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Abstract
The recent development of novel anticancer treatments with diverse mechanisms of action has accelerated the detection of 
treatment candidates tremendously. The rapidly changing drug development landscapes and the high failure rates in Phase III 
trials both underscore the importance of more efficient and robust phase II designs. The goals of phase II oncology studies are 
to explore the preliminary efficacy and toxicity of the investigational product and to inform future drug development strate-
gies such as go/no-go decisions for phase III development, or dose/indication selection. These complex purposes of phase 
II oncology designs call for efficient, flexible, and easy-to-implement clinical trial designs. Therefore, innovative adaptive 
study designs with the potential of improving the efficiency of the study, protecting patients, and improving the quality of 
information gained from trials have been commonly used in Phase II oncology studies. Although the value of adaptive clinical 
trial methods in early phase drug development is generally well accepted, there is no comprehensive review and guidance 
on adaptive design methods and their best practice for phase II oncology trials. In this paper, we review the recent develop-
ment and evolution of phase II oncology design, including frequentist multistage design, Bayesian continuous monitoring, 
master protocol design, and innovative design methods for randomized phase II studies. The practical considerations and 
the implementation of these complex design methods are also discussed.

Keywords  Adaptive design · Phase II oncology trials · Simon’s two-stage design · Bayesian continuous monitoring · Master 
protocol · Dose optimization

Introduction

The primary goals of phase II oncology trials are to establish 
the anti-cancer activity of the investigational agent and to rec-
ommend its further clinical trial evaluation strategy. Although 
inherently comparative, phase II trials are usually open-label, 
single treatment arm designs comparing the investigational 
agent with historical data using short-term binary efficacy 
endpoints such as ORR as the primary efficacy endpoint. It 
is desired to screen out ineffective investigational drugs with 
a minimal number of patients being exposed. On one hand, 
substantial numbers of new drug candidates and combina-
tion therapies bring tremendous opportunities for sponsors to 

conduct proof-of-concept (POC) trials. On the other hand, the 
high competition also requires early and fast decisions based 
on the results of phase II clinical studies [1–3]. Therefore, the 
competitive landscape of oncology drug development brings 
unique challenges to study design, such as combination treat-
ment strategies, multiple endpoints, multiple objectives in 
a single master protocol, and ongoing study adaptations in 
phase II trials [4]. An adaptive design, defined as a clinical 
trial design that allows for prospectively planned modifications 
to one or more aspects of the design based on accumulating 
data from subjects in the trial, is more flexible and efficient 
than conventional designs [4], and therefore is becoming more 
common in Phase II oncology studies. Frequentist adaptive 
designs provide flexibility in terms of sample size, study dura-
tion, early futility stopping rules, and target product profile. 
Bayesian adaptive design in phase II trials allows continuous 
monitoring of the efficacy and safety results and helps the 
study team to make a timely decision. Master protocol design 
which allows multiple patient populations and drug regimens 
to be compared in the same study is also critical to increasing 
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the efficiency of phase II oncology trial design [5–7]. Since 
the primary purpose of phase II is not seeking regulatory 
approval, phase II exploratory trials do not generally have the 
same regulatory expectations as confirmatory trials intended 
to provide substantial evidence of effectiveness in terms of 
statistical rigor and operating characteristics. However, it is 
still important to follow the good principles of adaptive trial 
design to avoid erroneous conclusions [4]. Although many 
adaptive design methods have been proposed, there is no com-
prehensive review and guidance on adaptive design methods 
and their best practice in phase II oncology trials. This paper 
intends to bridge this gap.

The structure of the paper is summarized as follows: In 
Sect.  “Two-stage Adaptive Design Methods”, we will review 
the frequentist adaptive design methods; in Sect. “Bayesian 
Adaptive Design”, Bayesian adaptive design and its imple-
mentation in phase II oncology studies will be discussed; in 
Sect. “Master Protocol”, we will review the master protocol 
design and its application in early phase oncology trials, as 
well as the advanced methods proposed to overcome statistical 
challenges in master protocol design, including information 
borrowing, adaptive randomization, and multiplicity adjust-
ment; In Sect. “Randomized Phase II Oncology Trials”, we 
will discuss the importance of randomized Phase II studies, 
including randomized dose optimization studies and rand-
omized control proof-of-concept studies, and the application 
of adaptive design in such studies.

Two‑Stage Adaptive Design Methods

In phase II oncology trials, it is desirable to reject an ineffica-
cious treatment with a minimal number of patients exposed 
to the investigational drug. The majority of such trials are 
open-label single-arm studies with short-term binary efficacy 
endpoints based on the following general hypothesis testing:

Where p0 is the maximum ‘unacceptable’ response rate, 
and p1 is the minimum ‘acceptable’ response rate. Due 
to the ethical and economic considerations, an adaptive 
two-stage design, which early terminates the study based 
on the unpromising interim analysis result, is often prefer-
able, given the benefits of sample size savings and patient 
protection.

Simon’s Two‑Stage Design

The most commonly used adaptive two-stage design is 
Simon’s two-stage design [8]. A Simon two-stage design 
has the following form:

H0 ∶ p ≤ p0vsH0 ∶ p ≥ p1

•	 In the first stage, N1 patients are accrued, treated, and 
observed for clinical response. If CR1 or fewer responses 
are observed, the trial is terminated and the treatment is 
not recommended for further investigation;

•	 In the second stage, additional (N2 − N1) patients are 
accrued if this study is not stopped after the first stage. In 
the final analysis, if CR2 or fewer responses are observed 
among all N2 patients, then the treatment is not rec-
ommended for further investigation; if more than CR2 
responses are observed, and treatment is recommended.

The design parameters Q = (N1,N2,CR1,CR2) will be 
selected to satisfy the following error constraints:

and one of the following ‘optimal’ criteria:

•	 Simon’s ‘Optimal’ design: to minimize the expected sam-
ple size when p = p0,

•	 Simon’s ‘Minimax’ design: to minimize the maximum 
sample size N2.

The design parameters (N1,N2,CR1,CR2) will be deter-
mined by enumeration using exact binomial probabilities.

Simon’s optimal design is the most commonly used adap-
tive design method for phase II oncology studies. Accord-
ing to a survey conducted by Ivanova et al. [2], more than 
40% of the phase II oncology trials with results published 
in leading oncology journals between 2010 and 2015 used 
this design. When the difference in expected sample sizes is 
small between the ‘Optimal’ design and ‘Minimax’ design 
and the enrollment is slow, Simon’s ‘minimax’ design may 
be more attractive because it reduce the maximum sample 
size at stage 2. The optimization criterion is not unique and 
the design strategy should be determined based on study 
specific-assumptions.

