this study can be men-
tioned as follows:

• Free vibration and static analyses of initially stressed 
circular and annular sandwich panels are examined. It 
is assumed that initially pre-stresses consist of in-plane 
normal (tensile/compressive) and pure bending stresses.

• Using the presented formulation, sandwich panels with 
heterogeneous polar orthotropic materials layers can 
be analyzed. The variations of the material properties 
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of each layer can be described by a general function in 
the radial direction. Using the applied coefficients of the 
radial variations, the presented procedure enables a more 
accurate monitoring of the material properties.

• For analysis of multi-layered structures, equivalent sin-
gle-layer theories are inaccurate or erroneous in most 
circumstances. To overcome these shortcomings, The 
governing differential equations are derived based on 
the layerwise-zigzag theory and using the minimum total 
potential energy principle.

• In contrast to the displacement discontinuity, continuity 
of the transverse shear stress is satisfied.

• The power series method is developed for the analysis of 
heterogeneous plates, and a unified solution procedure 
was proposed for the analysis of annular and circular 
sandwich plates.

2  Governing differential equations 
of initially stressed heterogeneous polar 
orthotropic sandwich panels

In this section, the governing differential equations are 
derived based on the principle of minimum total potential 
energy in conjugation with the layerwise-zigzag theory. As 
shown in Fig. 1, top and bottom face sheets and core thick-
ness are denoted by ht, hb and hc, respectively. The core is 
subjected to initially in-plane normal stress (tensile /com-
pressive)�n and bending �m stress.

where δ is the initial stress ratio that considered ratio of 
bending to normal stress. If the transverse normal strain can 
be neglected, the Hooke’s generalized stress–strain law in 
polar coordinate system, (r, θ, z), may be expressed as

Ckl, Ek, Gkl, and νkl symbols denote the elasticity coeffi-
cients, Young’s modulus, shear modulus, and Poisson’s ratio, 
respectively. The superscript (i) represents the layer, i.e. top 
and bottom face sheets, respectively. P(t)(r) and P(b)(r) are 
the coefficient of radial variation of Young’s modulus and 
shear modulus for top and bottom face sheets, respectively. 
The compatibility relation is as follows:
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Fig. 1   Annular sandwich 
panels subjected to the in-plane 
pre-stresses
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The density of face sheets are varied along the radial 
direction as the following form:

In the above relation, γi, λi, μ(i) and η(i,) i = t,b are the face 
sheets inhomogeneity parameters. Indeed, Er

(i) and �(i) are 
the material properties at the outer radius of face sheets. 
Based on the layerwise-zigzag theory with the linear varia-
tion of the displacement fields, the in-plane displacement of 
each layer may be expressed as

where c denotes the core parameter, u0
(i) is the radial 

displacement component of the mid plane, φr
(i) is the local 

rotation and z(i)
(
−hi∕2 ≤ z(i) ≤ hi∕2

)
 is the transverse local 

coordinate of each layer. By incorporating the continuity of 
the displacement components at the interfaces between the 
layers, u0

(t) and u0
(b) may be expressed as

The Cauchy’s strain–displacement relations for each layer 
are

For the free vibration analysis, the equations of motion 
can be derived using minimum total potential energy prin-
ciple, as follows:

where δU, δK and δW are increments of the strain energy, 
kinetic energy and work done by external applied loads, 
respectively:
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)
dV ,

(11)�W = ∫
A

q�w dA.

Substituting Eqs. (9) to (11) into Eq. (8) and using Eqs. 
(5) to (7), and performing the integration by parts, the fol-
lowing governing differential equations are extracted after 
some manipulations:

where ∇2 =
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defined in appendix.
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Using the above relations, the governing Eqs. (12) to (16) 
may be rewritten in terms of displacement field components 
as
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ü
(c)

0
−

hc

2
�̈�(c)

r
−

hb

2
�̈�(b)

r

�
,



 Archives of Civil and Mechanical Engineering          (2020) 20:111 

1 3

  111  Page 6 of 24

3  Mathematical form of edge conditions 
and regularity conditions

There are different types of boundary conditions which can 
be applied at the outer edges of annular plate. These condi-
tions are

Clamped immovable edge:

Simply supported immovable edge:

Roller-supported movable edge:
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Free edge:

Moreover, at the center of axisymmetric circular plate, 
the regularity conditions should be satisfied

4  Power series procedure for static and free 
vibration analyses

To utilized power series solution, Kantorovich-type sepa-
ration of variables are applied in this study. Using finite 
Taylor series transformation about the outer radius of the 
sandwich plate, the unknown displacement functions may 
be expressed as follows:

