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Abstract

In this paper, the effects of plane pre-stresses on the free vibration and static analyses of circular and annular sandwich pan-
els are examined based on an accurate formulation, as first time. It is assumed that initially pre-stresses consist of in-plane
normal (tensile/compressive) and pure bending stresses. New first-order shear deformation theory together with a layerwise
approach for sandwich panel is utilized. The sandwich panels are made up of either orthotropic or heterogeneous polar ortho-
tropic materials. Furthermore, piecewise-defined linear local in-plane displacements are adopted based on zigzag theory.
The governing partial differential equations are extracted by implementing principle of minimum total potential energy. A
unified analytical solution procedure is developed based on power series method for the analysis of heterogeneous initially
stressed annular and circular sandwich panels with arbitrary boundary conditions. The transverse shear stress is precisely
calculated by considering three-dimensional theory of elasticity. To validate the proposed formulation, the obtained results
are compared with those of finite element method. After numerically demonstrating the accuracy of the method, the effects
of different geometrical and material parameters, boundary conditions and in-plane pre-stresses on the free vibration and
static behavior of circular and annular sandwich panels are investigated.

Keywords Pre-stress - Sandwich panel - Unified analytical solution - Heterogeneous orthotropic facing - Natural frequency -
Bending

1 Introduction of laminated composite and/or sandwich panel. As a result,

it is important to consider the effect of initial stress on the

Heterogeneous orthotropic materials have been used exten-
sively in various and modern marine, nuclear and military
industries. Nowadays, in some industries, heterogeneous
functionally graded (FG) materials are just now becoming a
primary choice for material. On the other hand, due to manu-
facturing process, initial stresses are presented in the struc-
tures which cannot be neglected. The initial stress may have
some advantageous or disadvantages for some applications
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static and vibration behavior of laminated composite and
sandwich panels.

Most of the presented studies on the initially stressed struc-
tures were carried out using equivalent single layer theories.
Based on the first-order shear deformation theory (FSDT),
some researchers investigated the vibration and buckling
behavior of initially stressed plates with simply supported
edges [1-11]. Brunelle and Robertso studied free vibra-
tion of thick plates by considering bending and extensional
stresses [1]. The random vibration of an initially stressed
simply supported plate on elastic foundation was studied by
Chonan [2]. He obtained lowest buckling load for uniformly
stressed rectangular plates. Yang [3] considered buckling and
bending behavior of antisymmetric cross-ply laminates. He
solved the governing equations analytically for simply sup-
ported boundary conditions. Nayar et al. [4] studied axisym-
metric free vibration analysis of initially stressed annular
plates by using the finite element method (FEM). Chen and
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Doong [5] considered effect of non-uniform initial stress in
large amplitude analysis of transversely isotropic moderately
thick plate. Chen et al. [6] investigated vibration behavior of
transversely isotropic circular thick plates in the presence of
initial stress based on the FSDT. In other work, Chen et al. [7]
used Runge—Kutta method to analyze nonlinear large vibra-
tion of rectangular cross-ply laminated plates. Yang and Shieh
[8] investigated vibration of orthotropic circular thick plate
with initial by considering transverse shear and rotary inertia
effects. Fung and his co-workers [9]- [12] studied the large
amplitude vibration of initially stressed rectangular plates.
They used Galerkin method to transform the partial differential
equations to ordinary differential equations. Furthermore, they
implemented the Runge—Kutta method to obtain the ratio of
nonlinear to linear frequency. Chen [13] studied the buckling
and vibration of composite plates. The effects of initial stresses
on the natural frequencies and buckling loads of simply sup-
ported functionally graded plates were performed by Doong
et al. [14] and Chen et al. [15] based on higher order deforma-
tion theory. Nayak et al. [16] studied the dynamic response
of composite sandwich plates subjected to initial stresses
based on a higher order deformation theory and using finite
element method. Natural frequencies and mode shapes of in-
plane pre-stressed sandwich panels with a viscoelastic core
were investigated by Malekzadeh et al. [17]. Malekzadeh and
Farajpour [18] investigated the initial radial stress effects on
the axisymmetric free and forced vibrations of circular single-
and double-layered nano-plates based on the nonlocal consti-
tutive equations in conjunction with the classical plate theory
and using Galerkin’s method. According to the classical plate
theory, Khalili et al. [19] studied the static indentation response
of an in-plane pre-stressed composite sandwich plate subjected
to arigid blunted indenter. Pichal et al. [20] determined critical
buckling load and post-buckling path in pre-stressed columns
using two- and three-dimensional FEM. Rahmani [21] derived
governing equations of initially pre-stressed beam using Ham-
ilton principle and presented analytical solution for vibration
of nanobeam. Li [22] considered pre-stressed beams and deter-
mined natural frequency of them using Fast Fourier Trans-
formation (FFT) and Hilbert-Huang Transform (HHT). Wu
et al. [23] studied the instability behavior of beam—columns
subjected to pre-stressed loads analytically and verified their
model with FE solution.