Adaptive Two‑Stage Design with Flexible Stage II 
Sample Size

In the traditional Simon’s two-stage design, the second stage 
sample size is fixed regardless of the number of responses 
from the first stage as long as it is over the early stopping 
threshold. It is counterintuitive because if the overwhelm-
ing efficacy of the investigational drug is observed from 
stage 1, the trial may not need to enroll as many sample 
sizes as planned for stage 2. The adaptive two-stage design, 
proposed by Lin and Shih [9], is an extension of Simon’s 
two-stage design, which defines the alternative hypothesis 
based on the interim readout and adapts the sample size and 

Pr
(
RecommendTreatment|p = p0

)
≤ �,

Pr
(
RecommendTreatment|p = p1

)
≥ 1 − �,
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decision rules for stage 2. Specifically, if the interim readout 
is overwhelmingly positive, the testing strategy will be more 
aggressive at stage 2 – the study will be powered at a higher 
target response rate which requires a smaller sample size. 
On the other hand, if the interim data is not overwhelm-
ingly positive but still deemed promising, at stage 2 we will 
test for a lower target response rate which requires a larger 
sample size.

The scheme of the adaptive two-stage design is illustrated 
in Fig. 1. At stage 1, N1 patients are enrolled and evaluated. 
If the number of responders observed from stage 1 is larger 
than CR2 , then at the second stage N3 − N1 patients will be 
enrolled and evaluated, and the study will be powered with 
a higher response rate for the alternative hypothesis. At the 
end of stage 2, if more than CR4 responders are observed, 
the drug is considered promising. On the other hand, if the 
responder rate observed from stage 1 is lower than CR2 and 
greater than CR1 , at the second stage N2 − N1 patients will 
be enrolled and evaluated. The study will test for a lower 
responder rate for the alternative hypothesis and if more than 
CR3 responders are observed at the end of stage 2, the drug is 
promising. If the number of responders is lower than CR1 , the 
drug will be early terminated at interim analysis.

Similar to Simon’s two-Q = (N1,N2,N3,CR1,CR2,CR3,CR4) 
will be selected by enumerations with exact binomial probabilities, 
and will need to satisfy the type I and type II error constraints as 
below:

and one of the four optimality criteria:

•	 O1: E(N|p = p0) is minimized,
•	 O2: max

(
E
(
N|p = p0

)
,E

(
N|p = p1

)
,E(N|p = p2)

)
 is 

minimized,
•	 O3: max(N2,N3) is minimized, and if multiple Q s are 

identified, pick the one with the smallest E
(
N|p = p0

)
,

•	 O4: max(N2,N3) is minimized, and if multiple 
Q s are identified, pick the one with the smallest 
max

(
E
(
N|p = p0

)
,E

(
N|p = p1

)
,E(N|p = p2)

)
.

The adaptive two-stage design reduces the risk of reject-
ing a potentially promising therapy due to the overly opti-
mistic expectation, and also allows the adaptability to reduce 
the sample size in stage 2 when the assumption for drug 
efficacy is too conservative. This method has been further 
discussed by Banerjee and Tsiatis [10], and Englert and 
Kieser [11], who introduced the designs which allow the 
sample size in the second stage as a function of the efficacy 
results at the first stage. Shan et al. [12] further enhanced 

Pr
(
RecommendTreatment|p = p0

)
≤ �,

Pr
(
RecommendTreatment|p = p1

)
≥ 1 − �1,

Pr
(
RecommendTreatment|p = p2

)
≥ 1 − �2,

Figure 1   Scheme of adaptive two-stage design with flexible stage II sample size.
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the efficiency of the approach by defining the second stage 
sample size as a monotonically decreasing function of the 
response rate of the first stage.

Curtailed Two‑Stage Design

Simon’s two-stage design, which is proposed to early ter-
minate ineffective agents, will still require lengthier time if 
the observational period is long, or if the enrollment is slow. 
The curtailed adaptive design method is proposed to early 
terminate the trial once the accumulative data have crossed 
the critical point, and the go/no-go decision does not have to 
wait until all predetermined numbers of patients have been 
treated or evaluated.

For example, Simon’s two-stage design, with a predeter-
mined sample size N1 at stage 1 and N2 at stage 2, has the 
following decision rules.

Stage 1: ≤ CR1 responders then early terminate the study, 
otherwise, move on to stage 2;

Stage 2: ≤ CR2 responders then do not recommend the 
agent, otherwise, recommend the agent.

With the curtailed design, we can early terminate the trial 
as soon as (N1 − CR1+1) failures are observed at stage 1. The 
early termination decision can be made before the Nth

1
 patient 

is treated and observed. Similarly, if the trial continues to 
stage 2, the trial can be terminated as soon as (N2 − CR2+1) 
failures, or CR2 responders are observed.

The curtailed two-stage design described above will early 
terminate a study as soon as the go or no-go decision is 
certain, which is referred to as non-stochastic curtailment 
[13]. The curtailed design can also be extended to scenarios 
where patients can be monitored by any cohort size, or con-
tinuously. For example, Law et al. [14] proposed stochastic 
curtailment methods, which early terminates a study in a 
continuous fashion not only when a ‘go’ decision is either 
certain or no longer possible, as in non-stochastic curtail-
ment above, but also when a ‘go’ decision is either likely 
or unlikely. They used conditional power in conjunction 
with stochastic curtailment to make the go/no-go decision. 
If the conditional power is lower than a specific threshold or 
exceeds a certain threshold, the trial will be early terminated. 
Similar methods have also been discussed by Ayanlowo and 
Redden [15], and Kunz and Kieser [16].

Two‑Stage Design with Complex Endpoints

Simon’s two-stage design is proposed for single-arm Phase 
II oncology trials with a single binary primary endpoint. 
However, the assessment of a single primary endpoint may 
not capture the full impact of the treatment. For example, 
Bryant and Day [17], and Conaway et al. [18] among oth-
ers developed a two-stage adaptive design that monitors 
both efficacy and toxicity, and early terminates the trial at 

interim analysis if either unpromising efficacy or unaccep-
table toxicity result is observed at interim. Similar to the 
efficacy evaluation, toxicity is evaluated as a dichotomous 
event, as patients either experiencing or not experienc-
ing unacceptable levels of toxicity. At stage 1, the study 
will be early terminated if either the number of observed 
responses is inadequate or the number of observed tox-
icities is excessive. Otherwise, the study will move on to 
stage 2, and the agent will be recommended only if there 
are both a sufficient number of responses and an accept-
able small number of toxicities.

The designs developed are based on the following 
hypothesis testing:

H00 ∶ pr ≤ pr0, pt ≤ pt0 Unacceptable toxicity and 
efficacy.

H01 ∶ pr ≤ pr0, pt > pt0 Acceptable toxicity but unac-
ceptable efficacy.

H10 ∶ pr > pr1, pt ≤ pt0 Acceptable efficacy and unac-
ceptable toxicity.

