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Abstract
The use of mathematical modeling to represent, analyze, make predictions or providing information on data obtained in drug 
research and development has made pharmacometrics an area of great prominence and importance. The main purpose of 
pharmacometrics is to provide information relevant to the search for efficacy and safety improvements in pharmacotherapy. 
Regulatory agencies have adopted pharmacometrics analysis to justify their regulatory decisions, making those decisions 
more efficient. Demand for specialists trained in the field is therefore growing. In this review, we describe the meaning, 
history, and development of pharmacometrics, analyzing the challenges faced in the training of professionals. Examples 
of applications in current use, perspectives for the future, and the importance of pharmacometrics for the development and 
growth of precision pharmacology are also presented.
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Introduction

Pharmacometrics has emerged as a tool important to the 
field of clinical pharmacology, allowing for the development 
and application of mathematical and statistical methods in 
understanding, characterizing, and predicting exposure and 
response to drugs. This branch of science aims to create 
models and simulations of biology, pharmacology, disease, 
and physiology that can describe and quantify interactions 
between xenobiotics and patients, human or not, considering 
beneficial and adverse effects [1–7].

The U.S. Food and Drug Administration (FDA) uses 
pharmacometrics to quantify substances, diseases, and test 
information with the aim of assisting in the development 
of new drugs and regulatory decision-making, making 
those processes more efficient. That is, drug developers and 
regulators recognize that pharmacometrics approaches are 
considered innovative and can improve the interpretation 
of significant amounts of data and predict large-scale pro-
cesses. Those techniques, also known as data modeling and 

simulation (M&S), can be widely applied in drug research 
and development and in the translational validation of mod-
els through the more efficient use of collected clinical data, 
contributing to decision making about future studies and to 
the development of study designs with more assertive dose 
selection [8–18].

In recent years, the application of pharmacometrics has 
stood out in the FDA’s approval process, whether in dose 
adjustments for special populations (elderly individuals and 
children, for example) or in specific diseases such as diabetes 
and kidney disease [19–40] (Table 1).

By minimizing costs and time (which are considered 
obstacles in conventional clinical studies) and by maxi-
mizing the information generated from trials, pharmaco-
metrics has become a powerful ally in drug research and 
development [41–46]. In addition, the multidisciplinary 
vision embodied by pharmacometrics constitutes an impor-
tant resource to integrate knowledge and promote rational 
decision-making (Fig. 1).
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History and Development 
of Pharmacometrics

Regulatory authorities such as the FDA and the European 
Medicines Agency (EMA) have sets of guidelines that 
describe the experiments needed to meet regulatory require-
ments in drug development requirements that include M&S. 
However, the use of pharmacometrics is recent: the first 
mentions appear in articles by Lee in 1971 and 1976 [1].

The first pharmacometrics group at the FDA’s Center 
for Drug Evaluation and Research (CDER) was established 
in 1991. Initially, that group changed the focus of drug 
development, shifting the emphasis from interpretation of 
dose–response information to analysis of exposure–response 
data [47].

In 1994, the FDA published guidelines in ICH E7—
Studies in Support of Special Populations: Geriatrics, with 
recommendations that pharmacokinetic screening be per-
formed to gather important information about the safety and 

Table 1   Examples of studies submitted to the U.S. Food and Drug Administration (FDA) in which pharmacometrics was used

Drug Pharmacometric objective Reference

Boceprevir Dose adjustment in slow metabolizers [19]
Methylphenidate Analysis of methylphenidate metabolites in the treatment of attention-deficit hyperac-

tivity disorder
[20]

— Provision of case studies and updates describing the FDA’s efforts in development and 
application of regulatory science, with a focus on modeling and simulation

[21]

Fingolimod Evaluation of biomarkers as clinical endpoints, and analysis of the direct relationship 
between exposure and clinical endpoints

[22]

__ Development of a placebo model for bipolar disorder to help optimize clinical trial 
designs for studies targeting manic episodes

[23]

Trastuzumab Reduction in the bias introduced by exposure risk factors, and assessment of the 
recommended dose regimen

[24]

Paliperidone Use data as a basis for recommending a wider dose range [25]
Efavirenz + rifampicin Evaluation of a drug–drug interaction study and population pharmacokinetic (popPK) 

analyses
[26]