On the other hand, structures made of heterogeneous mate-
rials have been extensively used in many engineering fields.
So, investigation of these structures and development of the
mathematical modeling for accurate analysis are essential. The
effect of material non-homogeneity on the mechanical behav-
iors of a thick-walled sandwich cylindrical structure embed-
ded with a FG interlayer was investigated by Wang and Wei
[24]. Aragh et al. [25] studied the free vibration and obtained
vibrational displacements of two-dimensional (2-D) FG
fiber-reinforced curved panels with six-parameter power-law
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distribution using the 2-D generalized differential quadrature
method (DQM). Nie et al. [26] analyzed an orthotropic FG
beam with different material distribution along the thick-
ness direction. Based on the exponential variation of material
properties, Shariyat and Asemi [27] investigated buckling of
rectangular orthotropic FGM plates. Thai et al. [28] analyzed
the bending, buckling and free vibration of sandwich plates
composed of FG face sheets and isotropic homogeneous core,
based on a new FSDT. Fazzolari and Carrera [29] examined
free vibration of anisotropic composite plates and isotropic/
sandwich FGM plates by combining refined hierarchical plate
models and a trigonometric Ritz method. Using state space
differential quadrature method, static and free vibration analy-
ses of functionally graded sandwich plates were performed by
Alibeigloo and Alizadeh [30]. Pandey and Pradyumna [31]
used a layerwise finite element formulation for free vibration
analysis of FG sandwich plates in thermal environment. The
non-linear free vibration and static deformations of FG ortho-
tropic cylindrical shells with exponential variation of material
properties were analyzed by Sofiyev [32, 33], Nie and Batra
[34], respectively. Based on the modified strain gradient theory
and the spline finite strip method, buckling and free vibra-
tions of the FGM thin micro-plate were studied by Mirsalehi
et al. [35]. Free vibration and damping analyses of viscoelastic
two-directional functionally graded plates were performed by
Shariyat and Alipour [36]. Alipour and Shariyat [37] devel-
oped the power series solution for axisymmetric bending and
stress analysis of circular functionally graded sandwich plates.
Alipour presented new analytical method for bending and
stress analysis of elastically restrained sandwich circular [38]
and annular [39] plates with FG face sheets and core. Alipour
[40] investigated transient bending analysis of a sandwich plate
with viscoelastic edge that sandwich plate is fabricated from
heterogeneous face sheets. Akbarov et al. [41] investigated the
effect of initial stresses in the natural frequency of sphere. They
considered that the sphere is made from FGM and filled with
compressive fluid.