H11 ∶ pr > pr1, pt > pt1 Acceptable efficacy and toxic-
ity.where pr is the response rate and pt is the nontoxicity 
rate, pt0 is the maximum unacceptable nontoxicity rate 
and pt1 is the minimum acceptable nontoxicity rate, pr0 
is the maximum unacceptable response rate and pr1 is the 
minimum acceptable response rate.

The design is specified by a vector of six parameters (
N1,N2,CR1,CR2,CT1,CT2

)
 with the following decision 

rule:
At stage 1, N1  patients are accrued, treated, and evalu-

ated; if CR1 or fewer responses are observed, or CT1 or more 
toxicity events are observed, the trial is terminated and the 
treatment is not recommended for further investigation. Oth-
erwise, an additional 

(
N2 − N1

)
 patients are accrued at stage 

2. If more than CR2 responses are observed and fewer than 
CT2 toxicity events are observed, the treatment is recom-
mended. Otherwise, the treatment will not be recommended. 
Similar to Simon’s two-stage design, the final optimal design 
will be selected such that both optimality criteria and error 
rate constraints are satisfied.

Such design is useful when the toxicity of an agent is 
poorly understood and incorporating toxicity endpoints as 
part of the early termination decision-making could pro-
tect patients against excessive toxicity. Other authors like 
Kocherginsky et al. [19] and Tan et al. [20] discussed the 
adaptive two-stage design in Phase II studies that evaluate 
the anti-cancer agent with both Cytostatic and Cytotoxic 
effects. A such investigational agent will be recommended 
based on either a high response rate or a high stable dis-
ease rate (i.e. low progression rate). Other authors like 
Chang et al. [21] proposed similar two-stage designs where 
the new agent is considered promising only if it has both 
a sufficiently high response rate and a low early progres-
sion rate. Such a design could be useful for newly developed 
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anti-cancer agents when stronger evidence of efficacy is 
required to establish an agent is promising.

Bayesian Adaptive Design

In Sect.  “Two-stage Adaptive Design Methods”, we 
reviewed the commonly used adaptive design for two-stage 
studies, in which the efficacy outcome will be examined 
at a fixed number of stages during the study (for example, 
Simon’s two-stage design inspects data at interim or final 
analysis). The two-stage design can be extended to three 
or more stages, which allows the investigators to monitor 
the clinical trial and make early decisions. However, such 
designs require the investigators to predetermine the num-
ber of interim analyses and their operational milestones 
before the initiation of a clinical study. Such strict sample 
size guidelines in each stage could be difficult to adhere to, 
especially for multi-site clinical studies with highly complex 
patient enrollment coordination and cross-site communica-
tion process. When the actual trial conduct deviates from the 
original plan, the stopping boundaries will be undefined, and 
the operating characteristics cannot be controlled [22]. For 
example, if Simon’s two-stage design requires the investi-
gator to conduct interim analysis at the sample size of 15, 
however, 2 additional patients are enrolled and evaluated at 
the time of interim analysis data cut, then the decision rule 
will be left undetermined.

The Bayesian adaptive design is a more flexible alterna-
tive option offering more frequent or continuous trial moni-
toring. Bayesian adaptive design is a continuous learning 
process as the new data can be naturally synthesized into 
the Bayesian posterior distribution and therefore facilitate a 
more frequent and flexible trial monitoring process. It allows 
the investigator to monitor the trial either continuously, or by 
any cohort size. Trial enrollment deviations such as acciden-
tally enrolling more patents than needed at interim analysis 
won’t jeopardize the operating characteristics considering 
the interim decision is made based on the Bayesian predic-
tive/posterior probability of an event of interest, which can 
be calculated at any time point during the trial. Moreover, 
Bayesian adaptive design is proven to be robust towards 
protocol deviation scenarios such as skipping one or more 
interim analyses or conducting interim analyses by different 
cohort sizes. It is shown by Lin and Lee [23] through simula-
tion studies that the inflation of the type I error is small and 
usually under 10%. It also allows for the incorporation of rel-
evant prior information. By nature, the Bayesian method is 
adaptive and provides an ideal framework for adaptive trial 
designs [23]. The design parameters of Bayesian methods 
such as early termination threshold parameters and sample 
size are usually calibrated through simulation such that the 
desired operating characteristics are retained.

Many Bayesian designs have been proposed in literature 
focusing on Phase II single-arm studies with binary end-
points. Thall and Simon [24] proposed to use the Bayesian 
posterior probability to monitor the result of phase II stud-
ies; Lee and Liu [25] on the other hand proposed to use of 
Bayesian Predictive Probability to inform the go/no-go deci-
sions; Cai et al. [26] discussed the Bayesian interim decision 
rules for studies with the delayed outcome. The Bayesian 
designs with complex endpoints are discussed by Thall et al. 
[27], Zhou et al. [28], Guo and Liu [29], and Zhao et al. [30].

Bayesian Posterior Design vs BAYESIAN Predictive 
Design

Generally, there are two types of Bayesian go/no-go decision 
rules: (1) Go/no-go decision based on the Bayesian posterior 
distribution of the parameters; (2) Go/no-go decision based 
on the Bayesian predictive probability of success at the end 
of the trial.

The Bayesian posterior design is easy to understand and 
implement. During the trial monitoring process, the inves-
tigator can terminate the study early based on the Bayesian 
posterior distribution of the parameter of interest. For exam-
ple, if we have the following hypothesis of interest:

where p0 is the maximum ‘unacceptable’ response rate, 
and p1 is the minimum ‘acceptable’ response rate. Assuming 
the prior distribution of the binary response rate follows a 
beta distribution,

and x responders out of n patients are observed at interim 
analysis, then the posterior distribution of the response rate 
will also follow a beta distribution

And the go/no-go decision at interim analysis will 
be made based on the Bayesian posterior probability 
Pr
(
p ≥ p0|data

)
 . Specifically, if Pr

(
p ≥ p0|data

)
≤ � , the 

study will be early terminated due to lack of efficacy; if 
Pr
(
p ≥ p0|data

)
> 𝜃 , the enrollment will be continued till 

the next interim analysis or final analysis. The threshold 
parameter � will be calibrated via simulation to retain the 
optimal operating characteristics. Specifically, the ‘optimal’ 
� will be selected such that Pr

(
recommendthedrug|Ha

)
 is 

maximized while Pr
(
recommendthedrug|H0

)
 is controlled 

at the desired level.
The Bayesian predictive design, on the other hand, uses 

the predictive probability of rejecting the null hypothesis at 
the end of the trial (with maximum enrollment) to support 

