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Abstract
The nonlinear finite element analysis of pin-supported reinforced concrete slabs of moderate thickness is the main subject 
of this paper. This is an important issue of the mechanics of concrete structures. Thus, a nonlinear FE analysis of RC slab 
models subjected to punching shear was initiated and the comparison of the numerical and test results was made. The pre-
diction engine of the crack pattern due to bending and extension is incorporated in the Mindlin-type (moderately thick) slab 
model together with other nonlinear features. This is in order to formulate an alternative model of RC slab in relation to the 
layered models or fully three-dimensional models. New formulas were applied for 3D constitutive relationships for concrete 
and for tension stiffening effect. Prediction of punching shear was facilitated by Podgórski’s failure criterion for concrete. 
On the one hand, a considerable advantage of the proposed approach is a relatively low numerical effort in comparison with 
the existing models, while on the other hand the applied model clearly describes the physical behaviour of a real slab. A 
supporting test programme for validation was run. Three RC slabs with a system of double-headed studs as the reinforcement 
against punching were tested by the authors in ITB Strength Tests Laboratory. The results for the units constructed as square 
slabs with a central short column subjected to full-scale tests were initially compared with assessments based on standard 
provisions and technical approvals. As a result of this approach, the overall prediction of the nonlinear behaviour of the test 
model, including the model of shear failure, is in accordance with the experimental data.

Keywords Moderate thickness slabs · Mindlin plates · RC slabs · Punching shear · Mechanics of concrete structures

1 Introduction

Column-supported floor slabs are encountered in many types 
of structures, including RC tanks. Finite element modelling 
of punching shear failure of RC slabs is an important issue of 
the mechanics of concrete structures, and it was the subject 
of hitherto published papers of many authors. Abbasi et al. 
[1] utilised the layered model and analysed failure modes 
taking into consideration punching shear as a function of 
the reinforcement ratio and giving appropriate criteria of 
limit states. A series of important analyses with iterative FE 
algorithms were presented at the conference International 
Workshop on “Punching Shear Capacity of RC Slabs” held 

in Stockholm in June 2000. Polak and Guan [2, 3] also used 
the layered element formulation with transverse shear. Guan 
and Loo [4] used this approach to analyse slab–corner col-
umn connection as well as slab–column systems. In solving 
similar problems, Wosatko et al. [5, 6], as well as Genikom-
sou and Polak [7], implemented 3D elements utilising the 
damage plasticity model of concrete. Menetrey and Willam 
[8, 9] performed an interesting analysis of punching shear in 
reinforced concrete, setting new criteria for process localisa-
tion. Vocke [10] thoroughly analysed the punching behav-
iour of RC flat slabs in edge and corner columns by using the 
nonlinear FE program and with full-scale testing.

The analytical method proposed in this paper has no 
direct reference to the methods described above, and it con-
sists of two separate algorithms: the iterated crack patterns 
method (ICPM) previously successfully applied for the 
analysis of thin RC slabs [11], and the fracturing surface 
localisation method (FSLM) based on the application of a 
three-dimensional limit state condition for concrete. The first 
is an intermediate approach between the modified stiffness 
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method and layered models of RC slab. This paper expands 
the previous investigations the authors carried out in scope 
of the FE analysis of thin RC planar structures [11] and 
the slabs of moderate thickness (allowing for the impact of 
shear deformation on the slab deflection) [12]. The finite ele-
ment model for the nonlinear analysis of reinforced concrete 
slabs of moderate thickness is also an important subject of 
this paper. The prediction engine of the crack pattern due 
to bending is incorporated in the Mindlin-type slab model, 
together with other nonlinear properties, similar to the way 
presented by the authors of this paper at AMCM confer-
ence [12]. However, the novel formulae have been used 
herein for nonlinear constitutive relationships for concrete 
and for tension stiffening effect. The authors modified the 
constitutive model of concrete proposed by Kotsovos and 
Pavlović [13, 14] to fit the material model for experimental 
data, which was important for the problem under consid-
eration. The model was subjected to calibration procedures 
in the uniaxial and biaxial compression stress regime and 
was compared with the experimental data available in the 
literature, mainly with the test data of Kupfer et al. [15]. 
Additionally, in order to avoid overestimating slab capac-
ity under brittle punching conditions, a special descending 
path was incorporated into the constitutive model for the 
range beyond the peak stress. The tension stiffening effect 
is taken into account, with the assumption that additional 
stress is carried by the reinforcement steel. In this paper, 
the corresponding model was derived according to the pro-
visions of EC 2 [16] by using appropriate transformations. 
The constitutive matrix components are computed by means 
of numerical integration (incorporating Gauss quadrature) 
through the slab thickness. Ten different cracking patterns 
(all possible for slabs) are assumed in ICPM formulation. 
The use of each pattern implies the division of slab thick-
ness into several layers (maximum three layers of concrete) 
and, consequently, a maximum of three sets of integration 
ranges. As a result, calculation of stiffness matrix elements 
takes a relatively small amount of computer time and, unlike 
in the case of commonly used layered model, free from the 
influence of an arbitrary chosen number of layers. The depth 
of the compression zone can be determined more accurately 
than in the case of the layered model. The effect of cou-
pling between membrane deformations and flexure, which 
is caused by a non-symmetrical double reinforcement of the 
slab and cracking of the concrete is taken into account. As 
the approach analogous to deformation theory of plasticity 
is used for the material description and the stiffness matrix 
of Mindlin-type RC slab, a nonlinear analysis of RC slabs 
has been performed using the finite element direct iteration 
method. The failure mechanism of RC slabs (whether brittle 
punching or ductile bending) depends on the ratio of punch-
ing to bending strength. In the proposed model, both phe-
nomena are described by separate regions of the element’s 

constitutive matrix, where in turns shear or bending mode 
failure can be predicted by the material model of Kotsovos 
[13, 14] and limit surface for concrete of Podgórski [17].

