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provided in [2]. Another example is the application MyIUS 
(https://www.bayoocare.com/en/myius/ and [3]) that was 
developed for the prediction of vaginal bleeding patterns 
during usage of a particular birth control device, more 
specifically a so called Intra Uterine System (IUS). This 
application is available to patients as an app from both the 
Google Play and Apple App Store. For an easily accessible 
non-technical introduction into the field of ML we refer to 
[4].

AI/ML methods are far away from being a new phenom-
enon and date back to even the 1950s and 60s. [5, 6] may 
serve as early references in the literature on this topic. How-
ever, as represented by the above-mentioned recent appli-
cations, it can be seen that AI/ML can now have a direct 
impact for the individual patient or may even become a part 
of routine submissions of pharmaceutical companies to reg-
ulatory agencies like the US Food and Drug Agency (FDA). 
The latter aspect is of particular interest for us. This new 
setting for AI/ML requires interactions between all relevant 
stakeholders including regulators and industry for a clear 
mutual understanding of reporting requirements.

Introduction

In modern health care Artificial Intelligence/Machine 
Learning – (AI/ML) methods continue to gain popularity in 
several clinical fields of application. An overview of appli-
cations in cardiovascular medicine can be found in [1] and 
a specific use case algorithm that predicts circulatory failure 
in the intensive care unit using machine learning methods is 
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Abstract
Whereas AI/ML methods were considered experimental tools in clinical development for some time, nowadays they are 
widely available. However, stakeholders in the health care industry still need to answer the question which role these 
methods can realistically play and what standards should be adhered to. Clinical research in late-stage clinical develop-
ment has particular requirements in terms of robustness, transparency and traceability. These standards should also be 
adhered to when applying AI/ML methods. Currently there is some formal regulatory guidance available, but this is more 
directed at settings where a device or medical software is investigated. Here we focus on the application of AI/ML meth-
ods in late-stage clinical drug development, i.e. in a setting where currently less guidance is available. This is done via 
first summarizing available regulatory guidance and work done by regulatory statisticians followed by the presentation 
of an industry application where the influence of extensive sets of baseline characteristics on the treatment effect can be 
investigated by applying ML-methods in a standardized manner with intuitive graphical displays leveraging explainable AI 
methods. The paper aims at stimulating discussions on the role such analyses can play in general rather than advocating 
for a particular AI/ML-method or indication where such methods could be meaningful.
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In recent years some regulatory guidance has become 
available, to a considerable degree driven by regulators over-
seeing medical devices. The FDA’s Center for Devices and 
Radiologic Health (CDRH) released an action plan for AI 
or ML-based software as medical device [7], also compare 
a recent discussion paper on the use of AI/ML in the devel-
opment of drugs and biological products [8] and a paper 
where several centers at FDA describe how they are work-
ing together on this topic [9]. European Medicines Agency 
(EMA) also just released a draft version of a guidance docu-
ment on The use of Artificial Intelligence in the medical 
product lifecycle [10]. A further example is the creation of 
a sort of score card for Good Machine Learning Practice 
resulting from a collaboration between the FDA’s CDRH, 
Health Canada and the UK regulatory agency MHRA [11].

We would like to note that current applications that are 
discussed in clinical research cover e.g., recruitment of 
participants, selection of trial participants coupled with the 
goal to decrease variability in the data, adherence to study 
intervention, and retention in the trial. Apart from these 
applications in clinical research the application of AI/ML 
is discussed across the whole value chain, i.e. also in drug 
discovery, non-clinical research, post market safety surveil-
lance and pharmaceutical manufacturing.

A comprehensive overview on fields of applications and 
challenges in connection with safety topics can be found in 
[12]. The key examples for our considerations are phase-III 
trials that are analyzed using AI/ML methods after a thor-
ough statistical planning of the whole trial was done.

In the following we reflect on the use of AI/ML in the 
reporting phase of a clinical study.

Despite these examples cited above, the application of 
AI/ML methodology in the analysis phase of late-stage 
clinical development for new drugs and biologics is limited. 
Statistical models typically applied in such settings model 
the outcome based on treatment and a usually very small 
amount of baseline covariates; see for instance the recently 
released FDA guidance “Adjusting for Covariates in Ran-
domized Clinical Trials for Drugs and Biological Products” 
[13]. In a time-to-event setting an approach termed 5-step 
Stratified Testing and Amalgamation Routine (5-STAR) 
was introduced that overcomes this limitation via identify-
ing strata where risks are more homogeneous than in the 
overall population [14]. The authors propose ML-methods 
like elastic net Cox-regression to overcome “noise” in the 
covariates defining “strata”, hence providing a prognos-
tic factor for the outcome of interest, which might then 
also turns out to be a predictive factor for the treatment of 
interest. In statistical terms identifying a prognostic factor 
means identifying a factor that is associated with an out-
come of interest irrespective of treatment while identifying 

a predictive factor corresponds to identifying a treatment by 
covariate interaction.

