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Abstract
Colorectal cancer (CRC) is one of the most common cancers and a major cause of cancer-related mortality worldwide. 
The efficacy of chemotherapy agents in CRC treatment is often limited due to toxic side effects, heterogeneity of cancer 
cells, and the possibility of chemoresistance which promotes cancer cell survival through several mechanisms. Combining 
chemotherapy agents with natural compounds like curcumin, a polyphenol compound from the Curcuma longa plant, has 
been reported to overcome chemoresistance and increase the sensitivity of cancer cells to chemotherapeutics. Curcumin, 
alone or in combination with chemotherapy agents, has been demonstrated to prevent chemoresistance by modulating vari-
ous signaling pathways, reducing the expression of drug resistance-related genes. The purpose of this article is to provide 
a comprehensive update on studies that have investigated the ability of curcumin to enhance the efficacy of chemotherapy 
agents used in CRC. It is hoped that it can serve as a template for future research on the efficacy of curcumin, or other natural 
compounds, combined with chemotherapy agents to maximize the effectiveness of therapy and reduce the side effects that 
occur in CRC or other cancers.
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Abbreviations
CRC​	� Colorectal cancer,
5FU	� 5-Fluorouracil
DOX	� Doxorubicin
CPT-11	� Irinotecan
CisPt	� Cisplatin
MDR	� Multi-drug resistance
STAT​	� Signal transducer and activator of 

transcription
NF-κB	� Nuclear factor-kappa B
PI3K/ Akt	� Phosphoinositide 3-kinase/protein kinase B
mTOR	� Mammalian target of rapamycin
ROSs	� Reactive oxygen species
COX-2	� Cyclooxygenase-2
MMP	� Matrix metalloproteinase
JNK	� Jun N-terminal kinase
CDKs	� Cyclin-dependent kinases
CSCs	� Cancer stem cells
OXA	� Oxaliplatin
FOLFOX	� 5FU plus OXA plus folinic acid
VCR	� Vincristine
ABC	� ATP-binding cassette
P-gp	� P-glycoprotein

 *	 Makan Cheraghpour 
	 bio_makan@yahoo.com

1	 Basic and Molecular Epidemiology of Gastrointestinal 
Disorders Research Center, Research Institute 
for Gastroenterology and Liver Diseases, Shahid Beheshti 
University of Medical Sciences, P.O.Box, Tehran 16635‑148, 
Iran

2	 Department of Clinical Nutrition & Dietetics, Faculty 
of Nutrition Science and Food Technology, National 
Nutrition and Food Technology Research Institute, Shahid 
Beheshti University of Medical Sciences, Tehran, Iran

3	 Natural Products Research Laboratory, Strathclyde 
Institute of Pharmacy and Biomedical Sciences, University 
of Strathclyde, Glasgow, UK

4	 Department of Genetics/Epigenetics, Faculty NT, Life 
Sciences, Saarland University, Saarbrücken, Germany

5	 Gastroenterology and Liver Diseases Research Center, 
Research Institute for Gastroenterology and Liver Diseases, 
Shahid Beheshti University of Medical Sciences, Tehran, 
Iran

6	 General Surgery Department, Modarres Hospital, Shahid 
Beheshti University of Medical Sciences, Tehran, Iran

http://orcid.org/0000-0003-4459-4528
http://crossmark.crossref.org/dialog/?doi=10.1007/s43440-024-00652-y&domain=pdf


	 M. Shadnoush et al.

MDR1	� Multi-drug resistance protein 1
MAPK	� Mitogen-activated protein kinase
ERK	� Extracellular-signal-regulated kinase
Bcl-2	� B cell lymphoma-2, Bcl-xl: B-cell 

lymphoma-extra-large
Bax	� Bcl-2-associated protein x
TGF-β	� Transforming growth factor-β
EGFR	� Epidermal growth factor receptor
EMT	� Epithelial-to-mesenchymal transition
Notch	� Neurogenic locus notch homolog protein-1
MACC1	� Metastasis-associated colon cancer 1
MMR	� Mismatch repair
PARP	� Poly ADP ribose polymerase
Nrf2	� Nuclear factor erythroid2–related factor 2
HHC	� Halogenated hydrocarbon curcumin
HSP	� Heat shock protein
ALDH1	� Aldehyde dehydrogenase1
TET1	� Ten–eleven translocation methylcytosine 