Methotrexate Provision of information for designing future clinical trials for the treatment of rheu-
matoid arthritis

[27]

— Development of a consolidated set of guiding principles for reporting popPK analyses 
based on data from a survey of practitioners, plus discussions between industry, 
consulting, and regulatory scientists

[28]

Canagliflozin Highlighting the FDA’s quantitative clinical pharmacology analyses that were con-
ducted to support the regulatory decision about dose in patients with renal failure

[29]

Dexamethasone Characterization of proinflammatory cytokine profiles, bone remodeling biomarkers, 
and bone mineral density in rats with collagen-induced arthritis

[30]

Inhaled corticosteroids Characterization of the circadian rhythm observed for forced expiratory volume in 1 s 
in patients with persistent asthma treated with inhaled corticosteroids

[31]

Esomeprazole vigabatrin Provision of examples and highlighting the role of modeling and simulation in the 
development and approval of drugs and biologics in pediatric therapy

[32]

Pasireotide Highlighting the central role of exposure–response analysis in understanding the suit-
ability and risk/benefit of the proposed starting dose of pasireotide

[33]

Gentamicin Definition of the dose regimen for gentamicin in patients undergoing hemodialysis [34]
Esomeprazole Approval of proton pump inhibitors for childhood gastroesophageal reflux disease 

(for children 1–17 years of age, extrapolation of efficacy from adults to intravenous 
esomeprazole was accepted)

[35]

Methylphenidate Assessment of the exposure–response relationships of changes in blood pressure and 
heart rate in healthy adults taking methylphenidate

[36]

Pembrolizumab Description of the pharmacokinetic profile of pembrolizumab [37]
Methotrexate Assessment of the relative sensitivity of the 3 binary components to support future 

dose selection and study design in the treatment of rheumatoid arthritis
[38]

Nivolumab Development of a proposed method for assessing the causal effect of drug exposure 
on clinical response

[39]

Nintedanib and pirfenidone Validation and characterization of previously identified acute exacerbations and 
baseline predictors

[40]
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efficacy of medications used in elderly individuals. In 1999, 
the agency issued guidelines on population analyses for the 
pharmaceutical industry and, in 2003, on exposure–response 
relationship analyses.

In general, those documents recommended the use of 
special methods for data collection and analysis, indicating 
the trend toward the use of Pharmacometrics analyses in the 
near future.

Challenges in Teaching Pharmacometrics

Because Pharmacometrics analyses are considered more effi-
cient than those using conventional methods, the application 
of Pharmacometrics techniques and the demand for qualified 
professionals are both increasing exponentially.

On the other hand, obtaining specific training in the field 
of pharmacometrics led to certain problems being encoun-
tered, such as a lack of degree granting in the area and lack 
of standardization of a basic curriculum. Universities, phar-
maceutical industry research centers, the FDA, and nonprofit 
associations offered only training fellowship programs. An 
example is the International Society of Pharmacometrics, 
which emerged in 2013 and which aims to promote and 
expand the science of pharmacometrics through the inte-
gration of multidisciplinary data and continuous innovation 

in methods and technologies, leading to impacts on discov-
ery, research, development, and approval and use of new 
therapies. It also promotes scientific events, offers training 
materials, and maintains official journals that disseminate 
research and news. A community of student members who 
have organized themselves into special interest groups is 
dedicated to the study of specific subject areas (Fig. 2):

•	 Clinical pharmacometrics: applying pharmacometrics to 
guide patient care

•	 Mathematical and computational sciences: developing 
new theories, methods, and computational tools

•	 Quantitative systems pharmacology: advancing the 
development and use of safe and effective drugs through 
the application of quantitative systems pharmacology

•	 Statistics and pharmacometrics: promoting collaboration 
between pharmacists and biostatisticians to develop inno-
vative approaches in modeling drug development

Bringing together various subject areas is clearly some-
thing intrinsic to pharmacometrics, which facilitates the 
translation of highly complex biologic processes into a 
quantitative language, therefore making the discipline an 
effective communications bridge. But integrating data, pro-
posing model structures, interpreting raw data, extracting 
the most from publicly available data and information, and 

Fig. 1   Steps in the application of pharmacometrics. ADME absorption, distribution, metabolism, excretion, IV intravenous, PK pharmacokinet-
ics, PD pharmacodynamics



60	 Therapeutic Innovation & Regulatory Science (2023) 57:57–69

1 3

predicting the value of data and models are complex tasks. 
Consequently, the need to provide professionals who are 
competent in pharmacometrics is urgent.