According to the above literature survey, a few works
dedicated to the effect of initial pre-stresses in static and
vibration of laminated sandwich panels. In this regard, the
presented study investigates effect of in-plane pre-stresses
on the static and free vibration response of sandwich circular
and annular plates with FG polar orthotropic face sheets.
The main novelties or superiorities of this study can be men-
tioned as follows:

e Free vibration and static analyses of initially stressed
circular and annular sandwich panels are examined. It
is assumed that initially pre-stresses consist of in-plane
normal (tensile/compressive) and pure bending stresses.

e Using the presented formulation, sandwich panels with
heterogeneous polar orthotropic materials layers can
be analyzed. The variations of the material properties
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of each layer can be described by a general function in
the radial direction. Using the applied coefficients of the
radial variations, the presented procedure enables a more
accurate monitoring of the material properties.

e For analysis of multi-layered structures, equivalent sin-
gle-layer theories are inaccurate or erroneous in most
circumstances. To overcome these shortcomings, The
governing differential equations are derived based on
the layerwise-zigzag theory and using the minimum total
potential energy principle.

e In contrast to the displacement discontinuity, continuity
of the transverse shear stress is satisfied.

e The power series method is developed for the analysis of
heterogeneous plates, and a unified solution procedure
was proposed for the analysis of annular and circular
sandwich plates.

2 Governing differential equations
of initially stressed heterogeneous polar
orthotropic sandwich panels

In this section, the governing differential equations are
derived based on the principle of minimum total potential
energy in conjugation with the layerwise-zigzag theory. As
shown in Fig. 1, top and bottom face sheets and core thick-
ness are denoted by h,, h;, and h,, respectively. The core is
subjected to initially in-plane normal stress (tensile /com-
pressive)o, and bending o,, stress.

Fig.1 Annular sandwich
panels subjected to the in-plane
pre-stresses
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where § is the initial stress ratio that considered ratio of
bending to normal stress. If the transverse normal strain can
be neglected, the Hooke’s generalized stress—strain law in
polar coordinate system, (r, 0, z), may be expressed as
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Cu» E;, Gy, and vy, symbols denote the elasticity coeffi-
cients, Young’s modulus, shear modulus, and Poisson’s ratio,
respectively. The superscript (i) represents the layer, i.e. top
and bottom face sheets, respectively. PO(r) and PP(r) are
the coefficient of radial variation of Young’s modulus and
shear modulus for top and bottom face sheets, respectively.
The compatibility relation is as follows:
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Vg _ Vo r

E, - Eg. 3)
The density of face sheets are varied along the radial

direction as the following form:

i=tb.
4)

In the above relation, y,, ;, u” and 4, i=1,b are the face
sheets inhomogeneity parameters. Indeed, £, and ﬁ(i) are
the material properties at the outer radius of face sheets.
Based on the layerwise-zigzag theory with the linear varia-
tion of the displacement fields, the in-plane displacement of
each layer may be expressed as

) =F0LOG) LOG) = |1+ 0= by

u; = u(l) + Z(’)d)(ri) i=tcb, 5)

where ¢ denotes the core parameter, u,"” is the radial
displacement component of the mid plane, ¢, is the local
rotation and 29 (—h;/2 < 29 < h;/2)is the transverse local
coordinate of each layer. By incorporating the continuity of
the displacement components at the interfaces between the
layers, u,"” and u,") may be expressed as

h h
o _,© e, Moo

uy =uy” + 2¢r + 2¢r
® _ @ _h hy ©
—,, (¢ < H© (b)
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The Cauchy’s strain—displacement relations for each layer
are

@ _ 0u(i) 8(i) _ ﬁ i _ 0u(’) 6w
r or’ 4 r’ A dr

(N

For the free vibration analysis, the equations of motion
can be derived using minimum total potential energy prin-
ciple, as follows:

oIl =6U + 6K —6W =0, ®)

where 6U, 6K and SW are increments of the strain energy,
kinetic energy and work done by external applied loads,
respectively:
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Substituting Egs. (9) to (11) into Eq. (8) and using Egs.
(5) to (7), and performing the integration by parts, the fol-
lowing governing differential equations are extracted after
some manipulations:
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where V? = %’% (r%) is the Laplacian operator in the

radial direction. M, N and Q are stress resultants that are
defined in appendix.
The higher order mass inertia, /,, are defined as

h.