It should be noted that the external applied load, q, or 
natural frequency, ω, should be set equal to zero either for 
free vibration or static analysis.
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Inserting for the displacement components from Eq. (28) 
into the governing Eqs. (18) to (22) and considering Taylor’s 

series expansion of 1
r
 and 1

r2
 and performing some manipu-

lations, the transformed form of the governing differential 
equations may be extracted as
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Ī
(b)

0
𝜔2

�
hc

2
F
(3)

n−𝜂(b)
+

hb

2
F
(4)

n−𝜂(b)

��
(r − b)n = 0



 Archives of Civil and Mechanical Engineering          (2020) 20:111 

1 3

  111  Page 8 of 24

(30)

N�
n=0

�
ht

2
A
(t)

11

�
(n + 2)(n + 1)F

(1)

n+2
−

n�
m=0

�
−
1

b

�m+1

(n − m + 1)F
(1)

n+2
Un−m+1

�

+
ht

2
A
(t)

11
� (t)

⎡⎢⎢⎣
(n − �(t) + 2)(n − �(t) + 1)F

(1)

n−�(t)+2
−

n−�(t)�
m=0

�
−
1

b

�m+1

(n − �(t) − m + 1)F
(1)

n−�(t)−m+1

⎤⎥⎥⎦

−
ht

2
A
(t)

22

n�
m=0

(m + 1)
�
−
1

b

�m+2

F(1)
n−m

−
ht

2
A
(t)

22
� (t)

n−�(t)�
m=0

(m + 1)
�
−
1

b

�m+2

F
(1)

n−�(t)−m

+

�
h2
t

4
A
(t)

11
+ D

(t)

11

��
(n + 2)(n + 1)F

(2)

n+2
−

n�
m=0

�
−
1

b

�m+1

(n − m + 1)F
(2)

n−m+1

�

+

�
h2
t

4
A
(t)

11
+ D

(t)

11

�
� (t)

⎡
⎢⎢⎣
(n − �(t) + 2)(n − �(t) + 1)F

(2)

n−�(t)+2
−

n−�(t)�
m=0

�
−
1

b

�m+1

(n − �(t) − m + 1)F
(2)

n−�(t)−m+1

⎤
⎥⎥⎦

−

�
h2
t

4
A
(t)

22
+ D

(t)

22

�
n�

m=0

(m + 1)
�
−
1

b

�m+2

F(2)
n−m

−

�
h2
t

4
A
(t)

22
+ D

(t)

22

�
� (t)

n−�(t)�
m=0

(m + 1)
�
−
1

b

�m+2

F
(2)

n−�(t)−m

+
hthc

4
A
(t)

11

�
(n + 2)(n + 1)F

(3)

n+2
−

n�
m=0

�
−
1

b

�m+1

(n − m + 1)F
(3)

n−m+1

�

+
hthc

4
� (t)A

(t)

11

⎡⎢⎢⎣
(n − �(t) + 2)(n − �(t) + 1)F

(3)

n−�(t)+2
−

n−�(t)�
m=0

�
−
1

b

�m+1

(n − �(t) − m + 1)F
(3)

n−�(t)−m+1

⎤⎥⎥⎦

−
hthc

4
A
(t)

22

n�
m=0

(m + 1)
�
−
1

b

�m+2

F(3)
n−m

−
h1h2

4
� (t)A

(t)

22

n−�(t)�
m=0

(m + 1)
�
−
1

b

�m+2

F
(3)

n−�(t)−m

−A
(t)

33

�
F(2)
n

+ (n + 1)F
(5)

n+1

�
− A

(t)

33
� (t)

�
F
(2)

n−�(t)
+ (n − �(t) + 1)F

(5)

n−�(t)+1

�

+� (t)�(t)D
(t)

11
(n − �(t) + 2)F

(2)

n−�(t)+2
− � (t)�(t)D

(t)

12

n−�(t)+1�
m=0

�
−
1

b

�m+1

F
(2)

n−m−�(t)+1

+
ht

2
� (t)�(t)A

(1)

11
(n − �(t) + 2)

�
F
(1)

n−�(t)+2
+

ht

2
F
(2)

n−�(t)+2
+

hc

2
F
(3)

n−�(t)+2

�

−
ht

2
� (t)�(t)A

(t)

12

n−�(t)+1�
m=0

�
−
1

b

�m+1
�
F
(1)

n−m−�(t)+1
+

ht

2
F
(2)

n−m−�(t)+1
+

hc

2
F
(3)

n−m−�(t)+1

�

+
ht

2
I
(t)

0
�2

�
F(1)
n

+
ht

2
F(2)
n

+
hc

2
F(3)
n

�
+

h1

2
I
(t)

0
�(t)�2

�
F
(1)

n−�(t)
+

ht

2
F
(2)

n−�(t)
+

hc

2
F
(3)

n−�(t)

�

+I
(t)

2
�2F(2)

n
+ I

(t)

2
�(t)�2F

(2)

n−�(t)

�
(r − b)n = 0.