H0 ∶ p ≤ p0vsHa ∶ p ≥ p1

p ∼ Beta
(
a0, b0

)
,

(1)p|(X = x) ∼ Beta
(
a0 + x, b0 + n − x

)
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interim decision-making. Hence it will incorporate both 
interim data and future data into the process of decision-
making. Given the posterior probability of response rate p 
follows the beta distribution described in (1), the number of 
future responders Y , in m = N − n future patients will follow 
a beta-binomial distribution

Specifically, if Y = i future responders are observed, then 
the posterior probability of p is

Then the predictive probability of trial success at full 
enrollment is calculated as

with

Ii can be understood as the indicator for treatment being 
efficacious at the end of the trial given the current data ( x 
responders out ofn ) and the potential outcome ( i responders 
out ofm ). With p follows the beta distribution in (3), Ii is a 
function ofi . Therefore the predictive probability ( PP ) can 
be calculated as the weighted sum of the indicator Ii over 
all possible observations ofY = i , which follows the beta-
binomial distribution in (2). PP is used to determine whether 
the trial should be stopped early due to futility. Similar to 
Bayesian posterior designs, the ‘go’ decision will be made 
at interim analysis if PP ≥ � , and the no-go decision will be 
made ifPP < 𝜂 . The design parameters (�, �) will be cali-
brated through simulation such that type I/II errors are con-
trolled with the smallest maximum sample sizeN.

Both Bayesian posterior design and Bayesian predictive 
design allow the investigator to monitor the trial continu-
ously or by any cohort size. Both methods retain good oper-
ating characteristics by selecting the optimal design param-
eters to control type I error and maximize power. Another 
important feature of both designs is that the stopping rules 
can be defined before the execution of the trial, which makes 
such designs operationally easy to implement. In other 
words, one does not need to calculate the actual Bayesian 
posterior/predictive probabilities to make the go/no-go deci-
sion in the interim analysis. Instead, the interim decision can 
be made by comparing the interim efficacy readout with the 
defined critical values.

The predicted chance of success by Bayesian predictive 
design and the posterior probability of Pr

(
p ≥ p0|data

)
 is 

the same when there is an infinite number of future patients 

(2)Y|(X = x) ∼ Beta − Binomial
(
m, a0 + x, b0 + n − x

)

(3)
p|(X = x, Y = i) ∼ Beta

(
a0 + x + i, b0 + N − x − i

)
.i = 1,… ,m.

PP =

m∑

i=0

Ii × Pr(Y = i|X = x)

Ii = I
(
Pr(p > p0|X = x, Y = i) > 𝜃|X = x, Y = i

)
.

to enroll in the interim analysis, regardless of the selection 
of threshold parameters. When the total sample size is finite 
and fixed, the Bayesian predictive probability of trial success 
will be close to the posterior estimates of Pr

(
p ≥ p0|data

)
 at 

the early stage of the study. As more patients are enrolled, 
the Bayesian predictive probability will move closer to 0 
or 1 [31]. Emerson et al. [32] conducted a simulation and 
showed that with the same desired operating characteristics, 
the Bayesian predictive design will be less likely to reject 
a drug at the early stage of the study, but more likely to 
reject it at a later stage than the Bayesian posterior prob-
ability design. Therefore for the investigational drug that is 
inefficacious, the Bayesian posterior design will more likely 
early terminate the study with a smaller sample size. On 
the other hand, if the clinical benefit of a drug is arbitrarily 
efficacious, the Bayesian predictive probability of trial suc-
cess will vary more dramatically across interim analysis than 
Bayesian posterior probability design, and therefore is the 
more sensitive and informative metric that could guide the 
interim decision-making.

Although acknowledging the statistical differences 
between Bayesian predictive design and Bayesian posterior 
design, we recommend the researchers select the metric for 
interim monitoring based on the specific questions that need 
to be answered during the interim analyses. The Bayesian 
posterior design can be considered as the metric to answer 
the question ‘is there convincing evidence in favor of null or 
alternative hypothesis with data at interim analysis’, while 
the Bayesian predictive design is best when the research 
question is ‘is the trial likely to show convincing evidence 
in favor of the alternative hypothesis if additional data are 
collected’ [31]. Lin and Lee [23] described the predictive 
probability monitoring as ‘conceptually appealing’ and 
‘better mimic the decision-making process of claiming the 
drug promising or non-promising at the end of the trial’. 
However, the computation burden could limit the feasibil-
ity of predictive probability in some clinical trial settings. 
Another limitation of the Bayesian predictive design is it 
is less straightforward to fit into the design with an uncer-
tain final sample size. For example, for trials with Bayesian 
adaptive randomization, Bayesian predictive design need to 
take an additional step of computing the expected predictive 
probability of success and enumerating all possible future 
sample size [33].

Bayesian Design with Complex Endpoints

In Sect. “Two-stage design with complex endpoints” of this 
paper, we have reviewed frequentist adaptive designs for 
phase II trials with complex endpoints. Similarly, Bayesian 
adaptive design methods that simultaneously monitor multi-
ple types of events and endpoints under a unified framework 
have been discussed by several authors [27–30]. In these 
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papers, the Dirichlet-multinomial model is used to embrace 
complex endpoints, and at each interim, the go/no-go deci-
sion is made based on either posterior probability or predic-
tive probability of events of interest.

Let Y  be the joint endpoint variable that follows a multi-
nomial distribution

where �k is the probability of Y  being in the kth category. 
Assume a Dirichlet prior for � =

(
�1,… , �k

)T
,

and the posterior distribution of � is given by

where xk is the number of patients in kth category at interim 
analysis. The decision of go/no-go will be made based on the 
posterior distribution calculated from the cumulative data

where b� a linear combination of � that characterize the 
event of clinical interest, and the cutoff C will be selected 
such that error constraints are satisfied with the minimum 
sample size. C can be a fixed constant or a monotonic 
decreasing function of the interim sample size . The ration-
ale is a more stringent stopping rule is desired at the begin-
ning of the trial when information is limited. As the trial pro-
ceeds and information accumulates, we have less uncertainty 
regarding the endpoints of interest, and thus, it is desirable 
to have a more relaxed stopping rule with smallerC.

Bayesian adaptive design with complex endpoints is prac-
tically useful for phase II trials with different purposes. For 
example, in a phase II dose optimization study where the 
investigator wishes to recommend a certain dose level with 
both promising efficacy and acceptable toxicity, then the 
hypothesis of interest is

Four categories of Y  will be 1 = (ORR, TOX), 2 = (ORR, 
no TOX), 3 = (no ORR, TOX), and 4 = (no ORR, no 
TOX). Therefore the trial will be early terminated if 
either ORR is unpromising or TOX is overwhelming. 
Therefore the interim decision rule can be guided by the 
Bayesian posterior probability of the events of inter-
est. Specifically, if Pr

(
𝜃1 + 𝜃2 ≤ 𝜙|x1,… , xk

)
> C  or 

Pr
(
𝜃1 + 𝜃3 ≥ 𝜙�|x1,… , xk

)
> C�, the trial will be early ter-

minated interim, otherwise more patients will be enrolled 
until the next interim analysis or final analysis.

