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Abstract
Safety evaluation is a continual and iterative process throughout the drug development life cycle and requires long time 
horizons and large amounts of data to fully understand the safety profile of a medical product. Although randomized clinical 
trials (RCT) provide high-quality data for an initial assessment of safety signals, the safety signals may not all have been 
known at the time of approval because safety data collected from RCT only involve a relatively small number of subjects 
during a relatively short follow-up period. The increased accumulation of post-marketing real-world data (RWD) presents 
an opportunity to utilize them for safety decision-making; these include identifying new safety signals, further characteri-
zation of safety concerns that are raised in pre-marketing RCT, and further generalization of RCT findings to the broader 
patient populations not previously studied in RCT. In this paper, we use cardiovascular safety outcome trial for antidiabetic 
therapies as an illustrative example and discuss how integrative analysis of RCT and observational study data can answer 
regulatory concerns about cardiovascular risk in a post-marketing setting. A novel statistical analysis strategy is proposed to 
combine both sources of safety data in a data fusion approach. The proposed approach includes three stages: (1) feasibility 
analysis that uses an RCT to validate an observational study, applying estimand framework and emulating RCT with RWD; 
(2) integrative analysis that combines evidence from the RCT and observational study data cooperatively; and (3) sensitivity 
analysis that examines the consistency of the previous analyses. Two potential utilities of the proposed integrative analysis 
for the cardiovascular safety outcome trial are discussed.

Keywords  Real-world data · Observational study · Randomized clinical trial · Cardiovascular outcome trial · Type 2 
diabetes mellitus · Causal inference

Background

Randomized clinical trials (RCTs) are often considered the 
gold standard for establishing treatment efficacy and safety 
of a new intervention and are critical for the purposes of 
establishing the evidence supporting product licensure. The 
risks associated with the new intervention may not be all 
known at the time of approval, because safety data are col-
lected from studies that involve a relatively small number 
of subjects during a relatively short follow-up period of 
time. Furthermore, RCTs typically involve stringent study 

designs, employing carefully selected populations, and have 
been criticized for not providing results that can be gener-
alized to routine clinical practice [1]. In contrast, the use 
of real-world effectiveness and safety data collected out-
side of highly controlled traditional randomized trials has 
received increasing attention in the medical literature [2–4]. 
In response to requirements under the 21st Century Cures 
Act and the sixth Prescription Drug User Fee Act (PDUFA 
VI) [5, 6], the FDA is developing the process and guidance 
for using real-world data (RWD) and its resultant real-world 
evidence (RWE) to support the assessment of safety and 
effectiveness in regulatory submissions.

Real-world data, as defined by U.S. FDA RWE frame-
work [7], are data related to patient health status and/or the 
delivery of health care collected in the setting of routine 
clinical care. Examples of RWD include data derived from 
electronic health records (EHRs), medical claims, and bill-
ing data (used for administrative purposes) and data from 

 *	 Li‑An Lin 
	 leeang.ling@gmail.com

1	 Clinical Safety Statistics, Merck & Co., Inc, Kenilworth, NJ, 
USA

2	 Clinical Safety, Moderna, Cambridge, MA, USA

http://orcid.org/0000-0003-2731-1346
http://crossmark.crossref.org/dialog/?doi=10.1007/s43441-021-00349-x&domain=pdf


424	 Therapeutic Innovation & Regulatory Science (2022) 56:423–432

1 3

product and disease registries [7]. These data sources often 
include a large number of patients and can be considered as 
representative of real-world patient populations. Based on 
research objectives and questions, the specific target patient 
population can be defined for whom to collect information 
and then construct the study sample from RWD [8]. The 
rich data sources in a real-world setting also promote exter-
nal validity which is a commonly raised concern in RCTs 
due to the enrolled participants not fully representing those 
patients seen in routine clinical practice. Meanwhile, the 
increasing development of such large databases, as well as 
the maturation of information technology invites their use 
in health care and clinical decision-making. An acknowl-
edged limitation of real-world databases is that treatment 
use is simply observation of physician/patient choice, not 
randomized. As a result, baseline covariates of treated sub-
jects often differ systematically from those of untreated 
subjects. Randomization is routinely used in experimental/
clinical research to reduce or eliminate the effect of base-
line covariates that might otherwise occur due to treatment 
assignment and which can influence the treatment use and/
or outcomes between treatment groups (also known as con-
founding factors).