Archives of Civil and Mechanical Engineering          (2020) 20:111  

1 3

Page 9 of 24   111 

(31)

N�
n=0

�
hc

2

�
Ā
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(32)
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−
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−
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⎢⎢⎣
(n − �(b) + 2)(n − �(b) + 1)F

(3)

n−�(b)+2
−

n−�(b)�
m=0

�
−
1

b

�m+1

(n − �(b) − m + 1)F
(3)

n−�(b)−m+1

⎤
⎥⎥⎦

−
hchb

4
A
(b)

22

n�
m=0

(m + 1)
�
−
1

b

�m+2

F(3)
n−m

−
hchb

4
A
(b)

22
� (b)

n−�(b)�
m=0

(m + 1)
�
−
1

b

�m+2

F
(3)

n−�(b)−m

+

�
D

(b)

11
+

h2
b

4
A
(b)

11

��
(n + 2)(n + 1)F

(4)

n+2
−

n�
m=0

�
−
1

b

�m+1

(n − m + 1)F
(4)

n−m+1

�

+

�
D

(b)

11
+

h2
b

4
A
(b)

11

�
� (b)

⎡⎢⎢⎣
(n − �(b) + 2)(n − �(b) + 1)F

(4)

n−�(b)+2
−

n−�(b)�
m=0

�
−
1

b

�m+1

(n − �(b) − m + 1)F
(4)

n−�(b)−m+1

⎤⎥⎥⎦

−

�
D

(b)

22
+

h2
b

4
A
(b)

22

�
n�

m=0

(m + 1)
�
−
1

b

�m+2

F(4)
n−m

−

�
D

(b)

22
+

h2
b

4
A
(b)

22

�
� (b)

n−�(b)�
m=0

(m + 1)
�
−
1

b

�m+2

F
(4)

n−�(b)−m

−A
(b)

33

�
F(4)
n

+ (n + 1)F
(5)

n+1

�
− A

(b)

33
� (b)

�
F
(4)

n−�(b)
+ (n − �(b) + 1)F

(5)

n−�(b)+1

�
+ � (b)�(b)D

(b)

11
(n − �(b) + 2)F

(4)

n−�(b)+2

−� (b)�(b)D
(b)

12

n−�(b)+1�
m=0

�
−
1

b

�m+1

F
(4)

n−m−�(b)+1
−

hb

2
� (b)�(b)A

(b)

11
(n − �(b) + 2)

�
F
(1)

n−�(b)+2
−

hb

2
F
(4)

n−�(b)+2
−

hc

2
F
(3)

n−�(b)+2

�
+

hb

2
� (b)�(b)A

(b)

12

n−�(b)+1�
m=0

�
−
1

b

�m+1
�
F
(1)

n−m−�(b)+1
−

hb

2
F
(4)

n−m−�(b)+1
−

hc

2
F
(3)

n−m−�(b)+1

�
+ I

(b)

2
�2F(4)

n
+ I

(b)

2
�(b)�2F

(4)

n−�(b)

−
hb

2
I
(b)

0
�2

�
F(1)
n

−
hb

2
F(4)
n

−
hc

2
F(3)
n

�
−

hb

2
I
(b)

0
�(b)�2

�
F
(1)

n−�(b)
−

hb

2
F
(4)

n−�(b)
−

hc

2
F
(3)

n−�(b)

��
(r − b)n = 0



Archives of Civil and Mechanical Engineering          (2020) 20:111  

1 3

Page 11 of 24   111 

By solving Eqs. (29)-(33) for n = 0,1,2,…N, the 
unknown displacement parameters F(1)

n+2
, F

(2)

n+2
, F

(3)

n+2
, F

(4)

n+2
 

and F(5)

n+2
 will be obtained in terms of first ten parameters 

(33)
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F
(1)

0
, F

(1)

1
,F

(2)

0
, F

(2)

1
,F

(3)

0
, F

(3)

1
, F(4)

0
, F

(4)

1
, F

(5)

0
 and F(5)

1
 . 