Similar to Bayesian adaptive design with a single end-
point, the design methods for complex endpoints possess 

Y ∼ Multinom
(
�1,… , �k

)
,

(
�1,… , �k

)
∼ Dir(a1,… , ak)

(1)�|x1,… , xk ∼ Dir
(
a1 + x1,… , ak + xk

)

Pr
(
b� ≤ 𝜙|x1,… , xk

)
> C

H0 ∶ ORR < 𝛿
orr
orTOX > 𝛿

tox
vsH

a
∶ ORR ≥ 𝛿

�

orr
andTOX ≤ 𝛿

�

tox
.

good operating characteristics, and stopping rules can be 
obtained before the execution of clinical trials. At the same 
time, it offers a flexible framework that continuously moni-
tors trials with complex endpoints which can be practically 
useful for Phase II trials to answer a broader range of clinical 
questions.

Master Protocol

Recent advances in drug discovery and biotechnology have 
accelerated the detection of treatment candidates tremen-
dously. In addition, medical diagnostics have become more 
refined, leading to more precisely defined disease descrip-
tions and hence smaller patient populations for targeted 
therapies. Such development in precision medicine creates 
challenges in recruiting patients with rare genetic subtypes 
of diseases for classical clinical development programs, 
which study one or two treatments in a single disease. The 
master protocol is an innovative adaptive design that could 
potentially overcome the limitations of traditional study 
designs [6]. Such a design is defined as an overall trial struc-
ture that is designed to answer multiple research questions 
with multiple substudies with different objectives. Several 
types of master protocol trials can be distinguished, includ-
ing basket trials (the single investigational drug is evaluated 
in the context of multiple diseases or histologic features), 
umbrella trials (multiple investigational drugs are evaluated 
in the context of single or multiple diseases), and platform 
trials (an adaptive umbrella trial within which existing or 
new drugs may enter or leave the platform while the trial 
runs perpetually)[6, 34].

The most important advantage of a master protocol is, 
instead of setting up separate new trials for each research 
question, it offers a common infrastructure that studies mul-
tiple research questions in one study and therefore enhances 
operational efficiency. It offers a trial network with infra-
structure in place to streamline trial logistics, improve data 
quality, enhance coordination, and facilitate data collection 
and sharing. A second important benefit of a master proto-
col is its enrollment efficiency. It accrues patients for mul-
tiple research substudies in parallel and therefore increases 
patients’ chance of meeting the inclusion criteria for one 
of the substudies. It also allows the researchers to evaluate 
orphan molecular aberrations that are too rare to study in the 
traditional clinical trial setting. The third benefit of the mas-
ter protocol design is it offers opportunities to incorporate 
innovative statistical designs and modeling strategies which 
could further increase flexibility and improve efficiency. 
Although it can be used for the registrational purpose, most 
of the master protocol clinical trials are exploratory. In this 
section, we will review the innovative statistical methods 
available for Phase II master protocols with a few examples.
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Information Borrowing in Basket Trials

Phase II basket trials intend to identify the patient subpopu-
lations demonstrating favorable responses to the investiga-
tional therapy with a small number of subjects and a short 
duration of drug exposure. Therefore, how to improve the 
efficiency of basket trial design is an important but chal-
lenging question. The innovative dynamic information 
borrowing methods have been developed by many authors, 
to acknowledge the heterogeneity while at the same time 
promoting model efficiency. Berry et al. [35] proposed a 
Bayesian hierarchical modeling (BHM) method which 
allows information borrowing across patient subpopula-
tions by assuming the treatment effect for each cohort are 
statistically exchangeable and follows an underlying com-
mon distribution characterized by the hyperparameters � and 
�2 . A non-informative weak prior is recommended for these 
hyperparameters, and the Bayesian framework enables con-
tinuous learning about (�, �2) as the trial unfolds. One limi-
tation of Berry’s BHM method is the degree of borrowing 
can be sensitive to the selection of the prior distribution for 
the precision �2 even when a weak prior is used, especially 
for cases where the number of cohorts is relatively small and 
information on between-cohort heterogeneity from clinical 
data is limited [36]. Another limitation of the BHM method 
is that it assumes between-cohort exchangeability using a 
common � for all cohorts, which is not always optimal [37].

Several robust BHM methods have been proposed to over-
come these limitations. The exchangeable non-exchangeable 
mode (EXNEX) proposed by Neuenschwander et al. [38] 
allows the exchangeability assumption not to hold for all 
cohorts. The prior of the hyperparameters will be a mixture 
of distributions consisting of two parts: a common parent 
distribution and a cohort-specific distribution. By adjust-
ing the weight parameters of the mixture distribution, the 
EXNEX method allows more information sharing among 
similar cohorts, and less information sharing for distinct 
cohorts. A calibrated Bayesian hierarchical method (CBHM) 
was proposed by Chu and Yuan [39]. The CBHM determines 
the value of �2 as a monotonically increasing function of the 
Chi-square test statistics that measures the between-cohort 
heterogeneity to ensure that more information will be bor-
rowed across cohorts when data shows strong evidence 
of homogeneity and less between-cohort borrowing and 
vice versa. The CBHM does not require prior distribution 
assumptions, and the method yields better type I error con-
trol than BHM when the treatment effect is heterogeneous 
across cohorts. Another innovative method named Bayes-
ian latent subgroup design (BLAST) is proposed by Chu 
and Yuan [40] in which the authors introduced a latent sub-
group membership variable that aggregates different patient 
cohorts into subgroups (for example, ‘sensitive baskets’ vs 
‘insensitive baskets’) for information borrowing. The latent 

membership variable is jointly modeled by the binary treat-
ment response rate and the longitudinal biological activity 
measurements of the investigational drug.

Other recent advances in this field include the Bayesian 
model averaging (BMA) method proposed by Psioda and 
Xu [41], a two-stage method called hierarchical Bayesian 
clustering design proposed by Kang et al. [42]; a multiple 
cohort expansion design (MUCE) proposed by Lyu et al. 
[43], and the Bayesian semi-parameter design (BSD) pro-
posed by Li et al. [44].

Adaptive Randomization in Umbrella and Platform 
Trials

Umbrella trials and platform trials with multiple investi-
gational agents or agent combinations usually require the 
randomization of patients with common diseases. In the tra-
ditional designs, patients are randomized to each treatment 
arm with a fixed ratio. However, there is also a strong desire 
of minimizing the exposure of patients to less effective 
treatment. Especially in the field of oncology target therapy 
development, where patients with distinct biomarker profiles 
may respond differently to different target agents, innovative 
flexible randomization is desired to increase patients’ chance 
of being assigned to the customized optimal treatments.