2
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Using the above relations, the governing Egs. (12) to (16)
may be rewritten in terms of displacement field components
as

(c)
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3 Mathematical form of edge conditions
and regularity conditions

There are different types of boundary conditions which can
be applied at the outer edges of annular plate. These condi-
tions are

Clamped immovable edge:

uy) = ¢ = ¢ = ¢ =w =0 @9

Simply supported immovable edge:
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(24)

Roller-supported movable edge:
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Moreover, at the center of axisymmetric circular plate,
the regularity conditions should be satisfied

¢ d
W = ¢ = ¢l = ¢ = 2 — g, Q7

or

4 Power series procedure for static and free
vibration analyses

To utilized power series solution, Kantorovich-type sepa-
ration of variables are applied in this study. Using finite
Taylor series transformation about the outer radius of the
sandwich plate, the unknown displacement functions may
be expressed as follows:

N
ué”)(r, = 2 Fizl)(r —by'e™, ¢(z> _ Z F(z)(r by'e,

n=0

(C) — F(%)(r b)n m)t
N
W= F(S)(r b)” m)t
; (28)

(h) — Z F<4)(}" b)n tml

It should be noted that the external applied load, ¢, or
natural frequency, @, should be set equal to zero either for
free vibration or static analysis.



Archives of Civil and Mechanical Engineering (2020) 20:111

Page70f24 111

Inserting for the displacement components from Eq. (28)  ¢aries expansion of land L  and performing some manipu-
into the governing Egs. (18) to (22) and considering Taylor’s  |ations, the transformed form of the governing differential

equations may be extracted as
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_ e _1 ¢ _ 0% o 3)
A, (m+1)< ) R, - =274, Z (m+1)(= ) Fn o
m_
ndirte ® | _ 22 o[ )
—As, [Ffl)+(n+ I)Fn+1] — Ay [Fn o + -9+ DF? /w>+1]
n—A0+1
—0) —0 ”'+1
(GR10] _ @ ] y® 0 (2)
+/ 020D (0 = A0 +FD, 010D Z (- ) @
h, —(1) h h
NOPI0) ® M e e -3
+2y AVA (n— A +2)<F Joan T 2Fn o T 2Fn_m+z>
D41
h, 0" 1\ h h.
LGP0 _1 M ) e )
2 Y A A ZO < b) Fn—m—/l“)+1 + 2 Fn—m—/1<’)+1 + 2 Fn—m—l(’)+1
m=l
+h I(z) 2<F(1)+ h, fipe 4 th@)) hy 0 40 z(F(n h Mg EFG) >
2 2 2 n 2 n—n® 2 n— n(ﬂ 2 n—n®

(1) =(1)
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n—A0
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a0 | n© , ez 3) 1 3)
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Zex, (1) ® _ a0 ) _1 _ 3 _ (3)

+ AN O =2 + D0 - 20+ DY~ 26< b) -2 m+ DF®
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n—A®
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m=0

hz m+2 /1 n=a® 1 m+2
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n—A®
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m=
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h. . h h h.. h h
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3 <A +AQ 4+ 2, ) (n+2)(n+ DFS, = Y <_Z> (n—m+DF®
n=0 m=0
n—A0+1 i
—0 5 m+1 5
Ay =20+ )= A0+ DFD = N (=2) m=a0—m+DFY
m=0
n—a® i
=0 b b ) 1\ b 5)
Ay (=2 + )= 2P+ DF? |~ Z <_Z> (=2 -m+0F”,
n—A0 =4O
=0 @ 47390 o @ & 1\ ) (f) /0 o) (33)
+A33(I’l + 1)F +A (n A7+ 1)F — A0 41 A33 <_Z> Fn—m Z ( ) Fn —m—A0