Besides, the transformed form of the edge conditions at the 
outer edge (r = ro) will be as
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It is noted that various boundary conditions can be 
applied using Eqs. (34). Of the unknown parameters, five of 
them will be determined by employing the boundary condi-
tion at the outer edge.

• Outer clamped edge: F(1)

0
= F

(2)

0
= F

(3)

0
= F

(4)

0
= F

(5)

0
= 0

.
• Outer simply supported edge: F(5)

0
= 0 and F(1)

0
, F

(2)

0
, F

(3)

0
 

and F(4)

0
 are obtained in terms of F(1)

1
, F

(2)

1
, F

(3)

1
 and F(4)

1
.

(34)
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=
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Ā
(b)

12

b

(
F
(1)

0
−

hc

2
F
(3)

0
−

hb

2
F
(4)

0

)
+ A

(c)

11
F
(1)

1
− Ā
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Ā
(t)

11

(
F
(1)

1
+

ht

2
F
(2)

1
+

hc

2
F
(3)

1

)
−

ht

2

Ā
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• Outer free edge: m and F(5)

1
 are obtained in terms of 

F
(1)

1
, F

(2)

1
, F

(3)

1
, F

(4)

1
 and F(5)

0
.

The other unknown displacement parameters 
F(1)
n
, F(2)

n
, F(3)

n
, F(4)

n
 and F(5)

n
 (n = 0, 1, 2, …N + 2) are deter-

mined in terms of five unknown parameters depending on 
the type of boundary condition.

The transformed form of the boundary conditions at 
the inner edge (r = ri) of annular sandwich panel and the 



Archives of Civil and Mechanical Engineering          (2020) 20:111  

1 3

Page 13 of 24   111 

regularity conditions at the center of the axisymmetric cir-
cular plate can be expressed as

Also, at the center of the axisymmetric circular plate, the 
regularity conditions can be expressed as

S u b s t i t u t i o n  o f  d i s p l a c e m e n t  p a r a m et e r s 
F(1)
n
, F(2)

n
, F(3)

n
, F(4)

n
 and F(5)

n
 (n = 0,1,2,…N + 2) into the cor-

responding transformed form of the inner boundary condi-
tions for annular panels or the regularity center conditions 
for axisymmetric circular ones leads to the following system 
of equations:

• Free vibration analysis:

By setting Y1 = Y2 = Y3 = Y4 = Y5 = 0 , free vibration 
analysis of annular or circular sandwich panels can be per-
formed. Existence of non-trivial solutions requires that

(35)
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∙ w =
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(n + 1)F
(5)
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• Static analysis:

The static analysis can be examined by setting ω = 0 and 
by solving Eq. (37),F(1)

1
, F

(2)

1
, F

(3)

1
, F

(4)

1
 and F(5)

0
or F

(5)

1
 will 

be achieved.

5  Extracting the transverse shear stress 
based on theory of elasticity

To determine the transverse shear stress, the equilibrium 
equation based on theory of elasticity is considered:

By using Eqs. (2)–(7), the stress-displacement may be 
expressed as:

By substituting Eq. (40) into Eq. (39), the transverse 
shear stress can be expressed as:

(38)

|||||||||||

X11(�) X12(�) X13(�) X14(�) X15(�)

X21(�) X22(�) X23(�) X24(�) X25(�)

X31(�) X32(�) X33(�) X34(�) X35(�)

X41(�) X42(�) X43(�) X44(�) X45(�)

X51(�) X52(�) X53(�) X54(�) X55(�)

|||||||||||

= 0

(39)

��(i)
r

�r
+

�(i)
r
− �

(i)

�

r
+

��(i)
rz

�z(i)
= 0

� (i)
rz

= −�
(
��(i)

r

�r
+

�(i)
r
− �

(i)

�

r

)
dz

(i)
,

−
hi

2
≤ z

(t) ≤ hi

2
i = t, c, b

(40)

⎧
⎪⎪⎨⎪⎪⎩

�(t)

r
=

�
C
(t)

11
(r)

�

�r
+ C

(t)

12
(r)

1

r

��
u
(c)

0
+

hc

2
�(c)

r
+

ht

2
�(t)

r
+ z

(t)�(t)

r

�

�
(t)

�
=

�
C
(t)

12
(r)

�

�r
+ C

(t)

22
(r)