Education in this area has to be standardized through the 
development of appropriate curricula (with M&S still being 
incorporated into the undergraduate course in Pharmacy), 
increasing the frequency and number of training courses so 
as to offer continuing education that meets the demands of 
a growing market.

Perspectives and Applications 
of Pharmacometrics

Given the complexity of integrating experimental observa-
tions with observations emerging from clinical medicine, 
M&S has been applied in the preclinical phase, to both in 
silico studies [48] and studies using animal models [49], 
and also in the clinical stage for patient follow-up [43, 50, 
51]. For any drug, its pharmacokinetic profile (any one or 
a combination of absorption, distribution, metabolism, and 
excretion), concentration at the site of action, change in 
effect related to disease-specific changes, and many other 
variables make interpretation a real challenge when seek-
ing to identify correlations that contribute to more effective 
pharmacotherapy.

In this sense, modeling aims to develop a mathematical 
representation that relates the covariates of a process, dis-
ease, or system, and simulation seeks to solve mathematical 
equations so as to show the variables that can be considered 
relevant to the process in question. Pharmacometrics-based 

analyses include drug models (based on pharmacokinetics or 
PK), exposure–response models (pharmacokinetics–pharma-
codynamics or PK-PD), physiology-based models (PBPK), 
and clinical trials models (Clinical Trial Simulation or CTS). 
The choice of approach depends on the pharmacokinetics 
and pharmacodynamics of the drug [52] and on the clinical 
objectives and questions to be answered.

For example, population pharmacokinetics models 
(popPK) can be useful if the aim is to find pharmacokinetic 
parameters and sources of variability in a given population 
[53]. It is also possible to associate popPK data with phar-
macodynamics data to uncover the relationships between 
exposure and response to a drug, generating a more robust 
and accurate understanding of the pharmacologic action of 
a compound in the body [54]. Those models are considered 
empirical and describe clinical data based on the analysis of 
concentration as a function of time (“top down”). However, 
that approach limits the ability to predict pharmacokinetics 
for a similar drug or to extrapolate results to different physi-
ologic conditions.

The PBPK models have a mechanistic approach (“bot-
tom up”), compared against which the empirical models 
are noted to be simpler and more descriptive [55]. But the 
more complex PBPK models provide more robust prediction 
with respect to how changes in a pathophysiologic condition 
can affect specific system parameters leading to changes in 
pharmacologic effect [54]. Thus, PBPK models consider 
detailed data about an organism’s physiology (density of 
receptors, disease progression, homeostatic feedback, blood 
flow); the drug’s properties (site of action, affinity to target 
protein, lipophilicity, solubility); and the study design (dose 

Fig. 2   International Society of Pharmacometrics special interest groups
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administered, route and frequency of administration) [56] 
(Fig. 3). The most common use of PBPK in drug develop-
ment is the study of drug interactions (60%), followed by 
studies for pediatric populations (16%) [57].

The growing interest of the pharmaceutical industry 
in the application of PBPK modeling has increased the 
number of platforms that integrate this modeling method, 
among them: Simcyp PBPK Simulator (Certara, Prince-
ton, NJ, U.S.A.; https://​www.​certa​ra.​com/​softw​are/​sim-
cyp-​pbpk/), GastroPlus (Simulations Plus, Lancaster, CA, 
U.S.A.; https://​www.​simul​ations-​plus.​com/​softw​are/​gastr​
oplus/), and PK-Sim (Bayer Technology Services, Lev-
erkusen, Germany; http://​www.​syste​ms-​biolo​gy.​com/​produ​
cts/​pk-​sim.​html).

Finally, clinical trial simulation models represent a spe-
cialized area of quantitative pharmacology that generates 
pharmacokinetics or pharmacodynamics profiles (or both) 
in virtual participants [58] (Fig. 4), considering study design 
and execution, pathophysiologic changes in participants dur-
ing the trial, and the pharmacokinetic and pharmacodynamic 
characteristics of the drug [59].