Extensive experimental research has been conducted on 
the phenomenon of punching shear in reinforced concrete 
floor slabs with reinforcement against punching in the form 
of double-headed studs. Studies on the implementation of 
this kind of reinforcement have been conducted by Elige-
hausen, Hegger, Beutel and Vocke [18–20], as well as Polak 
et al. [21]. The researchers from Silesian University of Tech-
nology [22–24] and Łódź Technical University [25] have 
also carried out widespread investigation on the subject. 
Starosolski et al. [26, 27] performed some valuable tests 
on slabs reinforced with studs. In addition, Urban [28] and 
Hulimka [29] recently published monographic papers on 
punching RC slabs.

In order to run the test programme for validation, the 
authors of this paper examined three RC slabs (test speci-
mens) with a system of double-headed studs as a transver-
sal reinforcement in the ITB Strength Tests Laboratory in 
Warsaw [12]. The results of the tests on units constructed as 
square slabs with central short columns subjected to force-
controlled loadings acting from the bottom were initially 
compared with assessments based on the requirements of 
different standards and technical approvals. However, the 
calculation results obtained this way are not the subject of 
this paper. The test results were then used to confirm the 
accuracy of the analytical method proposed in this paper.

2  Nonlinear finite element model

2.1  Main steps of the nonlinear FE analysis

The main steps of the nonlinear FE analysis are as follows. 
The procedure begins from the solution of elastic, doubly 
reinforced concrete slab. The direct iteration is adopted for 
the nonlinear analysis in accordance with the total strain 
material modelling. Following the computation of nodal 
displacements, strains and stresses in concrete and steel, 
the limit state condition for concrete is checked. Cracks in 
concrete are introduced in the direction perpendicular to the 
axis of principal tensile stress at points where the cracking 
criterion has been reached. Cracking is taken into account 
by defining a certain cracking pattern. Parameters of inte-
gration are determined. For each loading step, the stress 
state is checked at every Gaussian point, and the material 
properties at these points are updated accordingly. A new 
stiffness matrix is formed, and iterations are carried out to 
ensure that the convergence checked by the displacement 
test is achieved. Further cracking of concrete is taken into 
account by checking a stress state following a certain crack-
ing pattern, and such a pattern is updated if necessary. The 
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previous cracking is stored for the next loading step. When 
the convergence is reached, a subsequent load case is used. 
Iterations to obtain a convergence are performed until each 
loading set is exhausted. The limit state condition for con-
crete (together with the imaging technique) sets the three-
dimensional layout of punching shear failure.

2.2  Failure criterion for concrete

As the ultimate surface for concrete, the failure criterion 
proposed by Podgórski [17] allowing for the useful simpli-
fications proposed by the first author of this paper [30] was 
implemented in the concrete material model. The so-called 
JP limit state surface (Podgórski [17]) almost does not differ 
from the limit state surface of Willam and Warnke (W&W) 
(see [26]), under the assumption for this model that the 
parameter e = 0.514 (in the case of the data adopted in the 
numeric example). The parameter e is responsible for the 
appearance of sharp edges in the deviatoric cross section of 
the W&W failure surface. In the criterion assumed herein, 
the function r(φ), which describes the radius of the failure 
surface cross section by the octahedral plane, should depend 
on two parameters to fit the experimental data. Such a func-
tion can be written in the following manner:

where α and β are constants fulfilling the following inequali-
ties: 0 ≤ α ≤ 1 and 0 ≤ β ≤ π/6.

Parameters describing the proportion of radii r for dif-
ferent φ angles can be written as:

The radius (r), the distance from 0 on the hydrostatic 
axis (h) and the angle (φ) are related to the stress tensor 
and deviator invariants in the following manner:

where

where in turn I1 = the first invariant of stress tensor, sij = the 
deviator of the stress tensor (sij = σij − σkk δij/3), J2, J3 = the 
second and the third invariants of stress tensor deviator, 
respectively, and σo, τo = the octahedral normal and shear 
stresses, respectively (both described as above).
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The octahedral strains denoted as εο and γο are defined 
in a similar way:

The plots of the r (φ) function described by Eq. (1) are 
presented in Fig. 1 (see also Figs. 2 and 3). It is difficult 
to distinguish the plots of JP (Podgórski) and Willam and 
Warnke (W&W) limit surfaces shown in the presented fig-
ures, because they overlap. According to Podgórski [17], 
α and β coefficients from Eq. (1) can be derived by means 
of iteration.