m=0

n+l

+AY) l(n + DFY

—2(‘%) F“) ] + Ay 4+ DFY 4+ Ay y O — 2O 4 DY
m=0

YO

n n—A®
—(b) 1\ —3) 1\ —()
) ) ) y 20 F®
33 <_Z> n—-m A33)/ Z <_Z> Fn A m+A A Fn pO+1 +q5(n)
=0
70 5) () b) 3 (b) &) 7O k) 30 b 5)
AprPa0m =20+ )F” |+ Ay PAOF MH + A, 70N )(n—/l()+2)F” -
70 70 O\ 5o 2 (5) 2 1(5) »7? 2 p(65) -
(1) 41, +1y )PP + w1 PO 4y Ty P+ iV FO b - by =0
By solving Eqgs. (29)-(33) for n=0,1,2,...N, the F(l) F(l) F(Z) F(2) F(3) F(3) F(4) F(4) F(S) and F(S)
unknown displacement parameters FO F@ F(S) FY

o) . . . n+2° © n4+2’ 7 n42’ 7 n42
and F,", will be obtained in terms of first ten parameters

Besrdes the transformed form of the edge condltlons at the
outer edge (r=r,) will be as
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N
e uf’ = Y FOE-b| =0-F=0
n=0 r=b
N
« 0= FOr-b"| =0-F=0
n=0 r=b
N
« 0= FOr-by| =0-F"=0
n=0 r=b
N
« 0= Y FO0r—by| =0-FP=0
n=0 r=b
N
cw= Y FOr-b| =0-F)=0
n=0 r=b

® (c) ®) —
e NO+NO+N® =0 -

_ h h AY h h _ h h

o pm e e o) YOI IR e oo _ e ow
(e e 3e0) <R e a0 ) sa (s 0 - 3

A h h F

R e e M@ ©p) _ 7@ 0 _
—T<F0 - 5F - 5 F; >+A”Fl ~ Al =0 (34)
. %Nﬁ’)+M§’>=O=>

70
hzo (o Moo he o) h A m, o he o NOPRE NN 0 IG)
SAN( P+ S P+ S ) = 22 (FY + SR + SFS ) + DAY + 2D FG

. IEN(I) + MO — }iN(b) =0=>
2 r r 2 r

10
h._ h h h A
c 50 [ (D) t (2) ¢ -(3) c 12
_A11<F1 +EF1 + <F >___<

h h h, - h h
(1) t (2) ¢ :(3) ¢ 3(b) (1) ¢ :(3) b (%)
> > F >\ Fo + 5 Fy + o F >——A1<F1 - =FY - 2F )

0 20 2°0 21 2 271

n, A h h 1
c (1) ¢ -(3) b F(4) () (3) (c) F(3) —
+?T<FO —EFO —? 0 >+D11(n+1)Fn+1+ED12 0 —O

o leye e g5
2 r r
1)
hb 1) (1) h (3) hb (4) hb A12 (1) h (3) hb (4) () (4) 1 (D) (4)
—2AN(FO - 2P - PP )+ 22 (R - 2D - 2R ) + <D” (n1+ DFLY, + 2 DFY )
. Q(f) + Q(C) + Q(h) =0=>

10 ( (2 (5) © (3 (5) 10 [ 4 (5)\ _
A33<F0 +FD) + A, (FO +FY) + AL (FP 4+ FY) =0

. . .. . (5) : :
It is noted that various boundary conditions can be ¢ Outer free edge: m and F}" are obtained in terms of

(1) (2 (3) (4) (5)
applied using Egs. (34). Of the unknown parameters, five of F7, F7, F7, Fi7and Fi
them will be determined by employing the boundary condi-
tion at the outer edge. The other unknown displacement parameters

FOOFOFO | F®and FO (n=0, 1,2, ...N+2) are deter-

e Outerclamped edge: F = F? = F® = F» = f = ¢ mined in terms of five unknown parameters depending on
) the type of boundary condition.