These considerations on the use of baseline covariates 
also relate to what is now known as “precision medicine” 
or “personalized medicine”, which defines a paradigm shift 
in the development of biopharmaceuticals, see also a presi-
dential address by Barack Obama [15]. This paradigm shift 
started to penetrate into public perception as well as into 
other fields of science and industry. Most importantly, it 
impacted and shaped new approaches in drug development 
which can capitalize on the ever-increasing amount of data 
being measured to gauge the precise state of a biological 
system or a particular disease as a system deviating from 
“normal average biology”, see [16, 17] in connection with 
Alzheimer’s disease.

One shortcoming of current practice in applying statisti-
cal models is that higher-order interactions, non-linear, or 
non-monotonic functional associations are often not appro-
priately reflected in the models applied. Although it would 
be possible to explicitly pre-specify and include those in 
subsequent confirmatory hypothesis testing, this would 
require in-depth a priory knowledge to ensure unbiased 
modelling.

In contrast, AI/ML-based analysis methods are able to 
accomplish these tasks rather automatically considering the 
complete hypothesis space including implicitly interactions 
as well, i.e. all measured data and variables at once, thus 
deducing a holistic mathematical model of a disease and the 
respective treatment effect in a completely data-driven fash-
ion; see [18] for a related discussion. As such, AI/ML meth-
odology is key in enabling true data driven decision making 
and a prerequisite for precision medicine since it comple-
ments the currently predominantly applied low dimensional 
approaches to enable as thorough as technically possible 
insights generation.

For decision making during the drug development pro-
cess, it is of importance that analyses are provided in a 
timely fashion and with high quality. Looking back at the 
authors’ own experiences these analyses were more in the 
style of prototypes, but with respect to the aspects time and 
quality progress was made recently via standardization and 
the introduction of agreed reporting and documentation 
standards within organizations.

It is beyond the scope of this paper to give a complete 
overview of the available literature on the topic of AI/ML 
in clinical development. It is also not the aim of this paper 
to advocate a particular method. We feel that the time has 
come to consider examples like the one presented here for 
inclusion into formal regulatory submissions. This would 
constitute a big step forward because these analyses would 
by nature not necessarily be reported in forms of tables 
and figures that can be easily reproduced. There might also 
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be overlaps to other initiatives to create interactive study 
reports. It is the aim of this paper to present some expe-
riences made so far, embed this into work and documents 
available from regulators and encourage others to think into 
a similar direction.

In summary the applications of AI/ML in a particular 
clinical study can be allocated to the stages of feasibility, 
study set-up, study monitoring, study quality assessment or 
study reporting. Our focus in the use case is on the reporting 
phase under special consideration which principles should 
be adhered to and which benefits could potentially be pro-
vided to regulators.

The remainder of this paper is organized as follows. 
Section “AI/ ML in the FDA Regulatory Environment” 
provides a short overview on available regulatory guid-
ance and on activities where FDA statisticians apply AI/ML 
methods. Moreover, Section “Adoption of AI/ML Method-
ology for Late-Stage Clinical Development by Industry: 
A Case Study” provides a specific efficient framework to 
apply AI/ML-methods in the setting of a pivotal study in 
late-stage clinical development. Of note this example refers 
to the reporting phase of a clinical trial. As can be seen other 
fields of application also exist, but are not further discussed 
throughout this paper. The paper avoids technical language 
wherever possible to enable a discussion among all stake-
holders. We conclude this paper with a discussion and 
recommendations.

AI/ML in the FDA Regulatory Environment

Modern drug development programs tend to create increas-
ingly larger volumes of patient data. Using appropriate 
methods to analyze such data has the potential to reshape 
biopharmaceutical development and might even have sub-
sequently an impact on regulatory decision making. This 
section highlights how AI/ML methods have been used in 
a regulatory environment, namely at the US (FDA Center 
for Drug Evaluation and Research (CDER) and Center for 
Devices and Radiological Health (CDRH)). The use of such 
methods can be generally decomposed into:

a. AI/ML-related submissions to FDA.
b. AI/ML application in the FDA review and research 

work.