As this method of deriving α and β coefficients is not 
very effective, equations for the direct calculation of these 
parameters were proposed by Lewiński [25]. By substitut-
ing Eqs. (1) into (2) for φ = 0°, 30°, 60°, we get the set of 
three trigonometric equations. They can be solved with 
regard to parameters α and β:

J. Podgórski confirmed the usefulness of the above 
expressions [27]. Assuming that in the octahedral set of 
coordinates the meridian of ultimate surface is described 
by a parabolic equation, the following equation for the 
failure surface for concrete was used (see Fig. 3):

The values of C0, C1, C2, α and β coefficients can be 
derived on the basis of experimental data, utilising the 
following strengths of concrete: uniaxial tensile strength 
ft, uniaxial compressive strength fc, biaxial compressive 
strengths fcc (σ1/σ2 = 1) and f0c (σ1/σ2 = 2), triaxial tensile 
strength ft. According to the tests performed by Kupfler 
et al. [15] fcc = 1.1 fc and foc = 1.25 fc were assumed, while 
the coefficient κ = ft/fc was assumed to be equal to 0.1. 
Both λ and ϑ parameters can now be expressed in the form 
of equations dependent on the tests results:

The coefficients C0, C1 and C2 from Eq. (8) now can be 
written in the following way:
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Fig. 1  Comparison of JP [17] 
and W&W (for e = 0.514) [26] 
failure surfaces for the cross 
sections by the deviatoric planes 
for different values of σo /fc

Fig. 2  Comparison of the cross sections of JP [17] and W&W (for 
e = 0.514) [26] failure surfaces in the plane stress state

Fig. 3  Comparison of JP [17] and W&W (for e = 0.514) [26] failure 
surfaces for the meridional cross sections
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2.3  Material model for concrete

Concrete behaviour is described by the mathematical 
model proposed by Kotsovos and Pavlović [13]. The incor-
porated model is based on the three-modulus approach 
modified on the basis of the internal-stress concept. Two 
secant moduli, bulk KcS and shear GcS, are functions of 
the deviatoric and volumetric components of stress state:

where K0 and G0 are bulk and shear initial moduli, respec-
tively, while A, b, C and d are model parameters depending 
on fc value (see [13]). Instead of the coupling modulus, an 
equivalent superimposed stress state is introduced:

Again, k, l, m and n parameters can be expressed in 
terms of fc on the basis of experimental tests. Finally, the 
stress–strain relationship can be expressed as:

where σid accounts for the coupling between stress deviator 
and volume change. The above relationships do not describe 
the effect of dilatancy (Kelvin effect) which involves vol-
ume increase (without the presence of negative hydrostatic 
pressure) after reaching a specific level of octahedral shear 
stress τoOUFP—at the onset of unstable fracture propaga-
tion (OUFP), described below for the present approach by 
Expression (18). This volume increase can be described by 
the increase of octahedral normal strain (δεo) equal to [14]:

where the increase of octahedral shear stress (δτo) is equal to

Instead of the application of the ultimate surface for 
concrete given by Kotsovos and Pavlović [13, 14], the fail-
ure criterion proposed by Podgórski [17] was implemented 
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in concrete material model, because, according to the 
authors, the latter model fits better with the experimental 
data. After simplifying Eq. (8), with the assumption that 
ft = 0.1fc, the following expression for the ultimate strength 
was obtained:

On the basis of the above failure criterion and the 
experimental results, the surface separating stress state 
that does not cause dilatation phenomenon (OUFP) has 
been proposed in the form:

The octahedral shear stress (δτο) and strain (δεo) incre-
ments were obtained by the iterative numerical analysis. In 
order to verify the model, the comparison of the numerical 
analysis results and experimental data obtained by Kup-
fer et al. [15] was made. For the value of mean compres-
sive strength adopted for analysis: fc = 33.6 MPa, the val-
ues of the model parameters are as follows: A = 0.5096, 
b = 2.1166, C = 3.4582, d = 2.70, k = 1.2783, l = 0.4492, 
m = −2.348, n = 1.0415. The assumed constitutive model 
was tested for fc = 32.4 MPa and the subsequent relations 
of stresses in concrete: σ2 = 0, σ2 = 0.226σ1, σ2 = 0.226σ1, 
σ2 = 0.525σ1, σ2 = σ1 and also for fc = 19.1 MPa and the 
same stress relations. An example of stress–strain relation-
ships for the proposed model for the relation σ2 = 0.226σ1 
is presented in Fig. 4. The grey lines represent experi-
mental data, the black ones—calculation results. In these 
comparisons, the value of σ3 principal stress is equal to 0 
and the compressive strength of concrete fc = 32.4 MPa. 
The constitutive model of concrete proposed by Kotsovos 
and Pavlović [13] has been modified to fit the model to the 
experimental data valid for the problem of brittle failure. 
In order to avoid the overestimation of slab capacity in 
the conditions of brittle punching, a special descending 
path was incorporated in the material model for the range 
beyond the peak stress.