e Outer simply supported edge: F(()S) = 0and F(()l)’ F((]2>, F® The transformed form of the boundary conditions at

( . .
and F® are obtained in terms of FV. F@ . F® and Fd) the inner edge (r=r;) of annular sandwich panel and the
0 I 1
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regularity conditions at the center of the axisymmetric cir-
cular plate can be expressed as

0 1 0O 1L b —
e OV+0+07 =0 =
N+1
(I) 1 ® A0 F(Z) | F(S)
D A1+ (r=r)" |[FO +@n+1) ©
n=0

AQ[FO + i+ DFS, |+

n+l

K(b) [1 + y(b)(r —r )N)]

[Ffj‘) +(n+ 1)F;5+)1] }(a by =0
(35)

Also, at the center of the axisymmetric circular plate, the
regularity conditions can be expressed as

N+2

e« uf! =Y FOO-by'=0
n=0
N+2
« 0= FO0-b"=0
n=0
N+2
« 0= FO0-b"=0 (36)
n=0
N+2
e P =) FO0-by' =0
n=0
N+1
e w= ) (n+DFY (0-b)'=0
n=0

Substitution of displacement parameters
FOOFO FO F®and FO (n=0,1,2,...N+2) into the cor-
responding transformed form of the inner boundary condi-
tions for annular panels or the regularity center conditions
for axisymmetric circular ones leads to the following system
of equations:

X)) Xpp(@) Xj3(w) X)) Xis5(w)
X)1 (@) Xps(@) Xos(0) Xyy(w) Xys(w) 1 Y,
X31(@) Xpp(@) Xg(@) Xgy(@) Xgs(@) R FP b =3 75¢

X (@) Xpp(@) Xy3(w) Xyy(w) Xys(w) F® Y,
Xs1(@) Xsp(w) Xs3(0) Xsy(w) Xss(w) 5) 1 (5) Y
Fo orF h 3

37

e Free vibration analysis:

By setting ¥, =Y, =Y; =Y, = Y5 =0, free vibration
analysis of annular or circular sandwich panels can be per-
formed. Existence of non-trivial solutions requires that

X1 (@) Xpp(@) Xi3(@) Xiy(@) X5(w)
X1 (@) Xop(w) Xps(w) Xpu(w) Xy5(w)
X31(@) X3(0) X33(0) Xzy(w) Xss(w) [ =0 (33)
Xp(@) Xpp(@) Xy3(w) Xyy(w) Xys(w)
Xs1(w) Xs(@0) Xs3(w) Xsy(w) Xss5(w)

e Static analysis:

The static analysis can be examined by setting @ =0 and
by solving Eq. 37).F\", F®, FY, F¥ and F or F* will
be achieved.

5 Extracting the transverse shear stress
based on theory of elasticity

To determine the transverse shear stress, the equilibrium
equation based on theory of elasticity is considered:

o 6(1) ff) o7

r 0z
(i) (l) (l)
70 = (a" % )dz(i),
h; h;
2L <<t i=tcb
2 (39

By using Egs. (2)—(7), the stress-displacement may be
expressed as:

h, h
= (c?l)(r)i + cﬁg(r)l) <u§;> + o S+ z<'>¢§’)>

h h
() (1) (c) ¢ ple) o (0 () (1)
Clz() +C,,(N= )( 2¢,. +2¢,. +z ¢,_>

=(
(C © 0 reol 1 )(ué”) e ¢<r<>))
(

lar

© 9 OL\( © 1 ©40
Czar +Cy )(MO +e ¢’C

(r)
(r)

(Cw)() C(b)() )<uf;)— <y — ¢(b) z<”’¢(,”)>
(b) (

h,
2
(b) (b) () h
c (r)—+C - ) ) = =

d,(c‘) _ @(’5(1’) +7® ¢(h)>
2 hr . r

(40)
By substituting Eq. (40) into Eq. (39), the transverse
shear stress can be expressed as:
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L0
20 = _/ (z)( )_ (t)(r) 0 4 0C(l)(r) 1
e or or or r

