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Abstract
Background  Meta-analysis of related trials can provide an overall measure of safety-signal accounting for variability across 
studies. In addition to an overall measure, researchers may often be interested in study-specific measures to assess safety 
of the product. Likelihood ratio tests (LRT) methods serve this purpose by identifying studies that appear to show a safety 
concern. In this paper, we present a Bayesian approach. Despite having good statistical properties, the LRT methods may 
not be suitable for the meta-analysis of randomized controlled trials (RCTs) when there are several studies with zero events 
in at least one arm.
Methods  In this article, we describe a Bayesian framework using a Zero-inflated binomial model with spike-and-slab 
parameterization for the treatment effects. In addition to providing an overall meta-analytic estimate, this method provides 
posterior probability of a safety-signal for each study.
Results  We illustrate the approach using two published data sets comprising several randomized controlled trials (RCTs) 
each and compare the model performance for different choices of priors for treatment effect.
Discussion  The proposed Bayesian methodological framework is useful to identify potential signal for single adverse event 
and to determine overall meta-analytic estimate of the magnitude of the signal. Practitioners may consider this approach as 
an alternative to the frequentist’s LRT approach discussed in Jung et al. (J Biopharm Stat 31:47–54, 2020) when there are 
zero events in either the treatment arm or the control arm. In the future, this approach can be further extended to accom-
modate multiple adverse events.

Keywords  ZIB model · Safety-signal · Meta-analysis · Spike-and-slab prior

Introduction

Regulatory agencies and clinical researchers from academia 
and industry, accumulate, monitor, and analyze data related 
to adverse events to perform continued safety assessment 
of medical products. Safety assessment can be performed 
based on a single data set, with respect to a single or mul-
tiple adverse events (AE); or by synthesizing information 
from multiple data sources. When multiple data sources are 
available, standard meta-analysis techniques such as fixed 
and random effects models can be used to produce overall 
risk-metric such as risk ratio or odds ratio. Random effects 
models use study-specific random effects in a model to 
account for random variation across studies. While meta-
analytic estimate has been used to gauge the existence of an 
overall safety-signal, it is possible that signals detected in 
one study may not be detected in other related studies due to 
inherent differences between them, including differences in 
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patient population or location of the treatment sites. Several 
articles discuss statistical methodologies for safety-signal 
detection from a large drug safety database, for example, 
Huang et al. [1] developed a Likelihood Ratio Test (LRT) 
based framework for safety-signal detection from FDA 
Adverse Event Reporting System (FAERS). Huang et al. [2] 
further extended this method and developed a weighted LRT 
framework, and Huang et al. [3] discuss a ZIP (Zero-inflated 
Poisson)-LRT methodology when there are excessive zero 
events (i.e., events with zero counts) in these large drug 
safety databases. Their methods, however, do not directly 
apply to conduct meta-analysis of a safety-signal from mul-
tiple randomized controlled trials (RCTs) when there are 
studies with zero events in either the treatment arm or the 
control arm.

Dong et al. [4] discuss the limitations of popular meta-
analysis methods such as fixed and random effects models in 
presence of zero events in the treatment arm or the control 
arm for a single or multiple trials; and propose a frequentist 
zero-inflated binomial (ZIB) model addressing this issue; 
unlike the popular approaches such as DerSimonian-Laird 
(DL), Peto or Mantel-Haenszel (MH), their method does 
not require continuity correction. For the ZIB setup, Dong 
et al. propose a modified odds ratio (MOR) measure and 
argue that this measure is more appropriate compared to 
the odds ratio as a measure of treatment effect. The ZIB 
model by Dong et al. [4] does not account for the across-
study variability. Muthukumarana, Martell and Tiwari [5] 
propose a Bayesian ZIB model that accounts for between-
study variation by considering study-specific effects in their 
logit model.