A more recent work of Zisopoulos et al. [28] on the 
behaviour of concrete under different boundary condi-
tions confirms that concrete can be described as a brittle 
material. Since, as the frictional forces at the sample base 
reduce, concrete suffers a faster loss of its load carrying 
capacity than it could result from test data obtained by 
Kupfer et al. [15].
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2.4  Models for reinforcing steel and tension 
stiffening

A hypo-elastic model of reinforcing steel has been assumed 
for the purpose of numerical analysis because of the 
adoption of such constitutive models for concrete. The 
stress–strain relationship for this model is shown in Fig. 5.

The coefficient ψspi has the following form for εsi < −fc/Es 
and εsi > fc/Es, where i = x, y:

The concept of modelling the tension stiffening by the 
modification of reinforcing bars’ stiffness is not quite new 
[29]. The influence of the reinforcement bond in cracked 
concrete on slab deformation has been accounted for by 
the tension stiffening approach according to the provi-
sions of Eurocode 2 [16]. Expression (7.18) given in this 

(19)�spi =
Es
||�si||
fy

.

standard can also relate to the strains in reinforcing steel 
in the arbitrary i direction and take the form:

where εsmi = the mean strain in the reinforcement (according 
to EC2 [16]) between the cracks in i direction (for inter-
mediate bond of rebar), εucri, εsi = the values of the strains 
in the reinforcement calculated for the uncracked and fully 
cracked conditions (in case of unbonded reinforcement), 
respectively, ζ = a distribution coefficient allowing for ten-
sion stiffening (see Eq. 7.19 given in EC2 [16]).

Therefore, the tension stiffening coefficient can be intro-
duced to control the effective elasticity modulus of the 
reinforcing bars ( Esi = Es∕�si ) as follows:

Substituting the coefficient ζ by Expression (7.19) (see 
EC2 [16]), after some transformations, we get the formula:

where in turn σsi and σsri are the steel stresses in cracked sec-
tion, wherein σsri concerns the first cracking. In order to take 
into account the mean stress in the tension reinforcement 
between the cracked sections, the steel stress in cracked sec-
tion σsi can be replaced by the ratio of its mean value and the 
tension stiffening coefficient itself: σsmi/ψsi, as the stress σsmi 
is directly available from the iterative numerical analysis. 
The ratio of the strains εucri/εsi can be also determined in a 
numerical way and coefficient β can be assumed according 
to EC2 [16]. After some rearrangements, the coefficient ψsi 
takes the form:

(20)�smi = ��si + (1−�)�ucri
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Fig. 4  Comparison of stress–
strain relationships for the 
proposed model (black lines) 
with the test results of Kupfer 
et al. [15] (grey lines) for biaxial 
compression, σ2 = 0.226σ1 ε3

ε3 ε2
ε2

ε1 ε1

εi

σ1/fc

atan(Es / ψsp)

εs ε

σs

Fig. 5  Hypo-elastic model of steel
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where σsri can be assume as equal to fct (1 + αe ρsi)/ρsi, where 
αe = Es/Ecm and ρsi = Asi/Ac.

Since the tension stiffening effect has been taken into 
account in accordance with EC2 [16], so, in accordance 
with this Eurocode, the participation of concrete in tension 
in directions perpendicular to cracks was omitted. On the 
basis of Eqs. (19) and (23), the generalised coefficient of 
steel stiffness variation can be formulated as:

2.5  Crack propagation in concrete

The first step of the nonlinear procedure is to find a solution 
for the elasticity problem for a doubly reinforced concrete 

(23)�si =
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1 + 4�
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2
] 1∕2
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fy
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slab, where coupling between membrane deformations and 
flexure is caused only by the lack of symmetry of the rein-
forcement layers in the slab. Ten iteratively defined crack-
ing patterns, which can be identified step by step in case of 
bending and membrane deformations of the plate in elasto-
plastic phase of RC planar structures, shown in Fig. 6 were 
used [11] in this formulation.

The cracking patterns represent all types of cracking 
sets that may arise as a result of loads acting in the plane 
of the RC plate and as a result of its bending with twisting. 
The adoption of each pattern implies the division of slab 
thickness into several layers (a maximum of three layers of 
concrete). This enables the replacement of the summation 
of constituent stiffnesses over the layers (as in the case 
of the layered method) by the appropriate analytical or 
simple numerical integration through the total thickness. 
This approach, called ICPM above, allows for nonlinear 
analysis of relatively low numerical effort in comparison 
with layered analysis, and furthermore, the tips of the 
considered cracks need not lie on the interfaces of the 
previously imposed layers. The depth of a layer of cracked 
concrete is calculated at each step of iteration from the 
condition of zero principal tensile stress perpendicular to 
the crack. A maximum of three layers of concrete may 

Fig. 6  Cracking patterns of 
arbitrary RC slab. Hatched areas 
mean compression zones, while 
blank areas—cracked regions
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exist simultaneously: uncracked, with one-way cracks 
and with two-way cracks. In case of assumed constitutive 
model, there is no need to include a fourth layer for the 
crushed concrete. However, such an approach is possible 
and may be adopted when necessary.