Background – Guiding Principles

In a common effort to promote safe and effective medical 
devices that use AI/ML, FDA’s CDRH along with Health 
Canada and UK’s Regulatory Agency (MHRA), have jointly 

identified 10 guiding principles that can inform the devel-
opment of Good Machine Learning Practice (GMLP) [11]. 
Although they are meant for the development of medical 
devices and medical software, we are citing these principles 
as we feel they are general enough to also guide the applica-
tion of AI/ML-methods in biopharmaceutical development. 
These guiding principles may be used to adopt good prac-
tices that have been proven in other sectors and to tailor 
practices from other industry sectors, so they are applicable 
to medical technology and the health care sector. This list 
of principles can be considered as a first step and a drive to 
adjust and expand such practices in the sector of biopharma-
ceutical development.

Some of these principles address the technical aspect of 
the process and are current and applicable to all ML appli-
cations, such as the independence of the training and test 
sets, the performance monitoring and management of the 
re-training risks, and good software engineering and secu-
rity practices.

With respect to the application of the 10 guiding prin-
ciples we would especially like to highlight the following 
four:

a. Multi-disciplinary expertise is leveraged throughout the 
total product life cycle.

b. Emphasis is put on the human interpretability of the ML 
model, rather than the model performance in isolation.

c. Statistically sound test plans are developed and exe-
cuted to generate clinically relevant drug performance 
information independently of the training data set. Such 
considerations include the intended patient population, 
important subgroups, and potential confounding factors 
among others.

d. Information is established and is available to patients 
regarding the model performance for appropriate sub-
groups, characteristics of the test and training data, 
acceptable inputs, known limitations, user interface 
interpretation, and clinical workflow integration of the 
model. Additionally, the drug users are aware of any 
updates from real-world performance monitoring and 
able to communicate product concerns to the developer.

The complete list of principles is included as an appen-
dix to this paper.

Overview of AI/ML in Regulatory Submission 
Processes

In recent years there is an increasing trend of AI/ML–related 
regulatory submissions received by the FDA’s Center for 
Drug Evaluation and Research (CDER). For an overview 
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learning techniques where typically a relationship between 
a clinical endpoint and potential explanatory factors shall 
be established. The same paper emphasizes that caution is 
required when ML methods are used in safety evaluation 
mainly because of their data driven nature and degree of 
algorithm complexity. Such caution should be maximized 
when RWD is used to generate RWE. More specifically, 
special attention should be paid to reproducibility, data 
transparency maintaining patient confidentiality, sparsity of 
rare events in the training data set and interpretability of 
study findings.

The use of AI/ML in clinical site inspection selection is 
considered in [22, 23]. These contributions compare several 
methods and combinations of methods. In a clinical trial set-
ting, data reliability can be jeopardized by poorly collected, 
processed, or reported data or even by fraudulent data. The 
substantial increase in both the number and complexity of 
clinical trials makes it difficult for regulators to choose clini-
cal sites for inspection however, due to limited resources 
such that only less than 1% of the sites can be inspected 
annually. It is therefore crucial to select the appropriate clin-
ical sites for inspection.

Site inspection results can be classified into NAI (No 
Action Indicated), VAI (Voluntary Action Indicated) and 
OAI (Official Action Indicated). One of the main challenges 
in using AI/ML methods for site inspection selection comes 
from the imbalanced outcomes since OAI classification is 
considered a rare event (approximately 1% of all cases).

Lastly but not least, another area FDA researchers use 
AI/ML is on clustering pharmacokinetic (PK) concentra-
tion curves, as presented by [24]. The authors conclude that 
hierarchical clustering for grouping patients by PK con-
centration curve shape has the potential to identify signals 
and draw conclusions that would otherwise be hidden when 
applying standard analyses of the Area Under the (concen-
tration-time-) Curve (AUC) or the Maximum concentration 
(Cmax) and to identify outliers. This technique would have 
to be tested and its clinical value assessed in a setting where 
clinical outcome or safety data are available.

The key papers are summarized in Table 1.