Pharmacometrics can be used to achieve a variety of 
objectives, such as analyzing progression in diseases such 
as HIV-triggered immunodeficiency [60], osteoporosis [61], 
multiple sclerosis [62], rheumatoid arthritis [63, 64] and dia-
betes [65–67]. Studies that investigate certain disorders of 
the central nervous system such as depression, Alzheimer 
disease, and schizophrenia have increased the use of M&S 
strategies to assess the efficiency of drugs in preclinical and 
clinical studies [68].

M&S can also be applied in biomarker follow-up stud-
ies [69–71], in the analysis of drug–drug interactions 
[72–77], for dose adjustment in special populations such as 
pediatrics [78–81] and in studies focused on the veterinary 
market [82–86]. Examples are presented in the subsections 
that follow.

Fig. 3   Schematic of a physiology-based pharmacokinetics (PBPK) model. The inset presents a detailed representation of the intestine. CLint 
intrinsic clearance. (Reprinted from Jones and Rowland-Yeo [56])

Fig. 4   Information sources for a model used in clinical trial simula-
tion. PK/PD pharmacokinetics/pharmacodynamics. (Reprinted from 
Kimko and Peck, [58])

https://www.certara.com/software/simcyp-pbpk/
https://www.certara.com/software/simcyp-pbpk/
https://www.simulations-plus.com/software/gastroplus/
https://www.simulations-plus.com/software/gastroplus/
http://www.systems-biology.com/products/pk-sim.html
http://www.systems-biology.com/products/pk-sim.html
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HIV‑Triggered Immunodeficiency

Approximately 35 million people worldwide are infected 
with HIV. In drug research and development, pharmacomet-
rics helps in the search for improvements in treatment that 
could overcome current limitations related to side effects and 
monitoring of disease progression.

In the 1990s, a model was developed being able to predict 
the HIV replication process in the plasma of infected indi-
viduals—a great achievement for the study of that disease 
[87]. The calculated value was approximately 12 billion viral 
particles per day. Subsequently, several studies using M&S 
proposed the inclusion of covariates that could be impor-
tant to an understanding of the dynamics of the infection 
[88–101].

Given the high rate of viral replication observed, muta-
tion and drug resistance must be considered during treat-
ment, and therapy with multiple drugs is necessary. A PBPK 
model was proposed as a predictive tool for drug–drug inter-
actions with tenofovir [102] (Fig. 5). The model was able 
to predict a 60% increase in plasma tenofovir exposure and 
a reduction in renal cell exposure by a factor of 3 after co-
administration with 2 g probenecid. The expected increase in 
exposure, considering the observed clinical pharmacokinet-
ics data, was 15%. The resulting PBPK model can be used 
to assess the safety and efficacy of drug–drug interactions 
involving the inhibition of OAT1 and OAT3.

Osteoporosis

Osteoporosis is a chronic disease characterized by low bone 
density and tissue deterioration. The result is increased 
bone fragility and, consequently, greater susceptibility 
to fractures. A higher incidence is seen in women during 
menopause. Reduction in estrogenic hormonal activity 
promotes an imbalance in bone remodeling favoring osteo-
clast-mediated resorption and less formation of new cells by 
osteoblasts. M&S has been used to evaluate therapies using 
various classes of drugs such as bisphosphonates, cathep-
sin K inhibitors, parathormone and its analogs, and others 
[103–105].

Bisphosphonates such as etidronate, clodronate, alen-
dronate, and risedronate inhibit bone resorption. After 
administration, they accumulate rapidly on the bone mineral 
surface and are released slowly (having half-lives of months 
to years). The development of PK and PK-PD models for 
bisphosphonates has traditionally been a challenge because 
of a lack of assays sufficiently sensitive to quantify the drugs 
in serum, urine, and bone. This limitation makes it difficult 
to describe long-term pharmacokinetic parameters and the 
relationship of exposure with the anti-resorptive effect [106]. 
Consequently, models linking pathophysiology with clinical 
biomarkers have gained popularity [61, 107–110].

Such models can be established at various levels of com-
plexity, ranging from descriptive to mechanistic approaches. 