1

r

��
u
(c)

0
+

hc

2
�(c)

r
+

ht

2
�(t)

r
+ z

(t)�(t)

r

�

⎧⎪⎨⎪⎩

�(c)

r
=

�
C
(c)

11

�

�r
+ C

(c)

12

1

r

��
u
(c)

0
+ z

(c)�(c)

r

�

�
(c)

�
=

�
C
(c)

12

�

�r
+ C

(c)

22

1

r

��
u
(c)

0
+ z

(c)�(c)

r

�

⎧⎪⎪⎨⎪⎪⎩

�(b)

r
=

�
C
(b)

11
(r)

�

�r
+ C

(b)

12
(r)

1

r

��
u
(c)

0
−

hc

2
�(c)

r
−

hb

2
�(b)

r
+ z

(b)�(b)

r

�

�
(b)

�
=

�
C
(b)

12
(r)

�

�r
+ C

(b)

22
(r)

1

r

��
u
(c)

0
−

hc

2
�(c)

r
−

hb

2
�(b)

r
+ z

(b)�(b)

r

�



 Archives of Civil and Mechanical Engineering          (2020) 20:111 

1 3

  111  Page 14 of 24

6  Results and discussion

In this section, numerical results for free vibration, bending 
and stress analyses of sandwich circular/annular plates with 
heterogeneous polar orthotropic face sheets are presented 
and the effects of initial in-plane stresses are examined. In 
this regard, numerical examples of sandwich panels with 
asymmetric lamination schemes and various combinations 
of boundary conditions, core and facings thickness, inner 
and outer radius and several material variation patterns for 
top and bottom face-sheets are introduced.

Since results of the heterogeneous polar orthotropic-faced 
sandwich panels have not been reported yet, to demonstrate 
the efficiency and accuracy of the proposed approach, the 
obtained results are compared with finite element (FE) ones 
extracted from the ABAQUS software based on the 3D 
theory of elasticity. By discretization of the sandwich panel 
into 4800 eight-node biquadratic axisymmetric quadrilat-
eral elements with reduced integration (CAX8R). Results are 
reported for the sandwich panels with face-sheets thickness 
ht = hb = 0.1 and the following material properties of core: 
E(c) = 20 GPa, ρ(c) = 950 kg/m3, ν(c) = 0.25.

(41)
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As a verification example and examination of the results 
accuracy, results of proposed method for the fundamental 
natural frequency of circular and annular sandwich panels 
are compared with FE results in Tables 1 and 2. The material 
parameters of sandwich panel are defined as ρb = ρt = 1631, 
νt = 0.26, νb = 0.23, Er

(t) = Et
(t) = Er

(b) = Et
(b) = 310 GPa, 

Grz
(t) = 123 GPa, Grz

(b) = 126 GPa.
The material variation pattern parameters in the radial 

and circumferential directions are as follows:α(t) = γ(t) =  − 1, 
α(b) = γ(b) = 0.5, β(t) = η(t) = 2, β(b) = η(b) = 1.

The fundamental natural frequencies of the circular sand-
wich panels with different boundary conditions, core thick-
ness (hc = 0.1, 0.15 and 0.2) and outer radius (b = 0.7 and 
0.8) are presented in Table 1. Also fundamental natural fre-
quencies of the annular sandwich panels with core thickness 
hc = 0.2, inner radius a = 0.2 and 0.3, outer radius b = 1 and 
various combination of the boundary conditions are pre-
sented in Table 2. These tables reveal that even for sandwich 
plates with radial non-homogeneous material and soft core, 
there is an excellent agreement between the obtained results 
based on the layerwise-zigzag theory and results of the 
three-dimensional theory of elasticity extracted from FE 
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analysis. Based on Table 1 for sandwich circular plate, the 
global average errors for the prediction of the natural fre-
quency when Ec = 100, 60 and 20 GPa are 0.45%, 0.5% and 
1 . 0 4 % ,  r e s p e c t i v e l y  ( r e l a t i v e  e r r o r 
(%) = (100∕N)

∑N

i=1

���
�
�3D − �layerwise

�
∕�3D

��� ). Also based on 
Table 2 for sandwich annular plate, the global average errors 
for Ec = 100, 60 and 20 GPa are 0.59%, 0.70% and 0.93%, 
respectively. It can be seen that the natural frequency of 
sandwich plate increases by increasing the core thickness 
but it is interesting to note that for clamped sandwich plate 
with soft core (E = 20 GPa), the frequency decreases by 
increasing the core thickness. Indeed for clamped plate with 
soft core, increasing the thickness of core decreases the 
rigidity of boundary conditions and the frequency becomes 
lower. Furthermore, either increasing the outer radius of cir-
cular sandwich panel or inner radius (increasing the Ri/Ro 
ratio), leads to the smaller frequencies.