In this article, we describe a method to further extend 
the Bayesian Zero-inflated binomial model for meta-anal-
ysis and develop a Bayesian hypothesis testing framework 
to explore safety-signal for each clinical-trial study (hence-
forth, we may interchangeably use study or trial) in this set-
ting. This is achieved by assigning a spike-and-slab prior for 
the study- specific treatment effects. This prior is essentially 
a mixture distribution with a point mass at zero and a con-
tinuous distribution. Scott and Berger [6] use this prior to 
detect inactive genes in micro-array context. Several articles 
including Scott and Berger [7], Westfall [8], Berry and Berry 
[9] discuss the use of this prior in multiple testing context. 
These types of priors are extensively used in Bayesian vari-
able selection in regression; George and McCulloch [10] and 
Ishwaran and Rao [11] are among the widely cited articles 
on this topic.

Berry and Berry [9] developed a model-based safety 
assessment approach using a logistic regression model with 
spike-and-slab prior for the treatment effect; their proposed 
hierarchical model accounts for relationship among different 
types of Adverse events (AE) that are classified into differ-
ent body systems. This approach allows to study how one 

type of AE affects the other AEs. DuMouchel [12] extends 
this approach and propose multivariate logistic regression 
model that include covariates in the model to detect possible 
subgroup effect by considering treatment-by-covariate inter-
actions in the model. In the same context, Xia et al. [13] use 
spike-and-slab prior, in a log-linear regression setup, where 
they include total subject-time at risk in the model. Tan et al. 
[14] propose a hierarchical frequentist testing approach for 
analyzing adverse event data. These articles explore hier-
archical structure or categorization of the adverse events. 
Like Berry and Berry [9] and Xia et al. [13], we also use 
spike-and-slab prior for the treatment effect, but on a single 
adverse event at a time. Our focus is to explore the probabil-
ity of safety-signal as well as summarizing the overall effect 
using our meta-analytic modeling approach by borrowing 
strength across all the trials. In addition, our approach is 
designed for a zero-inflated binomial setup.

In the following section, we discuss the proposed 
approach and prior distribution for the parameters. In “Data 
Analysis” section, we illustrate our approach using two pub-
lished datasets, the first dataset, published by Katsanos et al. 
[15], provides mortality in the patients treated with pacli-
taxel drug-coated devices compared to the uncoated devices 
for treatment in patients with peripheral arterial disease 
(PAD) in femoropopliteal arteries. The second dataset was 
obtained from Nissen and Wolski [16]. This dataset provides 
summary level information of myocardial infarction (MI) 
and cardiovascular events (CV) death among the patients 
who received Rosiglitazone for 48 trials. We summarize our 
findings and discuss potential future research directions in 
the “Discussion” section.

Methods

Suppose there are k trials and XTi and XCi are the number 
of events for the treatment (T) and control (C) arm, respec-
tively, for the i th trial. We assume, XTi ∼ Bin(nTi, pTi) and 
XCi ∼ Bin(nCi, pCi) , where nTi and nCi are the number of 
enrolled patients and pTi , pCi are the probability of observing 
an event for the treatment and control group, respectively.

A zero-inflated binomial model formulated by Dong et al. 
[4] can be expressed as,

where, YTi and YCi are the number of events for the treat-
ment and the control arm and p and q  are the probability of 
“zero-state” for treatment and control group, respectively. 
We assume a Beta(1,1) prior for both p and q ; indicating 

YTi ∼ pI[YTi=0] + (1 − p)Bin
(

nTi, pTi
)

;

YCi ∼ qI[YCi=0] + (1 − q)Bin(nCi, pCi),
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“Binomial” state is approximately equally likely to occur for 
both the treatment and control arms, a priori.

Let log-odds-ratio for the treatment over the control in the 
i t h  s t u d y  b e  d e n o t e d  b y  �i  ;  t h a t  i s , 
�i = logit(pTi) − logit(pCi) = log

pTi

(1−pTi)
− log

pCi

(1−pCi)
 . Similar 

to Lunn et al. [17], we consider a one-to-one transformation 
from (pTi, pCi) to (�i,�i) , where �i is the parameter of interest, 
and �i  is the nuisance parameter def ined as: 
�i = (1∕2) (logit

(

pTi
)

+ logit
(

pCi)
)

.
Therefore,

We further define �i = �i�∗i  ; where �i is a binary vari-
able assumed to follow Bernoulli(π), i.e., P(�i = 1) = π; and 
�∗
i
|�, � ∼ f (�, �) . Essentially, we are assigning a spike-and-

slab prior for �i i.e.,

We explore following choices of the “slab” distribution 
f (�, �):