Considering the respective strengths and limitations of 
RCT and RWD, there is a growing interest in utilizing data 
from both sources of evidence to inform regulatory decision-
making. Safety evaluation is a continual and iterative process 
throughout the drug development life cycle and requires long 
time horizons and large amounts of data to fully understand 
the safety profile of a medical product. While clinical trials 
provide high-quality data for an initial assessment of the 
safety signals of a new drug, they alone cannot fully charac-
terize the safety profile. Post-marketing RWD plays a critical 
role in further understanding the safety profile of a drug once 
it has been licensed and is being used in clinical practice. 
A well-designed observational study (either retrospective 
or prospective design), together with RCT, can be used to 
answer broader regulatory safety questions.

There is little methodological work assessing the statisti-
cal analysis strategy in conjunction with RCT and obser-
vational study design. And, significant challenges remain 
regarding potential study design and analytic methodologies 
to determine whether observational studies can reliably gen-
erate evidence on the safety and effectiveness of new inter-
ventions to inform regulatory decision-making. In this paper, 
we focus on the integrative analysis of RCTs and observa-
tional studies to inform post-marketing safety decision-mak-
ing. We propose a three-stage statistical analysis strategy 
that utilizes data fusion techniques (originally developed for 
computer science) to integrate these two data sources in a 
cooperative manner, designed to enhance clinical trial results 
while mitigating several of the limitations associated with 
observational data. The remainder of this paper is organized 

as follows. In Section 2, we introduce statistical issues and 
methods for synthesizing RCT and RWD evidence. Sec-
tion 3 presents the Cardiovascular Outcome Trial (CVOT) 
as a motivating example. Section 4 describes the proposed 
three-stage statistical analysis strategy. Practical considera-
tions and related issues are discussed in Section 5.

Introduction

Meta-analysis is widely used in medical research to derive a 
pooled effect estimate based upon a synthesis of findings of 
multiple studies that frequently employ diverse designs [9]. 
Assuming the included studies are random samples drawn 
from a hypothetical population of pooled studies, the meta-
analysis result can be interpreted as an objective estima-
tion of the mean treatment effect across this hypothetical 
population [10]. Due to the heterogeneity across studies, this 
assumption may not hold and random-effect models may 
be able to provide “an overall summary of what has been 
learned” and “a quantitative measure of how results differ, 
above and beyond sampling error” [11]. In meta-analysis of 
RCTs and observational studies, more complicated models 
have been proposed to accommodate additional heteroge-
neity between these two types of studies, including naïve 
pooling that does not differentiate between-trial designs, 
inclusion of observational study data as prior information, 
a power prior approach where information from the obser-
vational study is down-weighted to reflect confidence in the 
study findings, and a three-level hierarchical model where 
one level of the model accounts for differences in RCT and 
observational study designs in addition to study level and 
participant level [12–16]. A more detailed discussion of 
statistical modeling can be found from the review paper by 
Schmitz et al. [12] and Efthimiou et al. [15].

As described, meta-analysis provides a quantitative 
measure of treatment effect across RCTs and observational 
studies. However, its applicability in combining these 
two study types is limited since subjects in observational 
studies are typically from a different population as from 
RCTs and the treatment effect may not be the same across 
those populations [15, 17]. There are restrictive proce-
dures in the selection of RCT participants which makes 
the RCT population not a random sampling of the general 
patient population [18]. In particular, the distribution of 
confounding factors that modify the treatment effect and 
treatment choice in RCTs often differs from subjects seen 
in routine clinical practice. Moreover, the clinical question 
and trial objective may differ from the observational study. 
The design and conduct of RCT make RCT participants 
more likely to be adherent and less likely to deviate from 
the prespecified protocol schedules. The observational 
study is constrained by the data observed in actual practice 
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patterns in real life. Directly combining these two types 
of studies together in a meta-analysis cannot produce esti-
mates with a clear causal interpretation for any reasonable 
hypothetical population as meta-analyses combine study-
specific effects based on the precision of the estimates 
rather than their relevance to the target population [17]. 
Moreover, the design of an RCT is different from that of 
an observational study, usually having shorter follow-up 
time, a smaller sample size, a bigger departure from rou-
tine clinical practice, and ethical restrictions. When an 
observational study data is included in a meta-analysis, it 
amplifies concerns about whether the efficacy and safety 
of the corresponding interventions can be translated into 
real-world effectiveness and safety [15]. In considering 
the challenge for defining the common clinical question 
across studies and large heterogeneity (including unex-
plained inconsistency) of treatment effect, meta-analysis 
may be inappropriate.