Fig. 5   Proposed drug–drug interactions (DDIs) in a physiology-based pharmacokinetics model workflow. PRO probenecid, TFV tenofovir, 
PBMC peripheral blood mononuclear cell. (Reprinted from Liu et al. [102])
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A drug-trial model was developed for postmenopausal osteo-
porosis that used a mechanistic approach [111]. The result-
ing model was able to identify changes in clinically relevant 
biomarkers over time as a result of disease progression and 
to assess the response to therapeutic interventions. Mod-
els of this kind are of great importance for monitoring and 
follow-up of patients.

Another class of drugs with anti-resorptive action also 
had its studies guided by M&S. The inhibitory effects of 
cathepsin  K were compared with those of bisphospho-
nates. Some cathepsin K inhibitors such as odanacatib are 
excreted in urine and bile and appear to undergo enterohe-
patic recirculation, which is reflected by a double peak after 
oral administration [112]. The pharmacokinetics have been 
described by several models, in most cases using simple 1-, 
2-, or 3-compartment models [113, 114].

The relationship between the serum concentrations of 
3 different cathepsin K inhibitors [odanacatib (MK-0822), 
MK-0674, and MK-1256] and the associated effects on bone 
resorption markers in various animals and in humans was 
explored [115]. A better relationship was observed between 
the unbound drug concentration and anti-resorptive action 
than between the total drug concentration and anti-resorptive 
action. The elucidation of such pharmacokinetic–pharmaco-
dynamic relationships will be of great translational value for 
prediction among various species.

Diabetes Mellitus

Pharmacometrics is also being used in studies of metabolic 
diseases. Diabetes mellitus is a group of metabolic disorders 
characterized by hyperglycemia resulting from problems 
with insulin secretion (type 1, failure to produce insulin), 
insulin action (type 2, insulin resistance), or both.

Treatment of type 1 diabetes is limited to insulin injec-
tions, whereas in type 2 diabetes, patients can control blood 
glucose with diet and regular physical activity. Anti-hyper-
glycemic medications available on the market belong to 
various classes and can be prescribed as monotherapy or in 
combination.

Biomarkers are of great importance for monitoring 
the progression of the disease and also for evaluating the 
response to pharmacologic treatment. In type 2 diabetes, 
glycosylated hemoglobin A1 (HbA1c) provides informa-
tion about medium- to long-term glycemic control; plasma 
glucose and serum insulin, both in fasting state, are the bio-
markers most responsive to changes in glycemic control in 
the short term.

A study applied a population pharmacodynamics model 
of disease progression that integrated HbA1c, fasting plasma 
glucose, and fasting serum insulin data into a single compre-
hensive and physiologically significant structure [65]. The 

model provided accurate descriptions of the relationship of 
biomarkers to disease progression and allowed the long-term 
effects of various treatments using pioglitazone, metformin, 
and gliclazide on the loss of beta-cell function and insulin 
sensitivity to be identified. Expanding that model, Gaitond 
et al. considered the physiologically significant dynamics 
between the biomarkers fasting plasma glucose, fasting 
serum insulin, and HbA1c; the inter-individual differences 
in disease state for patients at baseline and during disease 
progression; and clinically significant covariate relationships 
[116].

The proposed model is of great importance for quantita-
tive pharmacology because it can identify the relationships 
among patient characteristics, drug action, and disease pecu-
liarities in a physiologically significant analysis.

Other studies of marketed hypoglycemic agents can also 
be performed using data available in the literature, providing 
information for evaluating drug dose–response relationships. 
Models developed based on data from the literature [117, 
118] are similar to models developed using patient data, 
except that the variability estimates reflect the variability of 
each trial performed [117, 119, 120].

Multiple Sclerosis

Multiple sclerosis is a chronic debilitating disease character-
ized by repeated episodes of neurologic dysfunction sepa-
rated by intermittent periods of partial or complete recovery 
[121].