dioxygenase1
NKD2	� Naked cuticle homolog2
IGF-1R	� Insulin-like growth factor-1 receptor
NNMT	� Nicotinamide N-methyltransferase
CXCL1	� CXC motif chemokine ligand 1
ERCC1	� Excision repair cross-complementing gene
lncRNAs	� Long non-coding RNAs
KCNQ1OT1	� KCNQ1 opposite strand/antisense tran-

script 1
HER	� Human epidermal growth factor receptor
IGFBP-3	� IGF-binding protein-3
GST	� Glutathione S-transferase
GSH	� Glutathione
TNF-α	� Tumor necrosis factor-α
Treg cell	� Regulatory T cell

Introduction

Colorectal cancer (CRC) is the third most prevalent form 
of malignancy and the second main cause of cancer-related 
mortality worldwide [1]. Various risk factors have been 
identified that increase the predisposition of individuals to 
CRC. These include gene mutations, a family history of gas-
trointestinal cancers, unhealthy diets, excess body weight, 
diabetes mellitus, intestinal adenomatous polyps, inflamma-
tory bowel disease, smoking, alcohol consumption, and gut 
microbiome diversity [2, 3]. The mechanisms involved in the 
pathogenesis of CRC are highly complex and involve several 
pathways and the accumulation of numerous genetic and 
epigenetic alterations of the genome [4]. This development 
spans several years, starting from small neoplastic foci that 
are difficult to detect, advancing to adenomas, and eventually 
developing into malignant carcinomas capable of metasta-
sis [5]. Metastasis, the leading responsible cause of cancer 

deaths, is present in approximately 25% of CRC patients 
at first diagnosis, with nearly 40% experiencing recurrence 
even following curative surgery for the primary tumor [6]. 
The median overall survival rate now reaches 30 months, 
underscoring the significance of a comprehensive and con-
tinuous approach to advanced disease management [7].

Chemotherapy, which involves the use of cytotoxic anti-
neoplastic drugs such as alkylating agents and antimetab-
olites, has proven effective to treat cancer. Drugs such as 
5-fluorouracil (5FU), doxorubicin (DOX), paclitaxel, irinote-
can (CPT-11), and cisplatin (CisPt), are widely used for the 
treatment of various cancer types [8]. However, such drugs 
are often associated with significant adverse side effects, 
limited specificity and tolerability, and a narrow therapeutic 
index [9, 10]. Their effectiveness and use may be restricted 
in cases where chemoresistance, including multi-drug resist-
ance (MDR), either inherent or acquired, has developed [11]. 
Acquired chemoresistance is particularly problematic and 
arises from genetic and/or epigenetic mutations that occur 
due to the overexpression of therapeutic targets or activa-
tion of cancer-promoting pathways. Moreover, tumors are 
known to exhibit molecular heterogeneity, which contributes 
to enhanced chemoresistance [12].

A primary objective of cancer treatment is to discover 
new agents that exhibit high effectiveness and low toxic-
ity, chemosensitizing properties as well as selectivity. Over 
the past few decades, scientists have shown increased inter-
est in utilizing natural compounds in cancer therapy [13, 
14]. Turmeric, from the rhizomes of the Curcuma longa 
plant, has been traditionally used against various diseases, 
such as various cancers. Turmeric powder is estimated to 
contain approximately 77% curcumin (1,7-bis(4-hydroxy-
3-methoxyphenyl)-1,6-heptadiene-3,5-dione), along with 
17% demethoxycurcumin and 5% bisdemethoxycurcumin 
[15]. Curcumin is a bright orange-yellow crystalline pow-
der and serves as a valuable food ingredient [16]. It is 
recognized for its biological effects such as antioxidant, 
anti-inflammatory, antibacterial, anti-rheumatoid arthritis, 
antidiabetic, anti-Alzheimer's, and antipsoriatic activities 
[17, 18].