An alternative approach is presenting RCT and obser-
vational study results side by side where the observational 
study is considered to complement RCTs or address some 
of their limitations [17]. There is a stronger scientific justi-
fication for deriving evidence of a drug effect from RCTs as 
compared to observational studies [7]. The data produced 
from observational study studies can be useful complemen-
tary to those generated by RCTs and help to establish real-
world effectiveness, harm, use, and value of treatments in a 
broad population of patients from routine care [19, 20]. In 
the literature, there are examples where RCT and observa-
tional study studies have reached similar conclusions about a 
treatment effect, and there are also examples when an effect 
identified in an observational study is discordant with the 
previously characterized effect (effect size, direction, or 
magnitude) [7]. Observational study results that are con-
cordant with the RCT can provide regulators with greater 
confidence in new drug application review and approval 
process, whereas discordant results could warrant deeper 
reexamination of the RCT or observational study to identify 
reasons for this discordance and additional research may be 
necessary to further explore [3, 21]. This approach has been 
used in regulatory approvals. For example, an FDA advisory 
meeting was held in January 2019 to discuss the new drug 
application for Sotagliflozin as an adjunct to insulin therapy 
to improve glycemic control in adults with type 1 diabetes 
mellitus (T1DM). The risk for diabetic ketoacidosis (DKA), 
a life-threatening complication caused by a lack of insulin 
in the body, with the use of Sotagliflozin for treatment of 
T1DM has been raised as RCTs which showed an increased 
risk of DKA with Sotagliflozin compared with placebo [22]. 
The U.S. FDA presented both RCTs and FDA Sentinel data 
to support the review where analyses with Sentinel data 
showed that DKA rates observed in off-label use were higher 
than expected based on RCTs.

The complementary approach provides a qualitative way 
to review these two data sources together and draws the joint 
findings, but it does not provide an integrative quantitative 
assessment to accommodate both types of data sources. Fur-
thermore, it is still questionable whether or not the observa-
tional study is sufficiently credible, interpretable, and ulti-
mately acceptable for the regulatory purpose [16]. Due to the 
lack of randomization and the presence of confounding bias 
in an observational study, statistical methods (such as pro-
pensity score adjustment and instrumental variable analysis) 
have been developed to adjust for confounding bias and con-
duct causal inference. The commonly used methods include 
multivariable risk models, propensity score adjustment, 
and instrumental variable analysis [23, 24]. The propensity 
score for a subject, defined as the conditional probability of 
being treated given the subject’s covariates, can be used to 
balance the covariates between treatment groups and thus 
reduce estimation bias. In the absence of random assignment 
(which is typical of RWD study designs), propensity scor-
ing is a tool designed to mitigate inter-group differences in 
important known baseline covariates. It is important to note 
that propensity score methods work best in large datasets in 
which one can obtain a reasonable overlap of confounding 
factors between treatment groups. In addition, propensity 
score will not adjust for the impact of unknown or unmeas-
ured confounders that are not included in the propensity 
score model [23, 25]. Instrumental variable is a third vari-
able that is influenced by explanatory and outcome variables 
in the causal model. Instrumental variable methods are not 
based on the hard-to-verify assumption of “no unmeasured 
confounding,” but require identification of a valid instrumen-
tal variable that needs to be correlated with treatment status 
and does not independently affect the outcomes of interest 
(except through a treatment effect). Often, proper instrumen-
tal variables are notoriously difficult to identify so that pro-
pensity score adjustment may be the only available practical 
choice. The causal estimation may also be compromised by 
measurement bias, i.e., when data items are measured with 
error. Assessment of data sources (including completeness, 
consistency, and trends over time) is needed to make sure 
the medical codes or combinations of codes, such as the 
World Health Organization’s International Classification of 
Diseases Coding and Coding and ICD-9-CM Codes Used in 
Vaccine Safety Research, adequately capture the underlying 
medical concepts they are intended to represent [7, 26].

Addressing residual confounding and other biases in 
casual estimation is critical to improving the validity of 
observational studies and subsequently drawing causal con-
clusions with both RCTs and observational studies. Cur-
rent gaps or perceived obstacles to increasing use of RWD 
include insufficient confidence in data sources and also 
integrating these with clinical data [27]. Although there 
is considerable growth in the development of advanced 
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causal inference methods in the past decades, it is still not 
guaranteed that causal inference methods for observational 
studies can address all of the potential bias and achieve the 
same level of evidence as RCTs. Increasing the credibility 
of observational studies can be at the design and/or analysis 
stage of the study. It is best to adjust for the potential for bias 
early, as statistical methods cannot replace a good research 
design. Since a well-designed RCT can provide high-quality 
evidence to establish causality, it can provide the founda-
tion for framing observational studies. Several observational 
studies have successfully emulated the target trial using 
RWD and demonstrated that this approach can help avoid 
common methodological pitfalls and explain between-study 
differences [28–32]. By systematic comparisons of matched 
observational studies that emulate RCTs as closely as pos-
sible in terms of populations, exposure, and outcomes, it 
can provide confidence that observational study design and 
analysis plan are sufficiently valid to draw casual effect with 
RWD [33].