The effectiveness of treatment is typically assessed 
using decline in the frequency of relapses and progres-
sion of the deficiency (“endpoints”). In an M&S study, 
pharmacodynamics models used data from 1319 patients 
who received placebo or cladribine (Trial 25643 [CLAR-
ITY, NCT00213135] and Trial 27820 [CLARITY EXT, 
NCT00641537]) to characterize the time course of the multi-
ple sclerosis endpoints. Disability scale measures were then 
evaluated as predictors of efficacy outcomes. The resulting 
models showed a positive correlation between cladribine use 
and the endpoints, with a lower (or even nonexistent) relapse 
rate being observed [122]. Such specific and, above all, reli-
able models allow for comparisons between drugs already in 
use and those recently discovered, potentially guiding deci-
sions about whether to continue the use of drugs available 
for commercialization.

A popPK–pharmacodynamics model was developed to 
establish the quantitative relationship between pharmacoki-
netics and the relapse rate in patients who used different 
peginterferon beta-1a therapeutic regimens [123]. Pharma-
cokinetics were well described by a 1-compartment model, 
with first-order absorption and linear elimination kinetics. 
The results, when compared with those from a placebo 
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group and with the different regimens, demonstrated that 
administration every 2 weeks was sufficient for observation 
of benefit. The study was of great importance in safely pro-
posing a dose adjustment to regulatory agencies.

Special Populations: Pediatrics

Current EMA and FDA guidelines recommend that dose 
selection for pediatric studies be based on all available prior 
information, starting with learnings from adult populations 
[124, 125]. However, incomplete understandings of the 
effects of growth and development (or maturation) on drug 
disposition (pharmacokinetics) and drug effects (pharmaco-
dynamics) remain a significant challenge in defining appro-
priate doses for children [126].

Advances in quantitative pharmacology and in model-
based drug research and development go hand in hand in 
pediatric research [127, 128]. Pharmacometrics studies for 
pediatric populations use data from drugs that are already 
available on the market, but for which information about 
safety and efficacy for young patients is lacking. The def-
inition of “dose” must consider the clearance, volume of 
distribution, and dose–response relationship in addition to 
ontogenic and clinical factors.

Comparative analysis were presented of the various types 
of models that were used to approve the use of some drugs 
in pediatrics [129]. Dose selection for esomeprazole was 
based on pharmacokinetic correspondence with the adult 
dose, using a simulation based on pharmacokinetics/phar-
macodynamics. Adalimumab has been recommended for 
the treatment of Crohn disease in children based on phar-
macokinetic data, the pharmacokinetics/pharmacodynam-
ics ratio, and efficacy and safety data. On the other hand, 
dose–response for vigabatrin was found to be similar for 
children and adults, allowing for application of the allomet-
ric scale to calculate the pediatric dose.

With PBPK models, a consideration of the effects of 
the child’s growth and development is possible. Aspects 
such as body size and composition, tissue blood flow, and 

biochemical characteristics (enzyme and transporter pro-
files) can therefore be included in the M&S. Table 2 shows 
some examples of the application of this physiology-based 
approach [130–134].

M&S in pediatric drug research and development can 
also be used to compare and optimize studies, understand 
the ontogeny and natural history of disease, and describe 
pharmacokinetics and pharmacodynamics profiles in clinical 
pharmacology quantification studies.

Applications in the Veterinary Market

The animal health industry is on a growth trajectory, fueled 
by an increase in the number of pets and also by an increased 
global population that seeks food products such as meat and 
dairy. In 2014, developers and manufacturers of drugs and 
vaccines for pets and farm animals achieved a sales record 
of US$24 billion, and projections through 2020 reached 
US$33 billion [135].

Some differences between the human and veterinary 
pharmaceutical market are evident. According to the FDA, 
the cost to develop a new veterinary drug is approximately 
$100 million over a period of 7–10 years; for humans, the 
cost reaches $1 billion over a period of 12 years. In another 
comparison, veterinary drug studies are carried out in mod-
els of the species of interest, which shortens the pre-clinical 
phase. Moreover, “animal patients” have a shorter life expec-
tancy, which is also reflected in studies seeking data about 
efficacy and safety.