In preclinical studies, it has been shown to enhance the 
efficacy of various treatments for CRC by targeting multiple 
cellular pathways [18]. Curcumin modulates a broad range 
of signaling pathways, including the signal transducer and 
activator of transcription (STAT), nuclear factor-kappa B 
(NF-κB), and the phosphoinositide 3-kinase (PI3K)/protein 
kinase B (Akt)/mammalian target of rapamycin (mTOR) 
pathways. It also exerts an effect on the production of reac-
tive oxygen species (ROSs), cyclooxygenase-2 (COX-2), 
and angiogenesis factors such as matrix metalloproteinase 
(MMPs) [19, 20]. Curcumin suppresses the expression of 
p65, thereby inhibiting the transcriptional activity related 
to NF-κB and suppressing the expression of anti-apoptotic 
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genes regulated by NF-κB [21]. In CRC cells, evidence sug-
gests that curcumin both suppresses NF-κB activation and 
induces the free radical-mediated Jun N-terminal kinase 
(JNK), thereby activating the extrinsic and intrinsic apop-
totic pathways [22, 23]. Curcumin inhibits the prolifera-
tion of CRC cells by regulating the cell cycle machinery. 
It is responsible for cell cycle arrest in either the G0/G1 
or G2/M phase by overexpressing cyclin-dependent kinases 
(CDK) inhibitors like p16, p21, and p27, while downregulat-
ing CDK2, CDK4, cyclin B, E, and D1 [24, 25]. Curcumin 
can target cancer stem cells (CSCs) via repression of the 
Wnt/β-catenin and hedgehog signaling pathways, as well 
as microRNAs [26]. Additionally, it inhibits angiogenesis 
and metastasis-related markers like angiopoietin-1, vascular 
endothelial growth factor, and MMP-3, which can assist in 
suppressing tumor growth [27–29].

There is substantial evidence indicating that curcumin 
when combined with chemotherapeutic agents can enhance 
treatment efficacy and reduce side effects in patients with 
CRC, due to its ability to regulate key signaling pathways 
involved in MDR. This review aimed to discuss the poten-
tial benefits of curcumin in improving the effectiveness of 
widely used chemotherapy agents with a focus on 5FU, 
oxaliplatin (OXA), CisPt, 5FU plus OXA plus folinic acid 
(FOLFOX), dasatinib, CPT-11, capecitabine, DOX, and vin-
cristine (VCR) through diverse mechanisms of action.

Methodology

Online literature databases such as Web of Science, Pub-
Med, and Scopus, were used to search for relevant journal 
articles using the keyword “Curcumin AND Colorectal Neo-
plasm OR Colorectal Tumor OR Colorectal OR Colorectal 
Cancer OR Colorectal Carcinoma OR Colonic Neoplasm 
OR Colon Cancer OR Colonic Cancer OR Colon Adeno-
carcinoma OR chemoresistance OR chemotherapy”. Among 
the 9965 articles found, 134 were initially selected after 
screening based on their titles and abstracts. Subsequently, 
the full text of each original article was studied, and 50 arti-
cles were retained. Reviews, book chapters, and non-English 
articles were removed. Studies that reported on the use of 
synthetic curcumin, nanoformulations and other formula-
tions of curcumin, and cancers other than CRC were also 
excluded (Fig. 1).

Chemoresistance in CRC​

Chemoresistance, which refers to the capacity of tumor cells 
to resist or adapt to therapeutic agents, presents a signifi-
cant obstacle in oncology research. Extensive efforts have 
been made to understand and overcome this phenomenon by 

elucidating the molecular mechanisms that promote cancer 
cell survival and apoptosis evasion when exposed to con-
ventional chemotherapy agents. These mechanisms encom-
pass diverse signaling transduction pathways activated in 
response to numerous stimuli, ultimately leading to the 
development of chemoresistance, including MDR.