Motivating Example

Diabetes mellitus is a metabolic disorder characterized by 
the presence of hyperglycemia (elevated blood glucose) 
due to defective insulin secretion, insulin action, or both. 
Over time, poorly controlled serum glucose damages mul-
tiple organ systems, including elevating the risk for cardio-
vascular (CV) disease. Numerous antidiabetic drugs have 
been approved in Europe and the USA to control serum 
glucose. Although the correlation between poor glycemic 
control and cardiovascular risk is clear, it has proven diffi-
cult to demonstrate a causal relationship between improved 
diabetes control and reduced cardiovascular risk in type 2 
diabetes mellitus (T2DM) [34]. Concerns about this gap in 
the assessment of CV safety grew after two highly contro-
versial meta-analyses of CV risk were published [35, 36]. 
Given these concerns and the prevalence of CV disease in 
diabetic patients, both the U.S. FDA (in 2008) and the Euro-
pean Medicines Agency (EMA, in 2012) issued guidance for 
industry to address CV risk in for new antidiabetic therapies 
to treat T2DM [37, 38]. In particular, the U.S. FDA advised 
that pre-marketing phase 2 and phase 3 trials should rule 
out an 80% excess risk (upper bound of the rate ratio of 
the 2-sided 95% confidence interval less than 1.8) for major 
cardiovascular events (MACE). If the upper bound of the 
95% confidence interval is between 1.3 and 1.8, a dedicated 
post-marketing cardiovascular outcome trial (CVOT) will 
be required to rule out a 30% excess risk after approval. The 
EMA guideline is similar to the FDA guidance but does not 
prospectively define any pre- or post-approval CV event risk 
margins.

After the publishing of the 2008 U.S. FDA guidance, 
every novel antidiabetic agent approved has undergone a 
dedicated CVOT, typically involving 5,000–15,000 people 
with type 2 diabetes and high-CV risk and planned to last-
ing 3–5 years [34]. And, none of the CVOTs completed 
and published to date have identified an increased risk of 
CV events; some of the CVOTs have instead demonstrated 
a reduced risk [39]. On October 24, 2018, the FDA held a 
2-day Advisory Committee meeting to review the utility and 
impact of the 2008 guidance. The issues addressed by the 
FDA advisory board were as follows: (1) the impact of the 
recommendations in the 2008 guidance on the assessment 
of CV risk for drugs indicated to improve glycemic control 
in patients with T2DM; (2) the transferability of CV safety 
findings from members of a drug class that were studied 
to all drugs in the class (class effect), and (3) whether an 
unacceptable increase in CV risk needs to be excluded for 
all new drugs to improve glycemic control in patients with 
T2DM, regardless of the presence or absence of a signal for 
CV risk in the development program [40]. The panels made 
several recommendations for future regulatory guidance 
and CV outcome trials regarding antidiabetic therapies, 
include requiring only the 1.3 non-inferiority margin for 
regulatory approval, conducting trials for longer durations, 
considering head-to-head active comparator trials, increas-
ing the diversity of patient populations, collecting safety 
data beyond cardiovascular events, and identifying ways to 
improve translation of trial results to general practice. Fol-
lowing the discussions at the Advisory Committee meet-
ing, the U.S. FDA has revisited the recommendations of 
2008 guidance and published new draft guidance in March 
2020 [41]. The new draft guidance recommends sponsors 
to enroll a broader range of patients with comorbidities 
and diabetes-associated conditions, including patients with 
chronic kidney disease and older patients. It also removed 
the stringent criterion that requires sponsors to uniformly 
rule out a specific degree of risk margin for CV adverse 
outcomes (as recommended in previous 2008 guidance), but 
focuses more on the meaningful and reliable estimation of 
risk. However, the question still remains—how to rule out 
the excessive CV risk if a clinical trial study shows some 
degree of CV risk for the new antidiabetic treatment. In the 
new draft guidance, the importance of substantial safety 
information to support indication for glycemic control is 
still well recognized, and U.S. FDA continues to support 
CVOTs for patients with diabetes and will intend to work 
with sponsors to find efficient designs. Given the increasing 
availability of RWD supported by sophisticated statistical 
analytic tools along with regulatory interest in the use of 
such data to inform regulatory decision-making, observa-
tional study data could be an appealing alternative for a 
post-marketing CVOT.
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Statistical Analysis Strategy