2.6  Finite element solution procedure

The program for numerical calculations has been written 
in FreeFem++ language developed at the Université Pierre 
et Marie Curie ([30]) and distributed by GPL licence. For 
the finite element solution, a plane triangular element with 
six nodes is used. Problem description in FreeFem++ 
requires formal variational form, which was formulated 
for moderate thickness Mindlin slab. The generalised 
stress–strain relationship takes the form:

where Bαβδγ, Cαβδγ, Dαβδγ and Hαβ, are secant constitutive ten-
sor components that depend on the displacement field. For 
the purposes of the FEM, the constitutive tensor is converted 
into the matrix form. All components of the secant constitu-
tive matrix consist of two parts connected with the participa-
tion of concrete and steel reinforcement. The contribution 
of concrete in the secant constitutive matrix defined in the 
rotated nt set of coordinates has the form:

in which the respective terms can be expressed as
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where βj is a shear-retention factor (taking into account the 
dowel actions and aggregate interlock in rough cracks), 
where in turn j = 1 for i = 2 and 3 (one-way cracks) and j = 2 
for i = 4 (two-way cracks). Parameters of integration: Δz1 ÷ 
Δz8 are given in Table 1, where Δzl (l = n, t) are ranges of 
concrete layers with respect to the cracking pattern (Fig. 6) 
and can be determined numerically based on the condition 
of zero stress in a cracked cross section in the nt coordinate 
system depending on the strain and curvature from the pre-
vious iteration.

(27)�
�

�
= �

�(0)
�

, �
�

�
= �

�(1)
�

, �
�

�
= �

�(2)
�

(28)�
�(k)
c

=

⎡
⎢⎢⎣

Ac(k)
nn

A
c(k)
nt 0

A
c(k)
nt A

c(k)
tt 0

0 0 A
c(k)
ntnt

⎤
⎥⎥⎦

(29)

Ac(k)
nn

=

Δ z2

∫
Δ z1

4GcS

3KcS + GcS

3KcS + 4GcS

zkdz +

Δ z4

∫
Δ z3

9KcSGcS

3KcS + 4GcS

zkdz

A
c(k)
nt =

Δ z2

∫
Δ z1

2GcS

3KcS − 2GcS

3KcS + 4GcS

zkdz

A
c(k)
tt =

Δ z2

∫
Δ z1

4GcS

3KcS + GcS

3KcS + 4GcS

zkdz +

Δ z6

∫
Δ z5

9KcSGcS

3KcS + 4GcS

zkdz

A
c(k)
ntnt =

Δ z2

∫
Δ z1

GcSz
2dz +

4∑
i=2

Δ z2i

∫
Δ z2i−1

�jGcSz
kdz

Table 1  Parameters of 
integration

Cracking Uncracked layer One-way cracks Two-way cracks

Pattern Δz1 Δz2 Δz3 Δz4 Δz5 Δz6 Δz7 Δz8

Uncracked − h/2 h/2 0 0 0 0 0 0
1a − h/2 Δzn 0 0 Δzn h/2 0 0
1b Δzn h/2 0 0 − h/2 Δzn 0 0
2 0 0 0 0 − h/2 h/2 0 0
3a Δzt Δzn − h/2 Δzt Δzn h/2 0 0
3b 0 0 − h/2 Δzn Δzt h/2 Δzn Δzt

4a − h/2 Δzn 0 0 Δzn Δzt Δzt h/2
4b Δzn h/2 0 0 Δzt Δzn − h/2 Δzt

5 0 0 0 0 0 0 − h/2 h/2
6a 0 0 − h/2 Δzn 0 0 Δzn h/2
6b 0 0 Δzn h/2 0 0 − h/2 Δzn
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The nt coordinate system is rotated relative to the xy 
system by an α angle in counterclockwise direction, and 
the direction n is normal to the first appearing crack. Simi-
larly, the participation of steel reinforcement in the secant 
constitutive matrix defined in xy set of coordinates (for a 
given orthogonal reinforcement system) can be presented 
as follows

in which the respective terms can be expressed as

where

where in turn

where � sq is the generalised coefficient of steel stiffness 
variation according to Eq. (24) and Asq is the cross-sectional 
area of reinforcement per unit width in the direction q, at a 
distance zsq from the midsurface of the slab, where in turn 
q = x, y. The index ( ′ ) in case of Asq, zsq and � sq denotes the 
top reinforcement.

Let us investigate the �′

c
 component of constitutive 

matrix that is related to concrete behaviour (26) in a 
rotated (nt) set of coordinates and can be expressed as:

Hn
c and Ht

c components of �′

c
 can be written in follow-

ing form:

Coeff icients ki
t and ki

n can be expressed as: 
kn
3
= kn

4
= kt

2
= kt

4
= 0 and kn

1
= kn

2
= kt

1
= kt

3
= 5∕6.

The contribution of steel reinforcement in the constitutive 
matrix component of a Mindlin slab is proportional to the 
ratios of reinforcement in particular directions. Taking into 
account the coefficients due to tension stiffening and plastic-
ity, it is possible to write that
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where

For the purpose of brittle punching phenomenon descrip-
tion, the internal bonds were used by means of the imposed 
locking of shear strains. These bonds were adopted in ver-
tical plane stripes along the sets of the aforementioned 
reinforcement.