Drug efflux transportation

The effectiveness of chemotherapeutic agents relies on 
their successful penetration into cells, achieving an optimal 
intracellular concentration. In cancer cells, ATP-binding cas-
sette (ABC) transporters can expel chemotherapeutic agents 
from the cells, reducing the intracellular accumulation of 
the drugs and the cytotoxic effects [30]. In chemoresistant 
CRC cells, ABCA1, ABCA2, and ABCA5 are also upregu-
lated [31]. ABCA2, and ABCA5 located in the lysosomal 
membrane can induce chemoresistance by increasing drug 
sequestration in the lysosome and facilitating drug efflux 
[32]. P-glycoprotein (P-gp), also named multi-drug resist-
ance protein 1 (MDR1), is the product of the ABC subfam-
ily B, member 1 gene, and holds particular significance 
among ABC transporters in the human gastrointestinal sys-
tem [33]. Previous studies have shown that P-gp expression 
is upregulated in CRC, which is associated with increased 
chemoresistance and chemotherapy failure [34–36]. Indeed, 
cancerous cells can confer expression of P-gp through the 
upregulation of oncogenic kinases such as NF-κB, mito-
gen-activated protein kinase (MAPK), and extracellular-
signal-regulated kinase (ERK) signaling, thereby enhanc-
ing chemoresistance. Du and colleagues demonstrated 
that interleukin-8 activates the NF-κ B signaling pathway, 
thereby stimulating MDR1 expression, which induces resist-
ance to DOX [36]. Furthermore, Wnt signaling enhances 
cytoplasmic Ca2+ concentration and causes nuclear and cell 
membrane depolarization, leading to the translocation of 
β-catenin into the nucleus. This process increases ABCA1 
gene expression and enhances 5FU resistance in CRC [35]. 
In addition, by attenuating the intracellular accumulation of 
chemotherapeutics, these transporters can affect the phar-
macokinetics properties of drugs, including biodistribution, 
metabolism, and cytotoxicity [37, 38].

Apoptosis evasion

Another characteristic feature of cancer is the capacity of 
cancerous cells to evade physiological cell death or apopto-
sis, particularly in response to treatments like chemotherapy. 
Apoptosis is induced following DNA damage and distur-
bance of cellular organelles, such as mitochondria and the 
endoplasmic reticulum, through intrinsic or extrinsic path-
ways [39]. Resistance to apoptosis can arise from the upreg-
ulation of anti-apoptotic factors and the downregulation 
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of pro-apoptotic factors, which significantly contribute to 
resistance to treatment [40]. In DOX-resistant CRC cells, the 
expression of the anti-apoptotic protein B cell lymphoma-2 
(Bcl-2) significantly increased, while the expression of P53 
and Bax significantly decreased, indicating resistance to 
apoptosis [41]. However, the suppression of Bax expression 
decreased the sensitivity of CRC cells to 5FU and OXA [42].

NF-κB is considered a crucial connection between 
apoptosis, inflammation, and therapeutic resistance. It con-
trols the expression of several genes, including survivin, 
Bcl-xL, Bcl-2, COX-2, cyclinD1, P53, and Fas, which play 
significant roles in the regulation of apoptosis in cancer-
ous cells [43, 44]. Indeed, the activated NF- κB binds to 
DNA and acts as a transcription factor for the expression 
of oncogenes, inhibiting apoptosis and facilitating cancer 
cell proliferation. In colon cancer cells treated with 5FU, 

Wnt/β-catenin signaling potentially reduced the rate of 
apoptosis [45]. In fact, β-catenin significantly increased the 
expression of anti-apoptotic proteins in colon cancer [46]. 
Furthermore, Wnt1 suppressed the caspase-9 activated by 
chemotherapeutic agents [47]. Additionally, other down-
stream genes of Wnt are also involved in chemoresistance 
through the suppression of apoptosis; MMP-7 inhibited 
the activation of Fas receptor, an apoptosis stimulator, in 
colon cancer cells, which led to increased resistance to 
OXA [48]. Furthermore, P38 MAPK is also involved in 
chemoresistance by regulating of apoptosis. Inhibition of 
P38 MAPK reduced drug-induced apoptosis, subsequently 
increasing 5FU resistance [49]. Numerous strategies are 
currently being developed to target these pathways and 
counteract chemoresistance mechanisms in cancer, offer-
ing a promising avenue for further investigation.
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Fig. 1   Flow chart of the methodology used. WoS Web of science, 5FU 5-fluorouracil, OXA Oxaliplatin, CisPt Cisplatin, FOLFOX 5FU plus 
OXA plus folinic acid, CPT-11 Irinotecan, DOX Doxorubicin, VCR Vincristine
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Cell cycle progression