To address the acknowledged limitations of RCTs and RWD, 
we will explore the utility of data fusion techniques that 
were originally developed for computer science to integrate 
these two data sources in a cooperative manner. By defini-
tion, data fusion is the process of integrating multiple data-
sets collected under heterogeneous conditions (i.e., differ-
ent populations, regimes, and sampling methods) to produce 
more consistent, accurate, and useful information than that 
provided by any individual dataset in isolation [42, 43]. It 
considers data integration as transporting heterogeneous 
datasets from one experimental condition to another via a 
causal diagram. Bareinboim and Pearl have derived a theo-
retical framework for causal analysis in combined experi-
mental and observational datasets and extended it to clinical 
research settings [43]. In this manuscript, we present a novel 
statistical analysis strategy in applying data fusion for RCT 
and observational study evidence integration. Based on the 
relationship between the data sources, data fusion classifies 
the analysis methods into three categories: complementary 
fusion, where the data sources are not directly dependent on 
each other, represents non-overlapping information and can 
be combined to give a more complete image of the object 
under observation; competitive fusion (also called redun-
dant fusion or meta-analysis), where data sources provide 
independent and overlaying information about the same tar-
get and can thus be fused to increment the confidence and 
robustness in a system; and cooperative fusion, where the 
data sources are used to create dependency with each other 
(e.g., one source of information is used to guide the search 
of new observations for another source) and eventually cre-
ate new information that is more complex and not avail-
able from the original information. These three categories 
of data fusion methods are not mutually exclusive. Many 

applications implement aspects of more than one of the three 
types. The first two methods have been discussed in Sec-
tion 2. When RCT and observational study are conducted 
on a different population and under a different set of condi-
tions, the cooperative fusion aims to leverage exploit design 
distinctions among the available studies and synthesize an 
aggregate measure of “targeted” effect size instead of “aver-
aging out” differences. Using the cooperative fusion idea 
to integrate RCT and RWD evidence, we propose a three-
stage statistical analysis strategy: (1) feasibility analysis that 
uses an existing RCT to validate and plan an observational 
study, applying estimand framework and emulating RCT 
with RWD; (2) integrative analysis that combines evidence 
from the RCT and observational study data cooperatively; 
and (3) sensitivity analysis that examines the consistency 
of the previous analyses. Figure 1 summarizes the working 
process of the proposed statistical analysis strategy.

Feasibility Analysis

Feasibility is necessary before fully considering an obser-
vational study for regulatory purposes. Through feasibility 
analysis, whether the data source is fit-for-use and whether 
the study design is sufficient to answer the intended research 
questions will be examined. To ensure the reliability and 
relevance of RWD submitted for use in regulatory decisions, 
FDA requires an assessment of whether the data capture 
relevant data on exposure, outcomes, and covariates [7]. 
Moreover, whether the observational study can provide 
credible casual estimation will need to be verified. Recently 
published EMA draft guideline on registry-based studies 
specified that analysis of potential information bias, selec-
tion bias, and potential confounding bias should be submit-
ted either separately or as part of the proposed protocol [44]. 
An RCT can provide an excellent venue for the evaluation of 

Fig. 1   Flow chart of proposed statistical analysis strategy
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an observational study. Although there is significant existing 
research on the validity of observational studies, the most 
credible approach to evaluating their utility to inform regu-
latory decision-making is to compare the findings of such 
studies with the findings of RCTs addressing similar clinical 
questions, under the assumption that the RCTs represent a 
reference standard for the underlying true treatment effect 
[32]. As an example, a study assessed the correspondence 
of cardiovascular events that were ascertained by algorithms 
applied to Medicare data with the original Women’s Health 
Initiative (WHI) trial that was conducted with the protocol-
driven data collection and physician adjudication using 
linked records of trial participants to Medicare claims data 
[45]. Agreement between the two data sources was quite 
high, and the resultant hazard ratios and 95% confidence 
intervals were quite comparable. These encouraging results 
provided the needed support to launch a new embedded 
pragmatic trial that will rely heavily on Medicare claims 
to ascertain outcomes data. We propose the following three 
steps of feasibility analysis.