The regulatory agencies, the FDA and the EMA, maintain 
requirements for approved drugs that include proof of manu-
facturing quality, plus safety and effectiveness. They also 
require tests to ensure that the tissues and milk of treated 
animals are safe for human consumption. Given those 
requirements, pharmacometrics models are also incorpo-
rated into the professional routine for the veterinary market. 
A food safety analysis study used PBPK modeling to predict 
penicillin concentrations in milk. A high number of animals 
with residues above the limit was observed because of use 

Table 2   Applications of physiology-based pharmacokinetics models in pediatrics

Cmax peak serum concentration, AUC​ area under the curve, CL clearance

Drug Application of the model Reference

Clobazam Prediction of drug–drug interactions between clobazam and stiripentol [130]
Methotrexate Simulation of the concentration/time profile [131]
Lorazepam Simulation of the concentration/time profile and prediction of dose/age based on simulation 

results
[132]

Acetaminophen Simulation of concentration/time profile and prediction of pharmacokinetic parameters 
(Cmax, AUC, CL) and urine metabolite profile

[133]

Midazolam, theophylline, omeprazole Prediction of clearance [134]
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of a higher than established drug dose. The model was able 
to quantify penicillin residues in tissue and milk based on a 
comparison with data from earlier pharmacokinetics stud-
ies [136]

Mavacoxib (a COX-2 inhibitor) is approved for the treat-
ment of osteoarthritis in dogs. Simulations based on PopPK 
modeling in a comparative study using 1317 samples from 
286 dogs that received 2 different mavacoxib doses (4 mg/
kg and 2 mg/kg) indicated that most dogs (> 85%) treated 
with mavacoxib 2 mg⁄kg sustained concentrations above the 
efficacy level (0.4 µg/mL) throughout the entire dose inter-
val [137]. That study helped to justify reducing the dose of 
mavacoxib to 2 mg/kg from 4 mg/kg, increasing its thera-
peutic index.

The use of monoclonal antibody therapies is relatively 
new in veterinary medicine. The first such antibody was 
lokivetmab (Cytopoint: Zoetis Services, Parsippany, NJ, 
U.S.A.), which was approved in 2016. It is indicated for the 
treatment of canine atopic dermatitis, with an anti–IL-31 
mechanism of action. A pharmacokinetics/pharmacody-
namics model was used to define the recommended dose 
of Cytopoint [138]. Other studies applying M&S to the use 
of monoclonal antibodies can be found [139, 140], rein-
forcing the importance of those techniques for precision 
pharmacology.

Starting from the initial stages of veterinary drug projects, 
pharmacometrics remains present through to the approval 
and post-marketing phases, where it assists in responding 
to regulatory issues. It therefore constitutes an important 
tool for the veterinary market during its current expansion.

The Already‑Present Future of Precision 
Pharmacology

Clinical pharmacology is fundamental to the management 
of drug-related problems and an important instrument of 
precision medicine. Through its mathematical models (phar-
macokinetics, pharmacokinetics/pharmacodynamics, and 
PBPK), pharmacometrics refines data extrapolation, lending 
additional confidence to quantitative prediction by integrat-
ing modern concepts of the pathophysiology and pharmacol-
ogy of systems [141, 142].

Pharmacometrics approaches yield strategies for research 
and development of new drugs and add efficiency and rigor 
to regulatory processes. This is because the models devel-
oped allow us to understand and predict: the physiological 
phenomena, the action of the studied drug and the results 
of clinical trials. M&S also reduces costs and time for 
research and development as it contributes to the choice of 
a molecule, guides decisions on which way to go, optimizes 
pre-clinical and clinical planning, assists in dose selection 
as well as regulatory approvals. Thus, by exploring the 

variability and better understanding the molecules, phar-
macometrics tools can further support decisions, increas-
ing the probability of successful clinical development and, 
consequently, the efficacy and safety of new drugs [143].

Studies in Pharmacokinetics, including Pharmacometrics, 
are essential to understand all these important aspects in the 
development of new drugs and require a rational approach 
with a multidisciplinary scope. Only in this way will it be 
possible to propose innovative strategies in the search for 
effective and safe pharmacotherapy that will guarantee 
adherence to treatment and, above all, a positive impact on 
the patient’s quality of life.

For those criteria to be met, furthering the training of 
professionals to work at the academic level and in the phar-
maceutical industry in researching new drugs is essential 
into the future. In the absence of a specific and standardized 
curriculum, a constant search for partnerships with clinical 
research centers and the private sector is necessary to carry 
out new projects and collaborations, to disseminate exper-
tise, and to deliver services. Only with such collaborations 
will it be possible to guarantee the already-present future of 
precision pharmacology.
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