(=)

7O
O = _ 09 ol (0, 040
rz 11 or2 12 r2 0 z r
he
2

IT(~0 _ A0 © _ ~ONL( © | 040 G, 0
+;[<c11 —Clz>;+<C12—sz>;]<uo + 290 )}dz +T

(b) (b)
o o 5 aCR ) |

”|§\N
S

(- chm) 2+

r

®) (9 92
{<C11(r)0r2+ 0r 6r+ or r ~Ch

(z)( r)— ><uéc) + %qﬁiﬂ + %d)y) +Z(r)¢(rt)>

, h h
( Cm(r) C(’)(r))] <uf)‘) " Ec b + Et ¢ 4 20 d,gz)) } dz®

h h
__t SZ([) < 2L
2 2

(41)

rz(g0=—"1t )

hc y _h,
=< Z(L) < £
2 2

1 ©_ P o Mow
o) - -2

<C(b)( r)— C(b)( )>] ( © _ % ¢ — % o® + Z(b>¢5b>> } dz®

h h
PO
2 2

6 Results and discussion

In this section, numerical results for free vibration, bending
and stress analyses of sandwich circular/annular plates with
heterogeneous polar orthotropic face sheets are presented
and the effects of initial in-plane stresses are examined. In
this regard, numerical examples of sandwich panels with
asymmetric lamination schemes and various combinations
of boundary conditions, core and facings thickness, inner
and outer radius and several material variation patterns for
top and bottom face-sheets are introduced.

Since results of the heterogeneous polar orthotropic-faced
sandwich panels have not been reported yet, to demonstrate
the efficiency and accuracy of the proposed approach, the
obtained results are compared with finite element (FE) ones
extracted from the ABAQUS software based on the 3D
theory of elasticity. By discretization of the sandwich panel
into 4800 eight-node biquadratic axisymmetric quadrilat-
eral elements with reduced integration (CAX8R). Results are
reported for the sandwich panels with face-sheets thickness
h,=h,=0.1 and the following material properties of core:
E©) =20 GPa, p'“ =950 kg/m?®, 119 =0.25.

@ Springer

As a verification example and examination of the results
accuracy, results of proposed method for the fundamental
natural frequency of circular and annular sandwich panels
are compared with FE results in Tables 1 and 2. The material
parameters of sandwich panel are defined as p,=p,=1631,
v,=026, 1,=023, EV=E"=E®=E® =310 GPa,
G,."=123 GPa, G, =126 GPa.

The material variation pattern parameters in the radial
and circumferential directions are as follows:a® =y"= — 1,
a® = 7,(b) =0.5, ﬂ(t) — ,7(1) =2, ﬁ(b) — ’7(b) =1.

The fundamental natural frequencies of the circular sand-
wich panels with different boundary conditions, core thick-
ness (h,=0.1, 0.15 and 0.2) and outer radius (»=0.7 and
0.8) are presented in Table 1. Also fundamental natural fre-
quencies of the annular sandwich panels with core thickness
h,=0.2, inner radius a=0.2 and 0.3, outer radius b=1 and
various combination of the boundary conditions are pre-
sented in Table 2. These tables reveal that even for sandwich
plates with radial non-homogeneous material and soft core,
there is an excellent agreement between the obtained results
based on the layerwise-zigzag theory and results of the
three-dimensional theory of elasticity extracted from FE
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analysis. Based on Table 1 for sandwich circular plate, the
global average errors for the prediction of the natural fre-
quency when E,=100, 60 and 20 GPa are 0.45%, 0.5% and
1.04%, respectively (relative error
(%)=(100/N) X, |(co3D — Otagerwise) /@3 ‘). Also based on
Table 2 for sandwich annular plate, the global average errors
for E.=100, 60 and 20 GPa are 0.59%, 0.70% and 0.93%,
respectively. It can be seen that the natural frequency of
sandwich plate increases by increasing the core thickness
but it is interesting to note that for clamped sandwich plate
with soft core (E=20 GPa), the frequency decreases by
increasing the core thickness. Indeed for clamped plate with
soft core, increasing the thickness of core decreases the
rigidity of boundary conditions and the frequency becomes
lower. Furthermore, either increasing the outer radius of cir-
cular sandwich panel or inner radius (increasing the R/R,
ratio), leads to the smaller frequencies.