Response adaptive randomization methods (RAR) are 
proposed to adjust future patients’ allocation based on the 
past patients’ responses to each treatment option in multi-
arm trials. The application of RAR has been extensively 
discussed in both frequentist and Bayesian contexts, for both 
exploratory and confirmatory trial settings. In this paper, 
we will focus our discussion on the application of Bayesian 
response adaptive randomization (BRAR) for exploratory 
multi-arm umbrella/platform trials.

Most BRAR allocation rules are calculated based on the 
posterior distributions of the response rates. Let �j denote 
the chance of arm j being the best of all treatment arms

where pj denotes the response rate for arm j based on 
interim data. Then the randomization allocation rates will be 
determined as a function of �j . In Table 1, we summarized 
some commonly used methods that have been proposed to 
adjust the randomization ratio based on �j . The most attrac-
tive feature of BRAR is from the ethical perspective as it can 
potentially increase patients’ chances of being randomized 
to a more promising treatment arm. It is especially appealing 
for the fast-moving early stage oncology trials in which the 
goal is to efficiently rule out unpromising treatment options/
identify promising treatment options, with limited available 
prior information. It also allows highly effective treatment 
options to proceed quickly through the exploratory platform 

�j = P
(
pj ≥ pk∀j ≠ k|data

)
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trials and graduate sooner for further confirmatory evalua-
tions. Trials with BRAR features may also be appealing to 
patients and as a result, may increase their willingness of 
participating.

Given that the randomization of later enrolled patients 
is based on the response data of early enrolled patients, the 
BRAR methods may not be feasible for trials with outcomes 
observed slower than the enrollment speed or trials with 
efficacy endpoints that require a long-term follow-up (such 
as trials in cardiovascular disease with time-to-event end-
points). However, it is less of a concern for exploratory plat-
form/umbrella trials in which the primary efficacy outcome 
is usually short-term binary responses. Survival trials with 
moderately delayed endpoints can also benefit from RAR, 
and their effects on RAR have been studied in the literature, 
see Zhang and Rosenberger [45], Huang et al. [46], Nowacki 
et al. [47], and Lin et al. [48].

Table 2 summarizes some recent real-world phase II mas-
ter protocol trials in oncology and their innovative design 
features. Some trials are used for exploratory purposes with 
the primary goal to identify promising signals of activity 
in individual tumor types that could be pursued in subse-
quent studies. Some trials are used to support accelerated 
regulatory approval of specific indications. Many of these 
recent master protocol trials incorporate advanced statisti-
cal methodologies discussed in this section. For example, 
the BATTLE-1 trial is an umbrella trial that utilized both 
adaptive randomization and Bayesian hierarchical borrow-
ing features [49, 50]. Patients were characterized into bio-
marker-based subgroups and the treatment allocation ratio 
was adjusted based on a hierarchical Bayesian probit model 
so that patients are more likely to be assigned to the target 
therapies that match their biomarker portfolio. Bayesian 

continuous monitoring method was also implemented to 
suspend a particular combination of biomarker group and 
treatment arm if the treatment is found not to be promising 
for the biomarker group. The I-SPY 2 and GBM AGILE 
studies are platform trials with adaptive randomization [51, 
52]. For basket trials, recent examples include VE-Basket 
and NEGIVATE, both of which employ methods extended 
from Simon’s two-stage design [53, 54].

Multiplicity Adjustment in Master Protocol Designs

Multiplicity is an issue that arises from testing multiple 
hypotheses in the context of master protocol design. Gener-
ally, the multiplicity adjustment for family wise type I error 
(FWER) is needed if there is more than one ‘win’ criteria to 
claim trial success. For example, trials with multiple end-
points, multiple time points of analysis, or multiple subpopu-
lations may require FWER. There are also different degrees 
of FWER control. For example, the strong control of FWER 
is used if one wishes to control error rates under all possible 
configurations of true and false null hypotheses. In other 
words, it is of interest to control the probability of falsely 
rejecting any true null hypothesis regardless of which and 
how many other hypotheses be true. Strong FWER control is 
usually required for regulatory purposes. The weak control 
of FWER, on the other hand, only controls for a specific 
configuration in which all null hypotheses are true. There-
fore, it’s important to understand the scientific objectives 
and regulatory objectives before designing the multiplicity 
adjustment.

The topic of multiplicity for master protocol designs 
has been extensively discussed by many authors in the 
past decades [55]. A wide range of multiplicity adjustment 

Table 1   Summary of commonly used BRAR algorithms

Reference Method Comment

Thompson et al. [72]
rj =

√
�j

∑
j

√
�j

Increase the randomization allocation ratio for more prom-
ising arms with a higher chance of success

Thall et al. [73]
rj =

�√
�j

�n∕N

∑
j

�√
�j

�n∕N

n is the current sample size and N is the trial’s maximum 
sample size. It tends to reduce the allocation variability 
at the beginning stage of the trial

Connor et al. [74]
rj =

√
�jVar(pj)∕nj

∑
j

√
�jVar(pj)∕nj

The allocation ratio will be directed toward the arm with a 
higher success proportion but lower precision

Wason and Trippa [75] For the control arm:

rjk =
1

J
exp

�
max

�
nk
1
,… , nk

J

�
− nk

0

��(
∑
j n
k
j

N
)

For treatment arms:

rjk ∝
�
�k∕K

j
∑

�
�k∕K

j

rjk = treatment allocation ratio for arm j at stage k
� , � = tuning parameters
nk
j
= current sample size at stage k for arm j

Wason’s method is specifically proposed for multi-arm 
designs with the common control arm. The randomiza-
tion assignment for treatment arms is very similar to 
Thall et al. [73]. The assignment of the control arm will 
retain the sample size when the success rate is low for 
the control arm and therefore preserves the statistical 
power
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techniques are available and can be selected based on the 
study objectives and features [56, 57]. These methods can be 
applied not only to master protocol designs but also to other 
types of study designs, such as adaptive and seamless trials. 
Given the complex nature of master protocols, the key chal-
lenge is to determine whether and when multiplicity adjust-
ment is needed, especially for confirmatory trials. Howard 
et al. [58] discussed under different scenarios that, based 
on whether the hypotheses inform a single claim of effec-
tiveness and whether all the hypotheses are required to be 
superior, the necessity of multiplicity considerations could 
be different. Stallard et al. [55] offered a similar discussion 
from the perspective of the design features, i.e. whether sub-
populations are nested under different treatment arms or vice 
versa. The rationale for the need for multiplicity adjustment 
is similar in both papers. When an investigational treatment 
has multiple chances to be claimed effective, for example in 
different subgroups, FWER control is recommended. Some 
master protocols also involve planned interim analyses 
where homogeneity is evaluated, or decisions are made on 
whether to “prune away” specific substudies. Under such a 
scenario, multiplicity adjustment is required since repeatedly 
looking at the trial data poses the risk of inflated FWER. All 
these considerations are summarized in Table 3.