The first step of feasibility analysis is to emulate the target 
trial with RWD. Recent advances in comparative effective-
ness research methods can help us design an observational 
study that mimics an RCT [46]. Herna´n and Robins devel-
oped a framework for comparative effectiveness research 
using large observational databases to emulate the target trial 
[30]. Several observational studies have successfully emu-
lated the target trial with RWD and demonstrated that this 
approach can help avoid common methodological pitfalls 
and explain between-study differences [28, 29]. In the pro-
cess of designing an observational study to emulate an exist-
ing RCT, the clinical question of the study can be framed 
and the study design can be adjusted to match with the RCT 
as much as possible. The estimand framework, described in 
ICH E9(R1) Guideline, can be applied to frame the estimand 
of the observational study [47, 48]. For summarizing data 
with RCT, the estimand of the observational study should 
be aligned with the RCT estimand which will form the basis 
to establish feasibility analysis. The five estimand attributes 

should be carefully examined by a multi-disciplinary team, 
including (1). treatment condition of interest; (2). population 
of patients targeted by the clinical question; (3). variable (or 
endpoint) to be obtained for each patient that is required to 
address the clinical question; (4). intercurrent events; and 
(5). population-level summary [47]. Similar to the five esti-
mand attributes, data fusion considered four dimensions in 
transporting findings across studies with heterogeneous con-
ditions (population, observational/experimental, sampling, 
measure) [43].

Completely replicate RCT is not possible. One important 
reason is that the RCT population is not a random sampling 
from the target population. The different distributions of 
patient baseline characteristics may vary the casual estima-
tion between studies. Table 1 provides an extreme hypo-
thetical example of such differences. A direct comparison 
of treatment effect from RCT and observational study that 
matched with RCT design, in the upper portion of Table 1, 
suggests that a lower treatment effect estimation from the 
observational study than the RCT. However, when stratify-
ing the comparison by baseline disease severity, as in the 
lower portion of Table 1, the response rate from both treat-
ments (A and B) is revealed to be the same in the RCT and 
observational study. The observed difference drawn from the 
naïve comparison between the RCT and observational study 
is an example that the heterogeneity in patient population 
between studies can be difficult to account for. Thus, the 
second step is to match the distribution of patient popula-
tion between the observational study and RCT data. If the 
balance of the patient population cannot be achieved after 
adjusting the observational study design, the assessment 
of agreement between RCT data and RWD is not feasible. 
Similarly, if balance is achieved only in a very small subset 
of the RWD population, the analysis is again infeasible in 
the given RWD source. The third step of feasibility analysis 
is comparing the casual estimation of the RCT and matched 
observational study. If assignment to the treatment and out-
come by treatment in the observational study were uncon-
founded, the treatment effects in the two studies should be 

Table 1   A hypothetical example of the observed difference in treatment effect estimation due to differences in patient baseline characteristics

a Observed difference in treatment effect estimation between RCT and observational study
b Assuming 75% severe (25% non-severe) in RCT and 25% severe (75% non-severe) in observational study

Outcome

RCT​ Observational study Between-
study 

differenceaTreatment A Treatment B Treatment A Treatment B

Aggregated overall response ratesb (%)
 All patients 60 25 40 15 10

Response rates (%) by baseline severity
 Severe 30 10 30 10 0
 Non-severe 70 30 70 30 0
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expected to be similar. The differences in the estimated 
causal effects between the two studies can be considered as 
evidence of unobserved confounders.

By comparing the findings from RCT and matched obser-
vational study, whether the data, estimand, study design, and 
analysis plan are sufficiently valid to detect known causal 
associations in the RCT can be identified. If no substan-
tial inconsistencies are found in the matched observational 
study, one can proceed with the integrative analysis of RCT 
and matched observational study. Disagreements might 
occur due to residual confounding, important differences in 
routine clinical practice and treatment in RCT, or systematic 
differences in matching observational study with RCT. If 
inconsistent causal effects are seen, further examination of 
their magnitude and reasons for such differences are war-
ranted to gain a broader understanding of RWD and its cor-
responding on whether the observational study can be used 
to support regulatory safety decision-making.

Integrative Analysis

In this section, we will describe two applications in com-
bining RCT data and RWD information together once the 
observational study can be validated via feasibility analy-
sis. If the matched observational study can be established to 
match with RCT estimand, the meta-analysis can be applied 
to combine RCT data and matched observational study data. 
Moreover, it is more reliable to further expand the design of 
the validated observational study design to a broader patient 
population that was not previously studied in RCT. Other 
applications are also possible but will not be discussed in 
this paper.