The constitutive matrix of RC structure consists of 
contributions of steel reinforcement as well as cracked or 
uncracked concrete

where the matrix [Ds] is given by (30), the matrix [ D′

c
 ] is 

defined by (26), while [T] is the transformation matrix:

where in turn

After determining the matrix [D], it can be used for the 
calculation of the secant stiffness matrix of the finite element 
and then the global secant matrix for the finite element direct 
iteration. It enables the possibility of FE analysis of the RC 
structure of the moderate thickness slab including the mate-
rial nonlinearities. The multifrontal method incorporated in 
UMFPACK library was used to solve the sets of equations 
at each iteration of FE analysis.

3  Testing of RC slabs for punching shear

3.1  Supporting test programme for validation

The authors tested three transversely reinforced RC slabs 
(test specimens) in ITB Strength Tests Laboratory. The 
external dimensions of the plate of each test specimens 
were 2650 × 2650 mm, and the plate thickness 200 mm. 
The dimensions of a short column were: height 600 mm, 
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base 250 × 250 mm. The axial spans of the supports of the 
slab were 2426 × 2426 mm, see Fig. 7. Each test speci-
men was equipped with eight sets of four studs radially 
arranged around the central column at 45° relative to each 
other. Each of the three test specimens, presented in Fig. 7, 
was reinforced with the same longitudinal rebars—top 
bars ∅18 mm, fyk = 410 MPa and bottom bars ∅10 mm, 

fyk = 220 MPa. The transverse reinforcement utilised in 
the plate was provided by typical double-headed ∅10 mm 
studs 155 mm height, fyk = 500 MPa, which were tack 
welded at the top end to a steel-perforated connecting flats, 
see Fig. 7. The adopted concrete class was C30/37. The 
concrete cover thickness was 25 mm. The concrete used 
to make the samples contained 355 kg of cement CEM I 

Fig. 7  Test specimen with 
double-headed reinforcement 
(dimensions in [mm])
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42.5R per 1 m3 of dry mixture, 55 kg of additives (lime 
milk, flying ash), 639 kg of gravel 8/16, 522 kg of gravel 
2/8, 649 kg of sand 0/2, 164 kg of water and 1.6 kg of FM 
10 J admixture.

The mechanical properties of the concrete, such as elas-
ticity modulus (Ecm) and compressive strength (fc) as well as 
tensile strength, were obtained from the tests results of cube 
and cylinder specimens. Six samples were tested for each 
strength parameter given in Table 2. The elasticity modulus 
(Ecm) and concrete tensile strength were evaluated only for 
the slab model № PI.

A comparatively low value of tensile strength of concrete 
(fctm) was achieved, which amounted of 2.13 MPa accord-
ing to Brazilian split tests on concrete cylinders. Based on 
the results obtained on six samples, it was found that the 
minimum value of concrete tensile strength obtained dur-
ing the tests was 1.78 MPa, while the maximum value of 
this strength was 2.48 MPa. The values of the reinforcement 
yield point (fy) and tensile strength (ft) were obtained from 
tensile tests results. Despite a rigid construction of the test 
stand, the displacements at specimen perimeter were meas-
ured during the tests. This allowed for the subsequent com-
pensation of unpredictable deformations of the supporting 

structure. Square specimens simply supported around 
the perimeter were loaded at the centre by three 1000-kN 
hydraulic actuators (see Fig. 8). Horizontal and vertical 
views of test set-up configurations are presented in Fig. 8. 
The test in progress is visible in Fig. 9. For the purpose of 
the measurement of displacements, a number of dial gauges 
(numbered from 1 to 9) and the cathetometer (target point 
№ 10) were used. The dial gauges layout is shown in Fig. 7.

3.2  Tests results

The obtained results, showing both the load bearing capac-
ity of the tested specimens and values obtained from the 
material testing are listed in Table 2. Basically, two different 
modes of punching shear are encountered in case of RC slabs 
supported on columns: a typical mode for the slab without 
shear reinforcement (Fig. 10a) and for the slab specimen 
with shear reinforcement (Fig. 10b), considered herein. The 
real mode of the punching shear with shear reinforcement 
could be observed after the test and the cutting of the tested 
slab. The photograph of slab specimen № PI after the cut 
along the axis of symmetry is presented in Fig. 10b), and the 
location of inclined cracks caused by shear force is clearly 

Table 2  Tests results for 
samples and test specimens

Note: – not measured items

Slab № Material properties (mean values) (MPa) Slab load bear-
ing capacity 
(kN)Concrete Longitudinal reinforcement Transversal 

reinforcement
∅18 mm ∅10 mm

fc, cube fc Ecm fy ft fy ft fy ft

P I 45.4 36.3 32 000 – – – – – – 950
P II 37.4 29.9 – 426 684 342 453 521 618 1020
P III 43.1 34.5 – – – – – – – 970
mean 42.0 33.6 – – – – – – – 980

Fig. 8  Configuration of test 
set-up: a horizontal view and b 
vertical view
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visible. The cracking pattern on the upper surface of tested 
slab model № PIII is shown in Fig. 11. These photographs 
have been taken after the tests finish.

Comparison of test and analytical charts showing the rela-
tionship between force acting on the short column from the 
bottom and the slabs midpoint deflections is given in Fig. 12.