Randomized Phase II Oncology Trials

For Phase II studies in oncology, the most prevalent design 
historically has been the single arm design with a binary 
variable, e.g. tumor response, as the outcome measure. The 
size of such a single-arm design is justified using hypothesis 
testing comparing the tumor response rate to an assumed 
known historical response rate. However, it has been increas-
ingly acknowledged that such a development path may not 
be exactly followed for different scientific and logistical rea-
sons. Specific scientific questions could be better addressed 
with a randomized design rather than a single-arm design 
in Phase II. In this session, we will discuss the opportuni-
ties and limitations of randomized Phase II oncology trials.

Randomized Phase II Design for Dose Optimization

One important application of randomized Phase II study 
is in oncology dose optimization. It has been increasingly 
acknowledged that the current maximum tolerated dose 
(MTD) dose selection paradigm based on Phase I dose 
escalation studies, which is initially defined for cytotoxic 
chemotherapeutics, might be suboptimal for modern target 
therapies or immunotherapies where a higher dose does not 
necessarily improve the anti-tumor activity but may result in 
a higher rate of long-term toxicity [49]. For example, Cabo-
zantinib was shown to be equally effective at a lower dose 

than the approved dose level with a lower dose reduction rate 
[50, 51]. To reform the dose optimization and dose selec-
tion paradigm in oncology drug development, the Oncology 
Center of Excellence (OCE) of the FDA initiated ‘Project 
Optimus’ [52]. More sponsors of oncology drugs have been 
required by the FDA to conduct dose optimization studies 
before late-phase development, in which patients will be ran-
domized to multiple dose options and the final dose will be 
recommended jointly based on efficacy and safety outcome. 
For such randomized Phase II trials, it is not necessary to 
formally identify a superior dose or the order of dose options 
using the stringent criteria employed for hypothesis testing. 
The purpose is to make sure if one dose level is inferior to 
the other, there is a small probability that the inferior dose 
level is recommended for future evaluation. In another word, 
the goal is to make a rational choice, not to establish statisti-
cal superiority [53].

Despite the need to improve dose-finding for oncology 
drug development, it is challenging to design the right dose 
optimization study because of the limited sample size, the 
heterogeneity of patient’s responses to the drug, and the 
urgency of the development timeline. Therefore, the adop-
tion of innovative adaptive design has been advocated for 
such studies, considering its potential to reduce clinical 
development costs, shorten drug development time, and 
ultimately increase the likelihood of meaningful benefit to 
patients with cancer. Depending on the adaption feature, a 
variety of adaptive design approaches have been developed 
to resolve the limitations of Phase II dose-finding studies 
from a different perspective. Simon et al. [54] described a 
method for treatment selection for randomized Phase II tri-
als. Their method aims at selecting a superior option from 
multiple possible arms by comparing the response rate 
through a ranking and selection procedure. Thall et al. [55, 
56] proposed a two-stage design with unpromising treat-
ment options screened out at stage 1 and definite between-
arm comparisons made at stage 2. Both methods require 
the selection of treatment options determined solely based 
on the efficacy endpoint. Sargent and Goldberg [53] further 
generalized these methods by allowing the decision to be 
ambiguous when the observed difference between arms is 
small, and allowing the investigator to include other infor-
mation in addition to the primary endpoint to make the final 
dose selection. Steinberg and Venzon [57] described an 
adaptive design approach allowing one to potentially early 
terminate the suboptimal dose option at the interim analysis 
if an adequate gap in the number of responses between the 
dose levels has been observed.

The proper dose selection method in oncology should 
follow a multifactorial decision process and the assessment 
of toxicity could be equally important to the assessment 
of efficacy. To better evaluate the benefit-risk portfolio of 
multiple-dose options of the investigation product from both 
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efficacy and safety perspectives, the adaptive design using 
complex endpoints reviewed in Sect. “Two-stage design with 
complex endpoints”of this paper could be used. Another 
option is the BOPII design reviewed in Sect. “Bayesian 
design with complex endpoints” where the dose level with 
unpromising efficacy or overwhelming toxicity level will 
be early terminated based on the Bayesian posterior prob-
ability. Other authors including [58, 59] defined a utility 
function to measure the efficacy-toxicity trade-off and use 
its posterior estimation to direct dose selection. To improve 
the efficiency of multiple-dose expansion studies, Bayesian 
Hierarchical Methods that facilitate cohort information bor-
rowing (reviewed in Sect. “Information borrowing in basket 
trials” can be used. For example, the MUCE design [41] is 
specifically proposed for multiple indication multiple dose 
expansion studies and used Bayesian Hierarchical modeling 
to facilitate adaptively information borrowing across dose 
levels and indications. Unlike the traditional BHM design, 
MUCE allows for different degrees of borrowing across 
doses and indications and can be useful for Phase II dose 
optimization studies with multiple indications. PMED [60] 
is another innovative Bayesian adaptive framework proposed 
for simultaneous indication and dose selection. Specifically, 
PMED allows dose and indication simultaneous selection 
based on both efficacy and toxicity evaluation, incorporated 
between cohort dynamic information borrowing to improve 
efficiency, and adopts Bayesian early termination rules to 
protect patients from treatment options that are either not 
efficacious or toxic.

Randomized Phase II Design for Proof‑of‑Concept

Phase III confirmatory studies in oncology drug develop-
ment are usually large-scale randomized control studies 
following a phase I dose-finding study and a single-arm 
phase II proof-of-concept (POC) study. The Phase III con-
firmatory trials are designed to confirm the efficacy of the 
drug and provide definite information to guide drug labeling 
and clinical practice, of which statistical hypothesis testing 
will be used. However, there has been a high rate of failure 
to achieve statistical significance on the primary efficacy 
endpoint among Phase III oncology trials. Many factors are 
contributing to the high failure rate and one of the important 
factors is the efficacy data generated from the early phase 
is not sufficient.