Adoption of AI/ML Methodology for Late-
Stage Clinical Development by Industry: A 
Case Study

With all of the considerations above in mind Bayer intro-
duced AI/ML-based analyses in the reporting phase of late 
phase trials, i.e. Phase II and Phase III trials, on a regular 
basis to detect complex efficacy and/or safety signals that 
may not be detected using low-dimensional statistical 
models. Whilst at this point these analyses are done in an 

of recent applications of AI/ML in such submissions see 
[19]. This work presents the most common analysis types 
and objectives of these submissions. A rapidly increasing 
number of submissions including AI/ML was received by 
CDER through Investigational New Drug (IND), New Drug 
Application (NDA) and Abbreviated New Drug Application 
(ANDA) (with the vast majority being IND) applications 
during the period from 2016 to 2021. The leading therapeu-
tic areas of these submissions were oncology (27%), psychi-
atry (15%), gastroenterology (12%) and neurology (11%). 
The most common objectives of these regulatory submis-
sions were disease prognosis and treatment response predic-
tion in efficacy and safety studies, covariate selection and 
confounding adjustment, pharmacometric modeling, imag-
ing/video/voice analysis, drug discovery, drug toxicity pre-
diction, enrichment design, dose selection and optimization, 
adherence to drug regimen, generating synthetic controls, 
endpoint and biomarker assessment and post-marketing 
surveillance. The most common AI/ML analysis approaches 
of these regulatory submissions were decision tree-based 
models and deep learning (analysis of imaging data). Fur-
ther details on the different types of ML-algorithms were 
reported in [20].

AI/ML in FDA Review and Research work

Besides the use of AI/ML in regulatory submissions 
received by CDER, FDA reviewers/researchers have been 
applying AI/ML algorithms for various applications in their 
everyday work and research. Such applications are applied 
to the areas of determination of the optimal dosage range, 
prediction of drug toxicity, analysis of the FDA adverse 
event reporting system (FAERS), prediction of clinical sites 
that will qualify for FDA inspection, regulatory drug safety 
evaluation and hierarchical clustering of pharmacokinetic 
(PK) curves.

In the case of drug safety evaluation at FDA, ML has 
been applied in both prediction and causal inference prob-
lems. A recently published paper summarizes the different 
ML applications and discusses the challenges and consid-
erations when using ML methods with RWD to generate 
Real World Evidence (RWE; [12]). It provides a summary 
of cases where ML was employed to impute missing data, 
improve algorithms to identify health outcomes in the Sen-
tinel system (FDA’s national electronic system used by 
researchers to monitor the safety of FDA-regulated medi-
cal products and devices [21]), reduce the risk of poten-
tially inappropriate opioid prescriptions and estimate causal 
effects/association measures for RWD. Various ML tools 
are being discussed in reference to the above issues. Such 
tools include unsupervised learning for clustering and dis-
covering patterns for drug utilization as well as supervised 
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Table 1 Key papers recently authored by FDA-statisticians on the application of AI/ML-methodology in the drug development process
Author(s) Year Journal Title Objective Paper 

type
Liu et al. 2022 Clinical Pharmacol-

ogy and Therapeutics
Landscape Analysis of the Application of Artificial Intelli-
gence and Machine Learning in Regulatory Submissions for 
Drug Development From 2016 to 2021.

Summarizes AI/ML in 
regulatory submissions

Review 
paper

Liu et al. 2020 Clinical Pharmacol-
ogy and Therapeutics

Application of Machine Learning in Drug Development and 
Regulation: Current Status and Future Potential.

Discusses AI/ML in 
regulatory submissions

Review 
paper

Zhang et 
al.

2022 Statistics in Biophar-
maceutical Research

The Use of Machine Learning in Regulatory Drug Safety 
Evaluation.

Reviews AI/ML work in 
drug safety evaluation

Review 
paper

Hein et al. 2019 Journal of biopharma-
ceutical Statistics

Comparing Methods for Clinical Investigator Site Inspec-
tion Selection: A Comparison of Site Selection Methods of 
Investigators in Clinical Trials.

Compares methods of 
clinical site inspection 
selection

Original 
Research

Lautier 
et al.

2022 Initially presented at 
JSM 2022, Washing-
ton DC

Applications of Machine Learning in Pharmacogenomics: 
Clustering Pharmacokinetic Concentration Curves,

Explores the use of 
hierarchical clustering in 
pharmacogenomics

Original 
Research

Fig. 1 Example of a decision tree to classify patients into “High risk” or “Low risk” patients
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including extensive documentation and usage examples. 
For now code can be requested from the authors.

Quality Control and best Practices

When leveraging AI/ML data analyses in late-stage clinical 
trials it is key to have the same level of quality and robust-
ness just like any other analysis performed and potentially 
brought forward to and discussed with regulators. While 
generating new insights, AI/ML technology and its applica-
tion is also more complex in terms of methods, data pre-
processing, software engineering and documentation. In this 
vein, ensuring reproducibility and reusability are impera-
tive as mentioned in [27], specifically when using AI/ML 
approaches with human data in interventional clinical trials, 
a highly regulated environment.