4  Analysis results and discussion

The primary aim of this paper is to present the computational 
model of RC slab–column connection and to compare the 
results with data obtained from the tests described herein. 
The computational examples are presented, in which the stiff 
slab–column connection is used at the base of the floor slabs. 
Three numerical models have been analysed; the initial FE 

Fig. 9  Test in progress. The measurement of displacements by the 
cathetometer

Fig. 10  Punching shear mode of 
RC slab: a typical one without 
shear reinforcement and b with 
shear reinforcement after a cut 
along the symmetry axis (the 
reversed model № PI)

Fig. 11  Crack pattern of RC 
slab research model № PIII
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mesh was adopted to track the development of cracking 
while the second and the third mesh—for nonlinear analysis 
of the RC slab with and without transverse reinforcement, 
respectively. The cracking patterns and shear mode failure 
were predicted by using the Podgórski failure criterion for 
concrete [17]. The following material properties have been 
adopted for analysis: fc = 33.6 MPa; Ec = 32 GPa; νc = 0.2; 
Es = 205 GPa; νs = 0.3; fy(St0S) = 342 MPa; fy(34GS) = 426 MPa. 
The flexural tensile strength of concrete was assumed to 
be equal to 1.6 of axial tensile strength, so that ftf = 1.6 · 
2.1 = 3.36 MPa and the coefficient κ = ftf/fc = 0.1. For the 
initial tracking of crack development, the reduced value of 
tensile strength of concrete was adopted: fct = 2.4 MPa. The 
simulation of crack propagation on the top surface of the 
slabs is shown in Fig. 13.

Finite element meshes adopted for calculation of ultimate 
capacity (after a sensitivity analysis) for the models without 
and with transverse reinforcement are presented in Fig. 14. 
Midpoint deflections obtained from both experimental tests 
and nonlinear analysis of RC slab with and without trans-
verse reinforcement are presented in Fig. 12. Finally, the 
fracture zones (dark colour), localised numerically accord-
ing to the Podgórski failure criterion, are shown in Fig. 15. 
The crack propagation simulation on the top surface of 

the slabs shows that the real cracking mode presented in 
Fig. 11 is similar as the analysis result for the initial crack-
ing around the column (Fig. 13a), while the final cracking 
modes (Fig. 13b, c) form the strips similar as the results 
of the yield line method for RC slabs. Comparison of the 
load bearing capacity of such modelled transversally rein-
forced and unreinforced test specimens indicates a correct 
response of the slabs in both cases. The post-peak parts of 
the load–deflection curves are not demonstrated in Fig. 12 
as all the curves (both experimental and analytical) were 
obtained under the force (not displacement) control, in 
which authors’ opinion is more realistic. It is visible, that 
the force–displacement relationship for numerical models 
of the slabs with and without transverse reinforcement is 
almost identical up to the 260 kN load (Fig. 12). At this 
point, the model without transverse reinforcement suffers an 

Fig. 12  Comparison of analytical and tested load–midpoint deflection 
relationships

Fig. 13  Crack propagation on 
the top surface according to 
nonlinear FEA: a F = 200 kN, b 
F = 280 kN and c F = 360 kN

Fig. 14  Finite element meshes adopted for calculation of ultimate 
capacity



 Archives of Civil and Mechanical Engineering (2020) 20:36

1 3

36 Page 14 of 16

abrupt loss of load carrying capacity (which corresponds to 
the brittle nature of the failure mechanism due to punching). 
A part of the load–deflection curve for the model with trans-
versal reinforcement continues to ascend up to about 900 kN 
load, where the failure occurs, due to the ultimate flexural 
strength of the RC slab. The relation between the experimen-
tal data (ultimate force 980 kN—mean from the tests) and 
the numerical results shows a little underestimation of the 
slab load carrying capacity. In the first range of displacement 
values (from 3 to 16 mm), the discrepancies between experi-
mental and numerical results are a consequence of the differ-
ences between the values of the existing tensile strength of 
concrete and the tensile strength assumed in computations, 
which leads to different stress redistributions after cracking. 
However, the slope character of the plots does not differ 
much as it results from the value of the elasticity modulus 
of concrete which is less susceptible to random variation in 
the properties of this material. The different shapes of the 
load–deflection curves in the final sections result from the 
computational application of the hypo-elastic steel model 
without hardening, while the hardening is observed in tests. 
However, due to simplicity of this model and being on the 
safe side, the authors of this paper have assumed that it is 
adequate for the computational purposes.

In the model proposed herein, additional internal bonds 
were used by means of the imposed locking of shear strains. 
These bonds are located in vertical plane stripes along the 
radial sets of transversal reinforcement (see Figs. 7 and 14). 
This modelling strategy of the double-headed studs stems 