After validating the current formulation and the solution 
method, some numerical results are prepared.

In Table 3, the influence of outer radius and material 
parameters on the fundamental frequency of sandwich annu-
lar plate with initially stressed core are studied. Also, effect 
of inner radius on the fundamental frequency of sandwich 
annular plate are investigated in Table 4. The results are 
prepared for heterogeneous orthotropic face sheets and also 
for four different material parameters. In these two tables, 
δ indicates the presence of initially bending pre-stresses in 
the core. The parameter χ is defined as � =

(
R2
o
�n

)
∕D

(c)

11
 . For 

δ = 0, i.e. when only in-plane normal pre-stress is applied to 
core, five value for K is considered: − 100, − 50, 10, 50 and 
100. The negative value of δ shows compressive pre-stresses. 
According to these tables, one can observe that fundamental 
frequency increase by increasing the in-plane normal stress. 
As seen from results of Tables 3 and 4, the bending pre-
stress cause a few decrease in frequencies (δ ≠ 0) and the in-
plane pre-stress have more significant effect. For sandwich 
circular plate, the inhomogeneity material parameters can 
play important role in controlling natural frequencies. It is 
clear that the parameters α and γ are more pronounced com-
pared to β and η. In fact, the frequency parameter enhances 
as the parameters α and γ decreased. In the case of sandwich 
annular plate (Table 4), it cannot found similar trend for 
material parameters like circular one, and combination of 

these parameters with initial pre-stress parameters can con-
trol the frequency of annular plate.

In Figs. 2 and 3, variation of the transverse displace-
ment, w, with respect to the radial direction, and transverse 
shear and radial stress, τrz and σr along thickness direction 
(at r = 0.4) are exhibited for static analysis of circular and 
annular sandwich panel having fully clamped boundary 
condition, respectively. As expected, continuity condition 
of transverse deflection and transverse shear stress is satis-
fied. It is observed that the absolute maximum values of 
transverse deflection and transverse shear stress decrease 
as the pre-stress parameter, χ, decreases. These figures also 
illustrate that bending initial stress significantly increased 
the transverse deflection in contrast of τrz. According to zig-
zag theory, the radial stress has jumps in layer interfaces and 
the absolute value of it decreases in the core by increasing χ.

Figure 4 provides the transverse shear and radial stress 
distribution along thickness direction for annular sandwich 
panel at two radii, i.e. r = 0.6, 0.8. It can be concluded from 
Fig. 4 that the influence of initial pre-stress in outer radius 
(larger r) has less effect on the absolute values of stresses 
and distribution patterns.

7  Conclusion

Static and free vibration analyses of the circular and annu-
lar sandwich panels subjected to the in-plane pre-stresses 
were performed in this paper, as first time. In the presented 
analyses, the sandwich panels are fabricated from hetero-
geneous polar orthotropic face sheets and core is subjected 
to initially in-plane normal (tensile/compressive) and pure 
bending stresses. Moreover, both symmetric and asymmetric 
lamination schemes are examined.

Using the layerwise-zigzag theory with linear local 
displacements, the governing differential equations are 
extracted based on principle of minimum total potential 
energy. An analytical solution method is developed and a 
unified solution procedure is proposed for analysis of het-
erogeneous initially stressed annular and circular sandwich 
panels. The effects of in-plane stresses were investigated for 
sandwich plates with various thickness, material variations, 
and boundary conditions.



 Archives of Civil and Mechanical Engineering          (2020) 20:111 

1 3

  111  Page 18 of 24

Ta
bl

e 
3 

 in
flu

en
ce

 o
f o

ut
er

 ra
di

us
 a

nd
 m

at
er

ia
l p

ar
am

et
er

s 
on

 th
e 

fu
nd

am
en

ta
l n

at
ur

al
 fr

eq
ue

nc
y 

of
 s

an
dw

ic
h 

ci
rc

ul
ar

 p
la

te
 w

ith
 fu

nc
tio

na
lly

 g
ra

de
d 

or
th

ot
ro

pi
c 

fa
ce

 s
he

et
s 

an
d 

in
iti

al
ly

 st
re

ss
ed

 
co

re
 (t

b =
 t t 

=
 0.