To address this a framework of best practices was devel-
oped. Teaming up with colleagues from several different 
statistics departments within Bayer we have developed an 
internal AI/ML best practice document that entails guidance 
on what needs to be decided, done and documented when 
planning and executing AI/ML analyses within a standard-
ized analysis framework. This guidance, at its core, is built 
on the “data, optimization, model and evaluation” (DOME) 
concept published in [27] as well as the Good Machine 
Learning Practice previously mentioned [11]. To accom-
modate the clinical trial setting at a pharmaceutical com-
pany, we have extended the DOME concept specifically in 
terms of (i) exact data traceability and (ii) software valida-
tion in line with Bayer’s standard operating procedures and 
programming best practices. The final document has been 
rolled out, accompanied by trainings, to our statistical staff 
to ensure that planning, execution, and interpretation of AI/
ML analysis will be based on common quality and robust-
ness standards.

A slightly redacted version of the final document (with-
out company internal cross references) is added as supple-
mentary material to this paper. For all analyses conducted 
in a regulatory setting it is essential that data derivations, 
objectives, (statistical) algorithms, and validation steps are 
addressed. The document addresses the particularities that 
especially occur in the setting of computational intensive 
AI/ML-methods.

Leveraging Value of AI/ML Analyses for Decision 
Making within Clinical Teams

One of the most important aspects of complementing 
conventional statistical analysis methods with AI/ML 
approaches in the setting of late phase clinical statistics 
is the interpretation of highly complex results. They must 
be made amenable to stakeholders of diverse backgrounds 

exploratory and post-hoc fashion, they are anticipated to 
become part of prospective planning in the future. Results 
from these analyses are expected to be included in clini-
cal study reports which are the basis for regulatory approval 
decisions. To the best of our knowledge analyses such as 
those presented here have not been included in submis-
sion packages yet, but we consider this a realistic option 
and therefore would like to contribute to a discussion on 
the appropriateness of these analyses in a regulatory set-
ting. However there are other applications of particular AI/
ML-methodology that we have included into the Statistical 
Analysis Plan of a phase-IIb-study.

From Artisan AI/ML Prototyping to Standardized 
and Efficient Software Solutions

Across the pharmaceutical industry AI/ML methodology 
has been applied for many years in the space of high-dimen-
sional biomarker development and analysis (such as gene 
expression data). However, these biomarker projects are 
mostly research driven, in an exploratory nature, and have 
different needs and expectations attached. In our experi-
ence, typically an AI/ML solution is tailored specifically for 
each biomarker project; as a result, each project consumes a 
considerable amount of resources and time but only a small 
part of it, for example a small part of the software code that 
is written, can be re-used in later projects. Therefore, when 
applying AI/ML in late phase and especially pivotal clinical 
trials to enable data-driven decision making this execution 
approach is inefficient and not fit-for-purpose. We hence set 
out to streamline the AI/ML capabilities, creating highly 
flexible yet standardized, reproducible and validated AI/
ML software modules following usual terminology in bio-
informatics called pipeline to efficiently compute and report 
holistic AI/ML models for all typical Phase II /III clinical 
endpoints based on all measured data, i.e. all Clinical Data 
Interchange Standards Consortium (CDISC) domains from 
late phase interventional trials.

The software is built on the principles of software engi-
neering best practices; it is developed in R and is highly 
modularized, leveraging efficient coding and computation 
concepts from tidyverse, tidymodels [25] and mlr3 [26]. The 
modularization allows for seamless plug-in of different AI/
ML engines and explainable AI components needed to inter-
pret complex models in a way amenable to clinicians. With 
this set up we are striking a balance between the flexibility 
needed to address trial specific peculiarities whilst ensuring 
as much standardization as possible for efficiency.

The software modules were developed over the last 4 
years. Bayer is currently in the process of making these 
modules publicly available on github.com/Bayer-Group, 
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Information Content: how well do we Understand 
the Biological System Given the data?