We  a s s u m e  �i ∼ N(0, 102)  ;  �2  ~  I nv e r s e -
Gamma(0.01,0.01) and � ∼ Uniform(1,10). Posterior dis-
tribution based on the model with prior (2) allows us to com-
pute the posterior probabilities P(�i = 0|y) or P(𝛿i > 0|y) ; 
i.e., probabilities of no-signal or a safety-signal for ith 
study, respectively. This can be used as a Bayesian substi-
tute for a frequentist’s test for signal detection: H0 ∶ �i = 0 
vs Ha ∶ 𝛿i > 0 . A higher value of P ( 𝛿i > 0|y) indicates 
evidence against H0 ; i.e., possibility of a safety-signal 
associated with the treatment. We assign a noninforma-
tive Beta(1, 1) prior as a choice for π; other informative 
or weakly informative priors can also be used depending 
on the availability of information about π. Note that unlike 
Dong et al. [4], the proposed ZIB model accounts for study-
specific variability; the parameter � measures heterogeneity 
across studies/trials.

Besides estimating study-specific odds ratios, we also 
estimate the overall modified odds ratio (MOR), defined 
as: MOR = OR(1 − p)∕(1 − q) . Here, p and q are the prob-
ability of zero events for treatment and control groups, 
respectively. According to our modeling approach, meta-
analytic treatment effect on log-odds scale is, ��; with � = 1 
the model reduces to a simpler model for which � is the 
overall effect. Let, p(r) , q(r) and �(r) be the posterior draws 
of p , q and �respectively; where OR(r) = exp(�(r)�(r)) , 

(1)logit
(

pTi
)

= �i +
1

2
�i; and logit(pCi) = �i −

1

2
�i.

(2)�i ∼ (1 − �)I[�i=0] + πf (�, �).

(3)f (�, �) ≡ N
(

�, �2
)

, � ∼ Uniform(−3, 3);

(4)
f (�, �) ≡ DP

(

�,G0

)

,G0 = N
(

�, �2
)

, � ∼ Uniform(−3, 3).

r = 1,… ,R . Based on these draws, posterior mean 
of OR and MOR , i.e., E(OR|data) and E(MOR|data) 
are estimated by, ÔR = 1

R

∑R

r=1
exp(�(r)�

(r)
) and M̂OR = 

1

R

∑R

r=1
OR(r)(1 − p(r))∕(1 − q(r)) , respectively. Note that 

unlike Dong et al. [4], the proposed approach accounts for 
study-specific variability by introducing the parameter, �2 , 
which measures heterogeneity across trials. In safety-signal 
evaluation context, modified odds ratio or MOR (introduced 
by Dong et al. [4]) can be used as a measure to identify 
the existence of an overall safety-signal based on available 
studies. We implement the model using Just another Gibbs 
Sampler (JAGS) software [18] via R2jags [19] package.

Data Analysis

Analysis of Long‑Term All‑Cause Mortality Data 
for Safety‑Signal Detection

Katsanos et al. [15] published a meta-analysis reporting all-
cause mortality risk of Paclitaxel coated (PTX) drug-coated 
balloons and stents compared to uncoated devices. These 
devices are used for treating peripheral arterial disease in 
femoropopliteal arteries. The article reported 1-year mor-
tality analysis based on 28 studies, 2- and 5-year mortality 
results based on 12 and 3 studies, respectively. Since several 
studies have zero events in either one arm or both arms, 
continuity correction was used while conducting standard 
fixed and random effects meta-analysis to produce overall 
odds ratio. In this section, the proposed method is used to 
analyze the 12 studies with available 2-year mortality data 
discussed in Katsanos et al. [15].