1,
t c 

=
 0.

2,
 ρ

b =
 ρ t

 =
 16

31
, ν

t =
 0.

26
, ν

b =
 0.

00
52

, E
r(t)

 =
 31

0 
G

Pa
, E

t(t)
 =

 6.
2 

G
Pa

, E
r(b

)  =
 6.

2 
G

Pa
, E

t(b
)  =

 31
0 

G
Pa

, G
rz

(t)
 =

 4.
1 

G
Pa

, G
rz

(b
)  =

 1.
35

 G
Pa

) 

χ =
 10

0
χ =

 50
χ =

 10
χ =

 0
χ =

 −
 5

0
χ =

 −
 1

00

δ =
 0

δ =
 0

δ =
 20

δ =
 0

δ =
 20

α(t)
 =

 γ(t)
 =

 1,
 β

(t)
 =

 η(t)
 =

 1,
 β

(b
)  =

 η(b
)  =

 1
α(b

)  =
 γ(b

)  =
 1,

 
h c

 =
 0.

1
R o

 =
 0.

7
12

26
.5

12
01

.3
11

80
.8

11
75

.6
11

49
.1

11
43

.1
11

21
.9

11
09

.2
R o

 =
 0.

8
10

41
.2

10
22

.3
10

06
.9

10
03

.1
98

3.
29

97
9.

38
96

3.
05

95
4.

87
h c

 =
 0.

15
R o

 =
 0.

7
15

66
.3

14
80

.7
14

07
.9

13
89

.1
12

89
.8

12
58

.8
11

80
.5

10
95

.2
R o

 =
 0.

8
13

13
.7

12
49

.6
11

95
.3

11
81

.3
11

07
.9

10
87

.9
10

28
.1

97
8.

26
α(t)

 =
 γ(t)

 =
 −

 1
, α

(b
)  =

 γ(b
)  =

 −
 1

, β
(t)

 =
 η(t)

 =
 2,

 β
(b

)  =
 η(b

)  =
 2

h c
 =

 0.
1

R o
 =

 0.
7

11
58

.4
11

37
.7

11
20

.8
11

16
.5

10
94

.9
10

89
.7

10
72

.8
10

61
.8

R o
 =

 0.
8

98
5.

36
97

0.
21

95
7.

89
95

4.
80

93
9.

08
93

5.
70

92
3.

04
91

5.
97

h c
 =

 0.
15

R o
 =

 0.
7

14
74

.0
14

00
.6

13
38

.6
13

22
.6

12
39

.2
12

12
.7

11
49

.1
10

76
.5

R o
 =

 0.
8

12
39

.6
11

85
.6

11
40

.5
11

28
.9

10
68

.7
10

51
.5

10
04

.5
96

2.
00

α(t)
 =

 γ(t)
 =

 −
 0

.5
, α

(b
)  =

 γ(b
)  =

 0.
5,

 β
(t)

 =
 η(t)

 =
 2,

 β
(b

)  =
 η(b

)  =
 3

h c
 =

 0.
1

R o
 =

 0.
7

11
16

.9
10

97
.5

10
81

.7
10

77
.7

10
57

.6
10

52
.8

10
37

.0
10

26
.8

R o
 =

 0.
8

93
9.

87
92

6.
03

91
4.

82
91

2.
02

89
7.

73
89

4.
61

88
3.

18
87

6.
69

h c
 =

 0.
15

R o
 =

 0.
7

14
23

.5
13

54
.1

12
95

.7
12

80
.6

12
02

.3
11

77
.5

11
18

.1
10

49
.7

R o
 =

 0.
8

11
85

.6
11

35
.7

10
94

.0
10

83
.4

10
28

.1
10

12
.3

96
9.

38
93

0.
04

Ta
bl

e 
4 

 in
flu

en
ce

 o
f i

nn
er

 ra
di

us
 o

n 
th

e 
fu

nd
am

en
ta

l n
at

ur
al

 fr
eq

ue
nc

y 
of

 s
an

dw
ic

h 
an

nu
la

r p
la

te
 w

ith
 fu

nc
tio

na
lly

 g
ra

de
d 

or
th

ot
ro

pi
c 

fa
ce

 s
he

et
s 

an
d 

in
iti

al
ly

 s
tre

ss
ed

 c
or

e 
t b 

=
 t t 

=
 0.

1,
t c 

=
 0.