One of the key components of any AI/ML model fed with 
complex data sets is the model performance on independent 
data not used to build the model, i.e. its ability to general-
ize and correctly predict a clinical outcome in new patients. 
Estimating this performance in an unbiased manner is by 
itself a complex task and details on how this can be done can 
be found for example in [31]. In our framework and the cor-
responding analysis practice, appropriate re-sampling meth-
ods are applied, potentially at various steps when computing 
an AI/ML model, ultimately allowing to obtain a robust esti-
mate of model performance. The key information we can 
derive is twofold:

 ● Firstly the performance estimate, which is conceptually 
related to the idea of “information content” described al-
ready in the year 1948 in [32]. It allows us to gauge how 
well we are able to understand and predict the behav-
ior of a complex information processing system using 
a number between 0 and 1. Depending on the (clinical) 
outcome type that is modelled (e.g. continuous normally 
distributed, or binary, or time-to-event), well known 
performance measures such as R2, Receiver Operating 
Characteristics – Area Under the Curve (ROC-AUC) or 
Harrel’s C can be used. For the remainder of this pa-
per we focus on Harrel’s C. Harrel’s C, also known as 
concordance index, is a measure of a model’s ability to 
discriminate between lower and higher risk patients. It 
yields values close to 1 if subjects with a higher risk 
score tend to have the event of interest later than sub-
jects with a lower risk score. Values close to 0.5 indicate 
that the risk score does not yield more information than 
flipping a coin.

 ● Secondly, comparing the AI/ML model performance to 
the performance of the conventional statistical modeling 
which is typically pre-specified in a statistical analysis 
plan helps to quantify how much information content 
is not captured with the latter model (see Fig. 2). It is 
possible that the AI/ML model does not have more in-
formation than the relatively straightforward conven-
tional statistical modeling, which then may suggest that 
information to build a meaningful knowledge basis of 
the disease and potential treatment effect may be in-
complete. Such finding may inform scientific (what else 
ought to be measured and when to measure, to get a bet-
ter information content) and strategic discussions (what 
is the probability of success when moving forward with 
the development program).

including clinicians and regulatory scientists. At Bayer, we 
have developed a framework for presenting key AI/ML 
results with this audience in mind. It consists of a standard-
ized set of tables, listings and figures (TLFs), all of which 
are derived from explainable AI concepts. Most of these 
TLFs can be derived from any of the standard ML methods 
typically used for structured data. For the purpose of this 
paper however, we will focus on one particular ML method, 
Random Forests (RF) introduced in [28]. A notable body of 
evidence (see e.g. [29, 30]) (and company internal bench-
marking over many years and differing projects) shows that 
RF provides good balance among ML model performance, 
interpretability and ability to deduce complex holistic mod-
els. Additionally it features the flexibility needed to model 
common endpoint types in Phase II/ III settings. In the fol-
lowing sections, we will introduce the components of the 
aforementioned framework of results presentation. Note 
that the purpose here is not to describe in great depth the 
technical details but rather to show what we believe are the 
fundamental building blocks of such a framework in a clini-
cal development organization of a pharmaceutical company.

As random forests are the technique used to generate the 
output presented in this paper we provide some further illus-
tration so that all readers irrespective of their background 
get an idea of the basic principle of this technique:

Consider the situation where the risk status for a certain 
disease (high/ low) of a subject shall be classified based on 
available (health) data – and based on this assessment fur-
ther diagnostics may be considered necessary. Using a deci-
sion tree that takes suitable information into account can be 
a natural choice. In the admittedly somewhat artificial set-
ting where it is known that only men above the age of 55 
years with a low socioeconomic status have a high risk then 
a possible decision tree could look as follows:

Intuitively, if many variables (in this setting usually 
called features) are available then the classification derived 
from an available data set can be close to perfect. However 
such a classification usually does not turn out to be too use-
ful as the decision tree will usually not yield good results in 
an independent sample of subjects.

Random forests overcome this challenge via not deriv-
ing only one decision tree, but many decision trees, hence 
the name random “forest”. First several data sets D1,…, Dn 
are derived from the original dataset via randomly drawing 
from the available dataset D with replacement. “Randomly” 
refers to both choosing subjects randomly from all available 
subjects and to choosing not all, but a subset of features to 
derive a classification rule for each randomly selected data 
set Di. An overall classification rule is then obtained via 
using the majority vote of the single classification rules.
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Variable Importance

In Random Forest, a concept to estimate the impact of 
each assessed variable on the clinical outcome of interest 
is called variable importance. Various types and derivatives 
of this variable importance exist and each can serve slightly 
different purposes. However, all of them allow us to gain 
an understanding of the impact of each variable in relation 
to all other variables as the variable importance integrates 
the main effect of a variable with all potential interaction 
effects with other variables. For example, with a continuous 
outcome assumed, it is straightforward to understand how 
much of the outcome variance is actually explained by treat-
ment, adjusting for all other covariates measured in the trial 
(see Table 2), which is scientifically as well as strategically 
a very important piece of information.