The first application is meta-analysis of RCT and the 
matched observational study. As we discussed in Section 2, 
in the absence of a common target population, assessing 
causality when directly combining RCT and observational 
study findings in a meta-analysis approach may not be fea-
sible. By matching the observational study with the RCT, 
the clinical question of the study can be framed to a similar 
question as in the RCT. Meanwhile, the study design and 
patient population are similar across the matched obser-
vational study and RCT. This meta-analysis approach can 
provide a quantitative measure of the pooled causal effect 
across the RCT and observational study and focus on the 
RCT population. As discussed in 3 with respect to the CVOT 
example, sponsors need to compare the incidence of major 
CV events occurring with the investigational agent to those 
in the control group to show that the upper bound of the 
2-sided 95% for the estimated risk ratio is less than 1.8 for 
the pre-marketing submission. However, the number of CV 
events accrued during a typical phase 2 or 3 development 
program is usually insufficient to provide high statistical 
confidence. Thus, sponsors typically proposed to conduct 

a CV meta-analysis that includes completed Phase 2 and 
Phase 3 studies [49]. Although the 2020 U.S. FDA draft 
guidance removed the uniform degree of risk for CV events, 
it is still not clear how to exclude an unacceptable increase in 
CV or other identifiable risks associated with the new agent 
if the data are lacks of precision. To answer this question, the 
meta-analysis of an RCT and matched observational study 
could be performed to increase the precision of estimation 
and exclude a much lower degree of CV risk (such as the 1.3 
criteria for the post-marketing setting that is defined in 2008 
U.S. FDA guidance).

As described, the meta-analysis approach is only appli-
cable when the analysis population can be properly defined. 
When performing integrative analysis of an RCT and the 
matched observational study under the meta-analysis frame-
work, we can only provide answers to the RCT population 
which may not be generalizable for RWD population. The 
second application is to generalize RCT findings. As illus-
trated in Fig. 1, the RCT population can substantially dif-
fer from the RWD population. In particular, RCT findings 
generally only include patients who are adherent to therapy, 
monitoring, and follow-up and that is not part of real-world 
clinical practice. For example, current CVOTs typically have 
studied in patients with advanced CV risk or already estab-
lished CV disease to ensure accrual of sufficient events in a 
timely manner and have sufficient statistical power in detect-
ing CV risk differences [50, 51]. They cannot be entirely 
representative of the general population and therefore there 
is less certainty that the new treatment will improve CV 
outcomes for patients with a shorter duration of diabetes or 
without established CV complications. Lower-risk popula-
tions could determine whether diabetes medications offer 
CV protection for those who do not yet have CV disease 
[50]. Leveraging the finding established by feasibility analy-
sis, the design of the matched observational study can be 
modified to reflect patients that are not well represented in 
the clinical trial. Since the study design and its causal rela-
tionship has been examined by the corresponding RCT, the 
extended observational study (with, for example, broader 
inclusion/exclusion criteria, longer follow-up times) could 
yield more credible results. In this sense, the RCT is used to 
validate RWD data source and observational study design, 
which may not necessary to combine its data with RWD.

Sensitivity Analysis

Despite attempts to emulate RCT design as closely as pos-
sible, differences between the RCT and corresponding RWE 
study populations remained. When emulating an RCT with 
RWD, a number of compromises will have to be made, such 
as eligibility criteria, endpoints definition, treatment strate-
gies to be compared, and follow-up time [30]. Given the 
constraints of the RWD, adjusting the design and analysis 
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strategy in matching the target RCT is needed. Then, we 
will choose the one that is closest to the target trial that 
can best answer the clinical question of interest. The dif-
ference between the matched observational study and the 
corresponding RCT should be documented and explored by 
evaluating alternative approaches to controlling the remain-
ing confounding and its resultant bias. The sensitivity analy-
sis can assess whether possible variations would lead to dif-
ferent results by altering some aspects of the study design 
and analysis. This is aligned with ICH E9 (R1) addendum 
for clinical trials and EMA draft guideline on registry-based 
studies [44, 47]. For example, death is recorded in Medi-
care claims but the cause of death is not [32]. The primary 
endpoint of CVOT typically is a composite of CV death, 
non-fatal MI, and non-fatal stroke. In addition, some CVOTs 
added hospitalization for unstable angina and heart failure 
as primary endpoints. It is expected that a significant pro-
portion of all-cause deaths may be CV deaths in diabetic 
patients with high-CV risk [32]. To match the observational 
study with the existing CVOT, it is possible to include all-
cause death as the primary endpoint. However, the assump-
tions about the cause of death should be further explored via 
sensitivity analysis with all-cause death excluded. The cause 
of death may able to be asserted via linked data from HER or 
National Death Index (NDI). In this case, the robustness of 
linked data can also be examined by sensitivity analysis. By 
extensive sensitivity analyses, the robustness of findings will 
be explored to identify the range of plausible effect estimates 
under varying assumptions about the untested assumption.