Tumor cells have a propensity to accumulate changes in 
the components of the cell-division machinery, disrupting 
their ability to DNA damage response. This disruption often 
involves arresting the progression of the cell cycle, which 
represents a characteristic feature of cancer. To evade cancer 
treatments, cancer cells frequently overactivate cyclins spe-
cifically altering cyclin D, which accelerates cancer cell pro-
liferation [50]. Simultaneously, this uncontrolled cell cycle 
progression is closely linked to the downregulation of CDK 
inhibitors such as p21 and p27 [51]. Yu and colleagues dem-
onstrated that disruption of cell cycle regulation is associated 
with resistance to OXA. The increased expression of Cell 
division cycle 7, attributed to the dysregulation of the polo-
like kinase1 -MYC signaling pathway, results in the activa-
tion of CSCs and oncogenic transformation, thereby enhanc-
ing resistance to OXA in CRC [52]. In another study, the 
deficiency of smad4 in SW620 cells activated the PI3K/Akt/
CDC2/surviving cascade, leading to reduce G2-M cell cycle 
arrest, and subsequently induced 5FU resistance [53]. The 
dysregulation of signaling pathways that stimulate growth, 
including the transforming growth factor-β (TGF-β), PI3K/ 
Akt/ mTOR signaling pathway, the epidermal growth factor 
receptor (EGFR), and NF-κB, during cell cycle progression 
can lead to chemoresistance [54]. Taking into account the 
significance of NF-κB, particularly in mechanisms related 
to MDR, it is crucial to consider its role in relation to cyclin/
CDK complexes [55]. Indeed, NF-κB contributes to resist-
ance by regulating the genes involved in the cell cycle and 
expression of anti-apoptotic proteins such as Bcl-2, X-linked 
inhibitor of apoptosis protein, and Bcl-xL.

Epithelial‑to‑mesenchymal transition (EMT)

EMT is a dynamic reversible phenomenon, which the cells 
experience a phenotypic shift from an epithelial state to a 
mesenchymal state, which is marked by the disruption of 
intercellular connections such as tight junctions, adher-
ence junctions, desmosomes, and gap junctions [56]. This 
is associated with a reduced expression of genes coding for 
epithelial markers like zonula occludens-1, claudins, E-cad-
herin, and desmoplakin and overexpression of mesenchymal 
markers like vimentin, fibronectin, α-smooth muscle actin, 
and N-cadherin [57, 58]. There is substantial evidence that 
the induction of the EMT phenotype contributes to chemo-
therapy resistance. In fact, EMT has the capacity to induce 
changes in the TME, subsequently creating conditions 
that promote chemotherapy resistance in CRC cells [59]. 
Chemoresistant CRC cells exhibit high expression levels 
of ZEB1, vimentin, MMP2, and MMP9, while E-cadherin 
expression shows a significant decrease [60]. In this context, 
resistant cells to CPT-11 demonstrate decreased E-cadherin, 

and zonula occludens-1 expression alongside increased 
N-cadherin, and vimentin expression. Additionally, there is 
a significant increase in Twist, a transcription factor, expres-
sion, indicating the induction of the EMT phenotype [61]. 
In chemoresistant CRC, the Wnt signaling pathway is able 
to induce EMT phenotype through the activation of MDR1 
[34]. Furthermore, Snail, the transcription factor regulat-
ing EMT, binds to the ABCB1 and increases its expression, 
thereby contributing to increased chemotherapy resistance 
[62]. AXL, a tyrosine kinase receptor, contributed in chem-
otherapy resistance in CRC by upregulating MDR1 and 
inducing the EMT phenotype through the increased expres-
sion of Twist1 [63]. Furthermore, EMT can be induced by 
TGF-β, and intracellular signaling pathways like PI3K and 
NF-κB in CRC [64, 65]. Cancerous cells that have under-
gone EMT not only acquire the capacity to migrate and 
invade surrounding tissues but also exhibit increased MDR. 
However, the precise underlying mechanisms for this resist-
ance are not completely understood.