The table shows that treatment only ranks 6th among all 
variables in the model. However, it has to be considered that 
many often occurring factors like age either cannot be modi-
fied at all or need high efforts to modify, while for treatment 

As can be seen from this figure the Random Forests model 
provides a better prediction compared to the basic clinical 
model. However the Random Forests model still leads to a 
model which is far away from being perfect.

What are the Major Drivers of the Disease and 
Treatment Effect and what is Their Functional 
Relationship to the Clinical Outcome?

Conventional statistical modelling approaches usually avoid 
modelling all possible interactions, although in principle 
this is possible. For the AI/ML-models we have in mind this 
is more or less a by-product, but clinical teams will need to 
understand and interpret these complex types of models to 
derive actionable insights. In our framework we focus on 
three types of tasks to enable interpretability that build on 
the concepts of explainable AI.

Fig. 2 Information content (approximated by Harrell’s C in this case) 
quantification of a time to event endpoint example case with 112 simu-
lated variables including a binary treatment label. 0.5 is equivalent to 
no information captured by the model given the data and 1.0 is equiva-
lent to complete information and a perfect model to explain the clinical 
endpoint. The basic clinical model is the typical one defined for pri-
mary analysis, i.e. treatment and strata terms are the only independent 

variables used for modelling the endpoint. In contrast, the Random 
Forest model was built with all 112 available clinical covariates using 
a logrank splitrule to accommodate for the time to event endpoint. 
This type of Random Forest is also known as Random Survival Forest, 
see [35]. It captures substantially more information content than the 
basic clinical model. Information content quantification was based on 
4 × 5-fold cross validation
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a direction by deriving the interactions based on the mean 
minimal depth between a given root node covariate (the tail, 
i.e. start of the edge) and a subsequent child node covariate 
(the head, i.e. end of the edge). The idea here is that a root 
node covariate is normally more important than a child node 
covariate, which may be important information for correct 
interpretation of a potential interaction, specifically within a 
network graph.

Interpreting Complex Functional Relationships between 
Variables and a Clinical Outcome

To quantify, visualize and interpret the complex functional 
relationships between a clinical outcome and measured 
variables modelled by an AI/ML method, clinical teams can 
decide to do this at population level or patient level. In the 
Bayer framework, typically these analyses are performed on 
the population level using Partial Dependency Plots (PDP) 
and Accumulated Local Effects (ALE) plots. By doing so 
we can visualize the ML-inferred functional relationship 
of a variable with outcome whilst adjusting for all other 
covariates (PDP) and cross-correlation among them (ALE), 
see Fig. 5. With PDP and ALE plots, the complexity of a 
functional relationship becomes visible to clinical teams. Eg 
In the ALE plot of Fig. 5a the umbrella type shape of the 
curve central values of X3 i.e. values between 75 and 125 
lead to values clearly above 0, while values outside this cen-
tral area lead to values below 0. Clinically this would mean 
that subjects inside this central range would have a survival 
benefit while this would not or to a lesser degree apply to 
subjects outside this central range. The non-monotonic non-
linear functions provided by such visualizations are amena-
ble to interpretation and potential decision making, because 
it allows to determine cut-off ranges of a variable’s value at 
which clinical benefit may turn into detrimental effects. This 
can be an important step when deciding of treatment popu-
lations moving forward in a drug development program. A 
very interesting feature of these explainable AI analyses is 
that interaction effects can be incorporated and visualized, 
especially for any two-way interaction of a variable with 
treatment to determine whether the treatment effect is poten-
tially modified as function of the level of any other variable.

For a technical description of all these methods and refer-
ences to software implementations of them please see [39]. 
Currently Bayer is in the process of making available the 
software package that was used to generate the output pro-
vided here.

this is not the case and in many situations can even rather 
easily be applied.

Detecting Complex treatment-effect Subgroups

One of the most important features of AI/ML, specifically of 
tree-based methods such as Random Forests, is the property 
of implicit inference of interactions among all measured 
variables of essentially any order and complexity. To iden-
tify and reliably quantify such interaction effects from AI/
ML models, various approaches have been reported in the 
literature. For example [33–35] are under the concept of 
generally detecting interactions between any pair of covari-
ates based on Random Forests models. As another example 
with a different concept, [36] focuses on detecting inter-
actions of covariates with treatment which can be used to 
define patient subgroups with an e.g. enhanced treatment 
effect using virtual twins. Clinical teams will have to decide 
on a case-by-case basis which of those to apply and it is 
important to note that, as with any subgroup analysis, this 
is merely hypothesis generation in need of confirmation by 
other means. Also, as part of the robustness checks when 
analyzing subgroups in a specific trial, various approaches 
exist and ought to be included in AI/ML subgroup analyses, 
see [37, 38].