In order to assess mortality risk for each study or to 
explore the existence of overall indication of safety-signal, 
first we implement frequentist’s Likelihood Ratio Test (LRT) 
approach discussed by Huang et al. [2], Jung et al. [20] and 
the references therein. Table 1 shows the resulting p val-
ues based on this approach. LRT approach provides a lower 
p value for Study 3 (p value < 0.05) indicating a potential 
safety-signal (in this case mortality risk) for this study. 
Based on the weighted LRT approach proposed by Huang 
et al. [2] and Jung et al. [20]), the overall p values (combin-
ing information from all the studies) are 0.016 and 0.012, 
respectively. These methods, however, may not be suitable 
as the dataset contains zero events in studies 2, 5, and 10 
(Fig. 1A.2 of Appendix IA).

We implement the zero-inflated binomial model with 
spike-and-slab parametrization to the data and compare the 
results based on different choices of the prior for the treat-
ment effects: Normal prior (ZIB + Normal), Dirichlet pro-
cess prior (ZIB + DPP). Table 2 shows the modified odds 
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Table 1   Individual likelihood 
ratio test (LRT) based p values 
for the PTX data (Katsanos 
et al. [15]) with 12 studies

Bold values are significantly low compared to the other values in the same column of the table
Results presented in the last two columns are based on Bayesian Zero-inflated binomial (ZIB) model with 
a spike-and-slab prior for �i (2); with slab distribution (3). A high value of posterior probability of �i > 0 
indicates a potential safety-signal for the treatment arm, while a high value of posterior probability of �i = 0 
indicates no safety-signal

Studies LRT p value
Posterior probability 

of �i = 0
Posterior prob-
ability of �i > 0

Study 1 0.663 0.44 0.55
Study 2 1 0.36 0.61
Study 3 0.012 0.06 0.94
Study 4 0.617 0.35 0.63
Study 5 1 0.59 0.36
Study 6 0.84 0.48 0.51
Study 7 0.987 0.42 0.55
Study 8 0.999 0.50 0.47
Study 9 0.308 0.23 0.76
Study 10 1 0.27 0.71
Study 11 0.993 0.53 0.45
Study 12 0.976 0.42 0.55

Table 2   Odds ratio (OR) and modified odds ratio (MOR) estimates for the PTX data (Katsanos et al. [15]); using ZIB model with` spike-and-
slab prior for the treatment effect

Method

OR MOR

Point Estimate 95% CI P(OR > 1|y) Point Estimate 95% CI P(MOR > 1|y)

ZIB + Normal 1.82 (1.01,3.35) 0.98 1.91 (1.00,3.36) 0.97
ZIB + DPP 1.89 (0.90,3.96) 0.96 1.96 (0.89,4.25) 0.96

Fig. 1   Posterior probability of no-signal ( �i = 0 ) based on PTX data 
(Katsanos et al. [15]). Spike-and-slab formulation was used with dif-
ferent choices of the slab distribution a Normal. b Dirichlet process 

prior (DPP). A high value of posterior probability of �i = 0 indicates 
no safety-signal
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ratio (MOR) estimates and the posterior probability of MOR 
being greater than 1. This posterior probability is large for 
this dataset under both choices of the prior distributions. 
Figure 1 presents posterior probability of no safety-signal. 
In Fig. 2a and b, we plot the posterior probability of safety-
signal P ( 𝛿i > 0|y) for each study (i = 1,…,12) based on two 
different “slab” distributions; and observe that Study 3 has 
noticeably higher posterior probability compared to other 
studies. This finding is similar to what we obtain using the 
LRT approach [20]. Besides MOR, alternatively, one may 
consider max {P ( 𝛿i > 0|y) } as a potential measure of a 
signal.

In order to compare the models and to study the model 
complexity, we compute the Deviance Information Criteria 
(DIC) and the model complexity measure pD [21] for all the 

models discussed in this section. DIC is defined as: DIC = 2 
E {log p(y|�)}–log p (y|�̂ )}, where � is a vector of model 
parameters and �̂  is an estimate of � . Let �(1),…,�(R) be the 
draws from the posterior of � . The DIC is computed as:

�̂  is a plug-in Bayes estimate of � . A model with lower 
DIC is preferred. Table 3 shows the DIC and pD (effective 
number of parameters in a model) estimates of different 
variations of the ZIB model implemented to the data. The 
model diagnostics measures slightly differ with two different 
choices of the “slab” distribution. For exploratory purposes, 
we also fit the models without spike-and-slab formulation by 
setting � =1 in Eq. (2), i.e., we use a normal or DP prior for 
the treatment effects. It shows that the models without spike-
and-slab perform slightly better in terms of DIC. However, 
unlike the proposed model, these models do not provide 
signal detection probability or overall odds- ratio estimate 
accounting for the studies with no treatment effects.