A common assumption used for single-arm phase II 
design with binary response endpoint is the response rate 
from the standard of care (SOC) is known based on histori-
cal data. However, for rare or new indication/patient popula-
tions with limited historical data, it might be hard to obtain 
a reliable estimation of the response rate of SOC. Also, the 
evaluation of response for the drug is usually heavily con-
founded by the baseline disease severity and other relevant 

features of the patient cohort, and a well-controlled com-
parison is hard to achieve without a randomized-control 
design. Moreover, changes in the standards of care in terms 
of therapy, disease assessment, and ancillary and supportive 
care may also make the historical data less useful for com-
parison purposes. A randomized control or hybrid design 
might be a solution to these limitations associated with his-
torical control for single-arm design. Another major limita-
tion of single-arm Phase II studies is the use of the binary 
tumor response as the primary endpoint. On one hand, the 
therapeutic efficacy of certain oncology agents may mani-
fest through mechanisms other than tumor response, and 
the clinical efficacy may not be fully captured by the tumor 
response rate. On the other hand, the clinical benefit in over-
all survival in certain disease areas cannot be predicted by 
or correlated with the tumor response. For such cases, the 
sponsor’s prediction of the probability of success (POS) for 
phase III based on tumor response could be greatly com-
promised, and time-to-event endpoints such as progression-
free survival (PFS) should be used for POC. Based on the 
FDA’s guidance ‘Clinical Trial Endpoints for the Approval 
of Cancer Drugs and Biologics’, the single-arm design does 
not adequately characterize time-to-event endpoints, and a 
randomized control design is needed [59].

Despite the known benefits of the randomized-con-
trol design for phase II POC studies, the major criticism 
against it is that the randomized Phase II trials are an 
‘under-powered’ version of Phase III trials, which may 
result in a high chance of false negative outcomes, espe-
cially for cases where the outcome of Phase II POC is the 
major evidence to support the go/no-go decision for Phase 
III development. The phase II POC studies, although may 
use a randomized control design, should be exploratory 
and therefore the goal is not to establish statistical supe-
riority with a calculated p-value. Therefore the go/no-go 
decision should not be advised by the p-value, but by the 
preliminary estimation of efficacy. For more discussions 
on the pros and cons of the single-arm Phase II design vs 
randomized phase II design, see [60–64]

Beyond the simple compartmentalization of Phase I, II, 
and III trials, the community of oncology clinical trials is 
also exploring many innovative approaches such as seam-
less Phase II/III designs and 2-in-1 designs that start with 
a smaller scale phase II randomized studies with the poten-
tial to be expanded to a large-scale phase III trial [65–69]. 
Such a design eliminates the white space between phase II 
and phase III development and reduces trial-to-trial vari-
ability. Inferential seamless design, where data collected 
across both phase II and phase III stages are used together 
at the end of the study, further improves the efficiency in 
drug development and POS of the trial. Seamless designs 
can also be combined with other adaptive features, such as 
treatment arm/dose level and subgroup selection.
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Discussion

In this paper, we reviewed and summarized the commonly 
used adaptive design methodologies for phase II oncol-
ogy studies. Similar to late-phase registrational studies, 
the planning of adaptive design for early phase exploratory 
trials should be treated with care and rigor, to avoid subop-
timal development decisions such as choice of dose, popu-
lation, or study endpoints in subsequent studies [4]. To 
maintain the data integrity for adaptive design, the sponsor 
needs to ensure that the protocol and statistical analysis 
plan (SAP) have a clear description of adaptation rules 
before the study initiation. Examples of the data integrity 
issue include the inflation of the type I error with multiple 
interim analyses, the multiplicity issue that is associated 
with testing multiple hypotheses, and the bias in estima-
tion due to the adaption features of the design.

Phase II trials are mostly exploratory to guide late-
phase development on questions such as choice of dose, 
selection of indication, or endpoints determination. How-
ever, for investigational agents that are indicated to treat 
serious conditions or fill the unmet medical need, the FDA 
may grant accelerated approval based on the readout of 
phase II studies, when the surrogate endpoint (e.g. ORR) 
is reasonably likely to predict the actual clinical benefit. A 
phase III confirmatory study is usually required after the 
accelerated approval to confirm the actual clinical benefit. 
Depending on the adaption features, the adaptive design 
method reviewed in this paper can provide a variety of 
advantages over conventional designs for Phase II pivotal 
trials that are used to support accelerated approval. For 
example, the FDA approved vemurafenib for Erdheim-
Chester disease based on the readout of VE-BASEKT in 
2017 [53, 70], where the basket trial design was used to 
simultaneously evaluate the clinical benefit of vemurafenib 
in 7 histologic cohorts. Lin and Shih’s adaptive two-stage 
design [9] (reviewed in Sect. “Adaptive two-stage design 
with flexible stage II sample size”) was used to guide the 
go/no-go decision at futility interim analysis for each 
cohort. Under the recent FDA initiative, Project Front-
runner, seamless phase II/III designs have the potential 
to support accelerated approval with randomized phase 
II readouts and conversion to standard approval for the 
same study [71].

Despite the statistics challenge of complex adaptive 
phase II designs, it also requires extensive planning for 
the study team and creates additional trial operational 
complications. From the data generation perspective, the 
study team should pay attention to the data entry, data 
cleaning, and data extraction since the beginning of the 
trial because the ongoing efficacy data and safety data will 
be used for guiding the adaptive decisions.  The focus of 

different adaptive design might be different. The two-stage 
adaptive design methods using the frequentist approach 
allow early stopping due to futility and help to reduce the 
sample size. These frequentist approaches have clear go/
no-go criteria at the end of stage 1 which makes it easier 
for the study team to plan the interim analysis readout tim-
ing. However, these types of designs will also face some 
operational challenges. Due to the limited sample size or 
slower enrollment, the interim analysis timing at the end 
of the first stage might be late. Therefore, it may delay 
the second stage enrollment and overall study timeline. In 
addition, a study may have to be paused the enrollment to 
wait for the interim analysis, which may delay the overall 
clinical development timeline as well. Therefore, planning 
the enrollment strategy and coordinating the enrollment 
pause after finishing the enrollment after stage 1 is critical. 
Bayesian adaptive design on the other hand allows con-
tinuous monitoring of the efficacy and safety signals of the 
trials. Therefore, no long enrollment pause is needed since 
there can be no formal interim analysis. This approach 
adds flexibility for the interim analysis timing and sample 
size determination. Nevertheless, it also requires the study 
team to collect, clean, and analyze data promptly. Other-
wise, one cannot have enough useful information to make 
an informed decision on time. A master protocol allows 
simultaneous enrollment of patients from multiple treat-
ments and disease types and is an efficient way to acceler-
ate phase II oncology drug development. With many treat-
ment arms and populations in one trial, it is by nature more 
difficult for trial operations. Statisticians need to work 
closely with the study team to adapt to potential changes 
during the trial implementation and optimize the operating 
characteristics of the trial. For example, (i) the enrollment 
for different treatment arms might be quite disparate, so 
the study team might have to prepare the interim analysis 
for one or several specific arms but not for the entire study; 
(ii) the study closure criteria or timings for different arms 
might be different because of different enrollment speeds 
thus the predication of database lock and final analysis 
timing is crucial for the study success; (iii) the strategy 
and priority for each arm might also change depending on 
the interim results, as a consequence a protocol amend-
ment might be needed. In summary, the adaptive features 
of phase II oncology clinical trials require careful planning 
of the study operations and close collaborations among 
various functions in a study team.
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