2,
 

ρ b
 =

 ρ t
 =

 16
31

, ν
t =

 0.
26

, ν
b =

 0.
00

52
, E

r(t)
 =

 31
0 

G
Pa

, E
t(t)

 =
 6.

2 
G

Pa
, E

r(b
)  =

 6.
2 

G
Pa

, E
t(b

)  =
 31

0 
G

Pa
, G

rz
(t)

 =
 4.

1 
G

Pa
, G

rz
(b

)  =
 1.

35
 G

Pa

χ =
 10

0
χ =

 50
χ =

 10
χ =

 0
χ =

 −
 5

0
χ =

 −
 1

00

δ =
 0

δ =
 0

δ =
 20

δ =
 0

δ =
 20

α(t)
 =

 γ(t)
 =

 1,
 α

(b
)  =

 γ(b
)  =

 1,
 β

(t)
 =

 η(t)
 =

 1,
 β

(b
)  =

 η(b
)  =

 1
h c

 =
 0.

1
R i

 =
 0.

2
10

38
.6

10
32

.8
10

28
.1

10
27

.0
10

21
.1

10
19

.1
10

15
.2

10
11

.1
R i

 =
 0.

3
12

07
.8

12
01

.6
11

96
.5

11
95

.3
11

88
.9

11
86

.5
11

82
.5

11
77

.6
h c

 =
 0.

15
R i

 =
 0.

2
11

93
.7

11
72

.0
11

54
.2

11
49

.7
11

27
.0

11
18

.5
11

03
.8

10
84

.5
R i

 =
 0.

3
13

84
.3

13
60

.6
13

41
.2

13
36

.3
13

11
.6

13
01

.8
12

86
.4

12
64

.1
α(t)

 =
 γ(t)

 =
 −

 1
, α

(b
)  =

 γ(b
)  =

 −
 1

, β
(t)

 =
 η(t)

 =
 2,

 β
(b

)  =
 η(b

)  =
 2

h c
 =

 0.
1

R i
 =

 0.
2

13
51

.4
12

98
.3

12
54

.0
12

42
.7

11
84

.3
11

59
.5

11
22

.6
89

9.
26

R i
 =

 0.
3

15
61

.4
15

02
.8

14
54

.0
14

41
.6

13
77

.5
13

49
.9

13
10

.0
12

22
.0

h c
 =

 0.
15

R i
 =

 0.
2

99
4.

53
98

9.
75

98
5.

93
98

4.
98

98
0.

14
97

8.
77

97
5.

30
97

2.
47

R i
 =

 0.
3

11
60

.2
11

54
.9

11
50

.7
11

49
.6

11
44

.3
11

42
.7

11
39

.0
11

35
.6

α(t)
 =

 γ(t)
 =

 −
 0

.5
, α

(b
)  =

 γ(b
)  =

 0.
5,

 β
(t)

 =
 η(t)

 =
 2,

 β
(b

)  =
 η(b

)  =
 3

h c
 =

 0.
1

R i
 =

 0.
2

11
36

.4
11

17
.8

11
02

.7
10

98
.8

10
79

.5
10

73
.5

10
59

.9
10

46
.4

R i
 =

 0.
3

13
21

.2
13

00
.6

12
83

.9
12

79
.6

12
58

.3
12

51
.2

12
36

.5
12

20
.7

h c
 =

 0.
15

R i
 =

 0.
2

12
82

.5
12

35
.6

11
96

.8
11

86
.9

11
35

.9
11

18
.4

10
82

.4
10

31
.9

R i
 =

 0.
3

14
85

.8
14

33
.5

13
90

.3
13

79
.2

13
22

.5
13

02
.7

12
63

.2
12

03
.2



Archives of Civil and Mechanical Engineering          (2020) 20:111  

1 3

Page 19 of 24   111 

Fig. 2  Variation of the displacement and stresses of the circular 
sandwich panel with clamped edge for different values of initial pre-
stresses. a Transverse displacement distribution along radial direc-

tion, b, c transverse shear and radial stress distribution along thick-
ness direction (α(t) = γ(t) = 1, α(b) = γ(b) = 1, β(t) = η(t) = 1, β(b) = η(b) = 1)
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Fig. 3  Variation of the displacement and stresses of the annular 
sandwich panel with clamped edges for different values of the mate-
rial property gradient index. a Transverse displacement distribution 

along radial direction, b, c transverse shear and radial stress distri-
bution along thickness direction (α(t) = γ(t) = −  0.5, α(b) = γ(b) = 2, 
β(t) = η(t) = 0.5, β(b) = η(b) = 3)
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