Discussion

In this paper, we discussed the utility of RWD for post-mar-
keting safety decision-making, in conjunction with RCT 
data. The observational study can provide complementary 
evidence for the RCT in several dimensions, such as routine 
clinical practice, a broader patient population, and longer-
term follow-up. If the questions that both studies are trying 
to answer are clinically identical or similar, meta-analysis 
methods can be used to synthesis study findings. However, 
there are still considerable obstacles in increasing the use of 
RWD, such as insufficient confidence for validating RWD, 
causal interpretation of observational studies, and also inte-
grating these with RCTs. We proposed a three-stage sta-
tistical analysis strategy in this paper: feasibility analysis 
that uses an RCT to validate an observational study, integra-
tive analysis that combines evidence from an RCT and an 
observational study cooperatively, and sensitivity analysis 
that examines the consistency of previous analyses. The pro-
posed approach allows us to validate the causal effects in an 
observational study by matching the study with an RCT in 
all dimensions, such as distribution of patient population 

and treatment strategy, outcome. The forthcoming integra-
tive analysis can only be feasible and interpretable if the 
observational study can be consistent with the RCT in causal 
estimation for a target population. Finally, the sensitivity 
analyses provide an additional examination of the robust-
ness of the findings by exploring assumptions in the study 
design and analysis. A potential application of the proposed 
approach for the post-marketing CVOTs to alleviate the CV 
risk for antidiabetic therapies has been discussed.

Although there are some recent attempts examples where 
RWD was successfully used to emulate RCT, not every RCT 
can be closely emulated by RWD. For example, the treat-
ment regimens in RCTs are often highly structured and may 
be difficult to be replicated in normal practice settings. It 
also has been argued that RCTs do not accurately reflect 
real-world circumstances under which patients are treated 
which limit the applicability of RCT results to real life [52, 
53]. In order to yield meaningful data, the RCT must adapt 
and evolve so that the clinical knowledge generated from 
an RCT can increase the clinical relevance and overall use-
fulness of trial results. Such differences in study settings 
contribute to different treatment effect estimates from an 
RCT and the matched observational study. Furthermore, the 
results of a matched observational study are not always con-
sistent with the RCT even when RWD can successfully emu-
late RCT and provides valid casual estimation. There have 
been several instances in which the efficacy and/or safety of 
marketed drugs differs substantially from that assessed in 
RCTs. Such phenomena can be considered as a problem of 
variability in drug response (efficacy or toxicity), either due 
to biological (e.g., previously unidentified patients’ genetic 
biomarkers and other intrinsic/extrinsic factors) or behav-
ioral (e.g., inappropriate prescribing and drug handling, 
poor patient adherence) sources [54]. Overall, it is expected 
that the variability in a real-world setting is higher than 
that in clinical trial conditions which may reduce the likeli-
hood to detect a true effect for the matched observational 
study. For these reasons, assessing concordance between 
RCTs and observational studies requires the application of 
quantitative methods which are interpreted and informed 
by medical judgment. Several statistical methods may be 
applied to assess agreement between RCT and observational 
study results, such as estimation agreement, standardized 
difference, and difference-in-difference [32, 55]. As these 
methods are applied to assess concordance between RCT 
and observational study results, there is the opportunity 
to further refine them within the setting of medical judg-
ment. Nevertheless, by comparing an RCT with a matched 
observational study, it provides insight into whether and 
to what extent differences in treatment effect estimates are 
due to bias related to the study setting, patient population, 
treatment strategy, clinical practice, randomization, and/or 
other differences between RCT and observational study. The 
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additional sensitivity analysis provides even more explora-
tory insights and generates hypotheses for future studies.

Previous studies, comparing the results of RCTs and 
observational studies, suggested that the lack of concord-
ance can be attributed to differences in the populations being 
investigated or bias in the observational studies as a result of 
lack of randomization [56]. The proposed approach may rule 
out the possible differences in study populations and have 
a closer assessment of bias due to imbalanced unmeasured 
confounding between treatment arms in the observational 
study. If the feasibility analysis indicated that the matched 
observational study cannot provide consistent estimates 
to the RCT and no clinical rationale can explain such dis-
cordance, a randomized study will need to be conducted 
instead. This type of randomized study, such as a pragmatic 
randomized controlled trial (pRCT) or registry-based rand-
omized controlled trial (R-RCT), that combined the advan-
tages of a prospective RCT design with real-world natural 
in real-world features, could be seen as expanded use of 
RWD that meets regulatory criteria [27]. Nevertheless, the 
proposed approach could provide feasibility assessment 
for conducting such real-world trial and also inform trial 
design for the study. Such a staggered approach in develop-
ing an appropriate study type possesses flexibility for drug 
developers and regulators in evaluating which study is most 
appropriate to answer post-marketing safety questions, while 
still maintaining the highest standard of evidence to support 
regulatory decision-making.
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