from the very concept of their use consisting in such stiff-
ening of the support zone that the failure occurs due to the 
bending, not punching shear (or both phenomena can occur 
simultaneously). Such assumption was confirmed by many 
tests performed at the German universities [10, 18, 19] as 
well as the calculations performed in accordance with the 
Eurocode 2 [16]. A series of slab specimens reinforced 
by the sets of double-headed studs was also tested at ITB 
Strength Testing Laboratory, and it turned out that the yield-
ing of any stud due to stretching in the tests carried out as 
described above is practically impossible. It is visible that 
the results obtained for the model with transverse reinforce-
ment are comparable to the real mode of punching shear 
shown in Fig. 10b), while without transverse reinforce-
ment—to the real mode shown in Fig. 10a). Some distur-
bances can occur only in a small region around the column, 
because in the model of moderate thickness slab the vertical 
stresses and strains are neglected. Notwithstanding, in the 
assumed FE model with transverse reinforcement the com-
putational destructive crack initiates close to the slab–col-
umn connection and runs through the studs up to the unre-
inforced region of the slab. The shape of the contour lines of 
the deflection surface at a failure for both slabs is presented 
on the same figure (Fig. 15). A significant increase in dis-
placement values around the column perimeter, typical for 
punching failure mechanism, can be observed in the case 
of the model without transverse reinforcement. The failure 
mechanism of the RC slab depends on the punching to bend-
ing strength ratio. In case of a sufficiently high transversal 

Fig. 15  From the top: contour lines of slab deflection [in (cm)] at the time of punching, vertical axial cross section of localised fracture zones 
(dark colour) due to Podgórski limit locus [17] for the models without and with transverse reinforcement
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reinforcement ratio, it is possible to observe ductile failure 
mechanism due to bending. However, the slabs with low 
transversal reinforcement ratio or unreinforced transver-
sally suffer abrupt rupture due to brittle punching prior to 
reaching the ultimate load value corresponding to bending. 
Furthermore, the force–displacement relationship does not 
depend on the level of transversal reinforcement up to the 
point of bifurcation towards the brittle or ductile failure.

5  Summary and conclusions

Implementation of the described above-combined ICPM/
FSLM method in the nonlinear FE analysis of Mindlin-type 
slabs enabled us to devise the computer program for the 
analysis of moderate thickness RC slabs subjected to punch-
ing and the recognition of failure mechanism, with respect to 
the layout of transversal reinforcement. The computational 
results were confronted with the test results. Based on the 
results of such comparative analysis, the following conclu-
sions are drawn:

1. The prediction of shear capacity was achieved by the 
above-described FSLM method. As a result, both types 
of damage were modelled separately but also, the com-
bined flexure-shear mode failure can be considered 
by using the combined ICPM/FSLM method. This 
approach aided by the imaging technique allowed for the 
distinction between both phenomena of the failure. The 
numerical analysis results were compared with experi-
mental results of the three slab specimens (reinforced by 
the sets of studs with connecting flat at the top) tested at 
ITB Strength Testing Laboratory obtaining fairly good 
accordance with the experimental data.

2. As the analytical method proposed in this paper has no 
direct reference to the methods described in the cited 
literature, the comparative analysis is limited in nature. 
However, it should be pointed out that a considerable 
advantage of the proposed approach is a relatively low 
numerical effort in comparison with layered or fully 
three-dimensional models because of the plane finite 
element discretisation of the floor slab and due to the 
division of the slab into a small number of concrete 
layers (usually two layers in cracked regions), which 
is additionally confirmed by a short computation time. 
Moreover, finite element plane discretisation is more 
suitable for use in the practical design of floor slabs.

3. In scope of surface crack modelling and load–deflec-
tion curves, a comparable accuracy was obtained as in 
the paper [3] and better than in the other cited publi-
cations. On the other hand, in the case of cited papers 
in which moderate thickness slab elements were used, 
none of them presented the computationally determined 

punching surface in a vertical cross section, taking into 
account the influence of double-head studs. From the 
point of view of the modelling accuracy of the load–
deflection curves, the presented method also gives more 
accurate results than in the cited papers in which three-
dimensional elements were used. However, the com-
putational effort associated with the numerical imple-
mentation of the proposed method was much smaller 
compared to other available models using the three-
dimensional or layered FE analysis.

4. The novel formulas were used for nonlinear constitu-
tive relationships for concrete and for tension stiffen-
ing effect. The constitutive model of concrete proposed 
by Kotsovos and Pavlović [13] was modified according 
to the limit state condition of Podgórski [17] to fit the 
material model to the experimental data valid for the 
considered problem. The model was subjected to cali-
bration procedures for uniaxial and biaxial compression 
and was compared with the test data of Kupfer et al. 
[15]. Additionally, in order to avoid the overestimation 
of slab capacity in case of brittle punching, a special 
descending path was incorporated in the constitutive 
model for the range beyond the peak stress.

5. The tension stiffening effect is taken into account, with 
the assumption that additional stress is carried by the 
reinforcement. The adequate model was derived accord-
ing to the provisions of EC 2 [16]; however, it was math-
ematically converted to take into account the mean stress 
in reinforcement between the cracks, without loss of 
physical meaning.

6. Therefore, the overall prediction of the nonlinear behav-
iour and the bearing capacity of the test slabs were 
improved in comparison with the former results [12] and 
show a good accordance with experimental data. The 
relation between experimental data (average ultimate 
force 980 kN) and numerical results (ultimate force 900 
kN) shows little underestimation of the slab load carry-
ing capacity. The reason is that plastic hardening was not 
taken into account in the implemented steel model (see 
Fig. 5). However, it was acceptable due to its simplicity 
and in order to stay on the safe side.
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