With a hypothesis space of potential interactions deduced 
from clinical trial data, one can visualize a virtual biological 
system in the form of a network graph in which variables 
are nodes sized proportionally by their variable importance 
and edges between nodes indicate interaction between the 
variables (see Figs. 3 and 4). For example, Fig. 4 shows that 
there should be an interaction between treatment and e.g. 
X1, X2, X3 resp.

When detection of interactions is based on tree models 
such as Random Forests, edges can optionally also be given 

Table 2 Example of a variable importance table representing the com-
plete hypothesis space. Permutation importance was used here and the 
value is equivalent to the information content (Harrell’s C in this case) 
of the respective variable. It is important to note, that variable impor-
tance is not a univariate measure but integrates the main effect of the 
respective variable with all potential (higher order) interaction effects 
with any of all the other variables that are part of the Random Forest 
model
Importance Rank Variable RF Variable Importance
1 X1 0.014
2 X2 0.006
3 X3 0.006
4 X4 0.006
5 X5 0.005
6 treatment (TRT) 0.005
… … …
111 X111 0
112 X112 0
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that an analysis using AI/ML methodology as described 
here has the potential to deepen the understanding of a com-
pound. Our considerations show that AI/ML methods can 
indeed be informative for several stakeholders in the drug 
development process. The present paper illustrates that both 
regulatory and industry are heavily investing in understand-
ing the role these concepts can play in the future, and in 
particular, we have depicted a use case in detail.

These methods have a lot to offer mainly in settings 
where a holistic analysis of all available baseline data on 

Discussion and Recommendations

AI/ML methods follow a different concept than the conven-
tional statistical modelling that is currently applied in late-
stage clinical development and usually forms the basis for 
the formal decision from a statistical point of view whether 
a drug shall be approved or not. Despite clearly specified 
success criteria, however, submissions to regulatory agen-
cies usually consist of a large amount of additional analyses 
that contribute to the overall body of evidence. We believe 

Fig. 3 System network graph deduced from the holistic RF model 
example case describing how variables interact to determine the 
patient’s system journey on the trajectory to a clinical event. It is based 
on all detected pairwise interactions between variables. Such networks 

represent the best hypothesis space given the data and can be interro-
gated interactively to check specific hypothesis or be informed about 
previously unknown relationships between variables
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making or more general in settings where the external valid-
ity cannot be taken as a given.

When applying AI/ML – methods in the framework of 
pivotal clinical trials we especially recommend the follow-
ing based on our experiences:

 ● Reproducibility: Make sure that the results obtained 
are reproducible.

 ● Education: Make sure that the AI/ML models used and 
the quantities presented are understood by all parties 
involved and that all parties involved have received an 
appropriate training in advance.

 ● Standardization:

 – Make sure that appropriate best practices are in 
place within the company.

an outcome–efficacy or safety – is of particular importance. 
The focus of this paper was on data collected in random-
ized clinical trials, which by construction allows to assess 
the influence of an investigational treatment on an outcome. 
Often individual trials might be too small to investigate for 
instance interactions of baseline characteristics with treat-
ment effects. Hence, data from several trials might be used. 
More experience is needed on how to deal with potential 
between-trial heterogeneity in treatment effects when com-
bining data across trials for more complex AI/ML driven 
exploration [36]. Whereas in randomized controlled trials 
the internal validity is given by design, AI/ML concepts 
might be of even more importance when RWD shall form 
the basis of regulatory decision making or if precision medi-
cine concepts shall be implemented in regulatory decision 

Fig. 4 Zooming into the network graph to specifically scrutinize variables that interact with treatment and may thus modify the treatment effect
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Fig. 5 a and b: ALE analysis of 
complex functional associations 
of X3 (an example covariate) 
with a time to event clini-
cal outcome at a specific time 
point, without (a) and with (b) 
dependence on treatment. An 
ALE value of 0 is equivalent to 
the average event probability 
and deviations depict the relative 
increase or decrease of the event 
probability. ALE analyses are, 
by virtue of the method, adjusted 
for all other co-variates and any 
potential correlation between 
them
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Workshop and decided afterwards to write a paper on the topic. The 
authors would like to express their gratitude for the opportunity to 
cover the topic at this occasion.
The authors would like to acknowledge the input that further col-
leagues from Bayer have provided when compiling the Best Practice 
Document, especially Silke Janitza and Bohdana Ratich.
All authors are employed by their respective institutions and may hold 
stock or stock options of the pharmaceutical companies they are work-
ing for.
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