Overall, the two choices we consider for the slab distri-
bution in this analysis yield similar results. The ZIB + DPP 
model provides a slightly wider 95% CI for OR and MOR. 
The odds ratio (OR) estimates based on frequentist fixed 
and random effects models with continuity correction are 
presented in Fig. 1 A.2 (in Appendix IA). The proposed 
approach seems to be more robust as it accounts for “zero 
events” in the model without adjusting for continuity 
correction.

=
2

R

R
∑

r=1

log
(

p(
(

y|�(r)
))

− log(p(y|�̂)),

Fig. 2   Posterior probability of safety-signal (𝛿i > 0) based on PTX 
data (Katsanos et al. [15]). Spike-and-slab formulation was used with 
different choices of the slab distribution a Normal. b Dirichlet pro-

cess prior (DPP). A high value of posterior probability of �i> 0 indi-
cates a potential safety-signal for the treatment arm

Table 3   Model diagnostics for the PTX data under different modeling 
approaches; ZIB model with spike-and-slab prior for δi based on (2); 
with slab distribution Normal (3) and DPP (4)

Also, we compare the results when δi ~ f(δ, τ) , i.e., without the spike-
and-slab formulation by setting π = 1in (2)

Method

Spike-and-slab Without spike-and-slab

DIC pD DIC pD

ZIB + Normal 113.1 19.1 110.4 17.2
ZIB + DPP 112.9 18.9 109.9 16.2
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Rosiglitazone Dataset

We further analyze Rosiglitazone dataset from the Nissen 
and Wolski article [16] that studied the rates of myocardial 
infarction (MI) and cardiovascular events (CV) death among 
the patients who received Rosiglitazone vs the patients who 
received placebo using a meta-analysis. There are 48 studies, 
Nissen and Wolski [16] excluded six trials with zero total 
events for both treatment and control arms. Their meta-ana-
lytic estimate of odds ratio for MI deaths was 1.43 with 95% 
CI (1.03, 1.98) and odds ratio for CV death was 1.64 with 
95% CI of (0.98, 2.74). Subsequently, many articles analyzed 
this data with continuity correction and published the results 
[22, 23]. However, either continuity correction or exclud-
ing the trials with zero events from the meta-analysis may 
introduce bias [24, 25]. To address this issue, Dong et al. 
[4] employed a frequentist ZIB model to analyze the data; 
their analysis provided a modified odds ratio for MI death 
of 1.19 with 95% CI (0.95, 1.49) and cardiovascular death 
(CV) of 1.80 with 95% CI [1.30, 2.50]). Recently, Muthu-
kumarana et al. [5] proposed a Bayesian extension of this 
model accounting for between trial variability and assuming 
DP prior for the treatment effect and reported modified odds 
ratio for MI death 1.45 with 95% CI (1.05,2.11) and odds 
ratio for CV death of 2.21 with 95% CI (1.15, 4.27) [5]. Note 
that, like Nissen and Wolski [16], Muthukumarana et al. [5] 
considered 42 trials for their meta-analysis. Table 1A of 
Appendix IA presents a comparison of the published results 
and the results based on our proposed approach.

Our spike-and-slab approach in the ZIB set up allows 
for computing posterior probability of safety-signal for each 
trial. We implement the proposed model and present the 
probabilities for CV and MI in Figures IB.1 and IB.2, in 
Appendix IB, respectively. Note that these plots are for Nor-
mal slab distribution. Results based on DPP slab distribution 
are similar. The plots suggest that none of the trials show 
high probability of potential signal. This is true for both 
adverse events, CV and MI. Note that here we considered all 
the 48 studies and did not use continuity corrections.