After validating the current formulation and the solution
method, some numerical results are prepared.

In Table 3, the influence of outer radius and material
parameters on the fundamental frequency of sandwich annu-
lar plate with initially stressed core are studied. Also, effect
of inner radius on the fundamental frequency of sandwich
annular plate are investigated in Table 4. The results are
prepared for heterogeneous orthotropic face sheets and also
for four different material parameters. In these two tables,
o indicates the presence of initially bending pre-stresses in
the core. The parameter y is defined as y = (R%g,,) /D(l?. For
0=0, i.e. when only in-plane normal pre-stress is applied to
core, five value for K is considered: — 100, — 50, 10, 50 and
100. The negative value of § shows compressive pre-stresses.
According to these tables, one can observe that fundamental
frequency increase by increasing the in-plane normal stress.
As seen from results of Tables 3 and 4, the bending pre-
stress cause a few decrease in frequencies (6#0) and the in-
plane pre-stress have more significant effect. For sandwich
circular plate, the inhomogeneity material parameters can
play important role in controlling natural frequencies. It is
clear that the parameters « and y are more pronounced com-
pared to § and #. In fact, the frequency parameter enhances
as the parameters a and y decreased. In the case of sandwich
annular plate (Table 4), it cannot found similar trend for
material parameters like circular one, and combination of

these parameters with initial pre-stress parameters can con-
trol the frequency of annular plate.

In Figs. 2 and 3, variation of the transverse displace-
ment, w, with respect to the radial direction, and transverse
shear and radial stress, 7,, and o, along thickness direction
(at r=0.4) are exhibited for static analysis of circular and
annular sandwich panel having fully clamped boundary
condition, respectively. As expected, continuity condition
of transverse deflection and transverse shear stress is satis-
fied. It is observed that the absolute maximum values of
transverse deflection and transverse shear stress decrease
as the pre-stress parameter, y, decreases. These figures also
illustrate that bending initial stress significantly increased
the transverse deflection in contrast of 7,.. According to zig-
zag theory, the radial stress has jumps in layer interfaces and
the absolute value of it decreases in the core by increasing y.

Figure 4 provides the transverse shear and radial stress
distribution along thickness direction for annular sandwich
panel at two radii, i.e. r=0.6, 0.8. It can be concluded from
Fig. 4 that the influence of initial pre-stress in outer radius
(larger r) has less effect on the absolute values of stresses
and distribution patterns.

7 Conclusion

Static and free vibration analyses of the circular and annu-
lar sandwich panels subjected to the in-plane pre-stresses
were performed in this paper, as first time. In the presented
analyses, the sandwich panels are fabricated from hetero-
geneous polar orthotropic face sheets and core is subjected
to initially in-plane normal (tensile/compressive) and pure
bending stresses. Moreover, both symmetric and asymmetric
lamination schemes are examined.

Using the layerwise-zigzag theory with linear local
displacements, the governing differential equations are
extracted based on principle of minimum total potential
energy. An analytical solution method is developed and a
unified solution procedure is proposed for analysis of het-
erogeneous initially stressed annular and circular sandwich
panels. The effects of in-plane stresses were investigated for
sandwich plates with various thickness, material variations,
and boundary conditions.
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Fig.2 Variation of the displacement and stresses of the circular
sandwich panel with clamped edge for different values of initial pre-
stresses. a Transverse displacement distribution along radial direc-
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