Table 4 provides posterior mean and 95% credible inter-
vals for OR and MOR, respectively. These OR and MOR 
estimates suggest that there is no strong signal in terms of 

overall treatment effect, for neither CV, nor MI. As men-
tioned in Sect. 2, MOR is defined as (1 − p)∕(1 − q) OR , 
where the adjustment factor (1 − p)∕(1 − q) plays an impor-
tant role. Figures IB.3 and IB.4 (in Appendix IB) present 
posterior distributions of OR and MOR and the adjustment 
factor (1 − p)∕(1 − q) for the CV and MI data, respectively. 
For the MI analysis, the posterior probability of OR > 1 
is approximately 0.7, while the posterior probability of 
MOR > 1 is approximately 0.8. This difference is due to the 
right skewed posterior distribution of the adjustment factor 
(1 − p)∕(1 − q).

Table 5 provides DIC and the model complexity measure 
(pD) for different models. It appears that DICs are close to 
the models with and without spike-and-slab, while the model 
with spike-and-slab prior provides additional information 

Table 4   Estimate of MOR 
for the rosiglitazone data 
(cardiovascular (CV)-related 
death and myocardial infarction 
(MI)), based on 48 studies

Method

CV MI

Point estimate 95% CI Point estimate 95% CI

ZIB + Normal
 OR 1.08 (0.61,1.96) 1.15 (0.77,1.92)
 MOR 1.95 (0.89,4.06) 1.28 (0.84,2.13)

ZIB + DPP
 OR 1.16 (0.57,2.38) 1.20 (0.73,2.11)
 MOR 2.05 (0.87,4.56) 1.32 (0.80,2.27)

Table 5   Model diagnostics of different ZIB models for Rosiglitazone 
CV data, with 48 studies; ZIB model with spike-and-slab prior for δi 
based on (2); with slab distribution Normal (3) and DPP (4)

Also, we present results when �i ~ f(�, �) , i.e., without spike-and-slab 
formulation by setting � =1 in (2)

Method

Spike-and-
slab

Without 
spike-and-

slab

DIC pD DIC pD

ZIB + Normal 148.8 43.0 150.3 43.5
ZIB + DPP 148.4 42.7 149.3 42.8

Table 6   Model diagnostics for Rosiglitazone MI data, with 48 stud-
ies; ZIB model with spike-and-slab prior for δi based on (2); with slab 
distribution Normal (3) and DP (4)

Also, we present results when �i ~ f(�, �) , i.e., without spike-and-slab 
formulation by setting � =1 in (2)

Method

Spike-and-
slab

Without 
spike-and-

slab

DIC pD DIC pD

ZIB + Normal 257.4 58.8 255.8 58.3
ZIB + DPP 257.8 59.0 256.5 59.0
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such as posterior probability of observing a safety-signal 
(Table 6).

Discussion

In this article, we describe a Bayesian methodological 
framework that provides the posterior probability of poten-
tial safety-signal for each study, for single adverse event 
along with a meta-analytic estimate of the overall signal. 
This proposed methodology is based on zero-inflated bino-
mial (ZIB) with spike-and-slab parameterization for the 
treatment effects; our approach accounts for the between-
study variability. The framework may serve as an alternative 
to frequentist LRT approach discussed in Jung et al. [20] 
when there are zero events in treatment or the control group. 
Furthermore, this approach avoids continuity correction for 
the zero events and can be used instead of fixed and random 
effects meta-analysis when there are zero events. We illus-
trated the proposed framework based on case studies using 
published data sets and compared the model performance for 
different choices of priors for treatment effect.

The advantages of Bayesian approach with the use of spike-
and-slab prior, in the multiplicity adjustment context, have pre-
viously been discussed in several articles. The mixture prior 
with point mass at zero can be a reasonable choice for signal 
detection as some adverse events may not be associated with 
the treatment. Information related to these types of adverse 
events are routinely collected in clinical trials and hypothesis 
related to these events are not typically prespecified [9]. The 
proposed method produces an overall meta-analytic estimate 
of effect-size (e.g., odds ratio or risk ratio) of the adverse event 
adjusting for the studies with zero treatment effect; however, it 
is only suitable for analyzing a single adverse event at a time. 
Therefore, it does not account for the complex relationship 
(i.e., correlation) between the AEs. This is a potential topic 
for future research.
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