Cancer stem cell generation

According to the CSC theory, tumor initiation is predomi-
nantly driven by a subpopulation of cells called CSCs, which 
may contribute to cancer initiation, progression, metasta-
sis, treatment resistance, recurrence, and worse prognosis 
[66]. Similar to non-stem-derived tumor cells, CSCs have 
a unique capacity for self-renewal and generate non-stem 
daughter cells that constitute the bulk of the tumor mass 
[67].

There is considerable evidence that CSCs are implicated 
in the metastasis and recurrence of colorectal tumors, con-
tributing to increased resistance to apoptosis and chemo-
therapy [68]. Many chemotherapeutic agents target dividing 
cells; therefore, CSCs, due to their quiescent nature, evade 
the effects of these drugs [68]. CSCs increase the expres-
sion of anti-apoptotic proteins and, in addition, signifi-
cantly enhance the rates of mitophagy and oxidative phos-
phorylation in mitochondria, consequently correlating with 
increased chemoresistance in CRC [69]. One study found 
that intervention with diHEP-DPA, combined with 5FU, 
reduced CSCs activation and suppressed tumor-associated 
macrophages infiltration, thereby improving 5FU resistance 
in CRC [70]. Exosomes secreted by fibroblasts enhance 
chemotherapy resistance in CRC patients by stimulating a 
CSCs-like phenotype through Wnt signaling activation [71]. 
Furthermore, the neurogenic locus notch homolog protein-1 
(Notch-1) signaling pathway is implicated in chemotherapy 
resistance in CRC, increasing the number of colonospheres, 
generating chemoresistant cells, and inducing a CSCs-like 
phenotype [72]. PI3K activation is associated with chem-
oresistance in CRC. Metastasis-associated colon cancer 1 
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(MACC1) related to PI3K/AKT in terms of enhancing of 
chemoresistance which in turn significantly increases the 
expression of MDR1, CSCs markers include CD44, CD133, 
and Nanog, and sphere formation, thereby enhancing resist-
ance to 5FU in colon cells [73]. Given the leading edge of 
CSCs in tumor maintenance and MDR, targeting and elimi-
nating these cells represents a promising strategy to combat 
the development of drug resistance in the context of treating 
cancer.

Efficacy of curcumin combined 
with chemotherapy agents in CRC treatment

Despite the wide use of chemotherapy agents such as 5FU, 
OXA, and FOLFOX in CRC treatment, the effectiveness of 
these drugs is hindered by significant cytotoxic side effects 
and the increasing emergence of MDR in metastatic patients. 
To address these limitations, researchers and clinicians are 
now exploring the co-administration of conventional chemo-
therapy drugs with curcumin (Fig. 2). This approach seeks to 

improve the therapeutic outcomes by harnessing the syner-
gistic antitumor effects of combining these agents (Table 1).

Curcumin enhances the efficacy of 5FU in CRC 
treatment

5FU was discovered in the late 1950s and is used as an anti-
cancer drug that functions as an antimetabolite by mimick-
ing the nucleobase uracil with a fluorine atom at the C-5 
position. After entry into cells, it is transformed into biologi-
cally active metabolites that inhibit cancer cell growth by 
disrupting DNA synthesis through the suppression of thymi-
dylate synthase, an enzyme involved in nucleotide synthesis. 
By inhibiting the formation of thymidine, 5FU inhibits cell 
cycle progression, by targeting the S phase. When 5FU is 
incorporated into RNA, instead of uracil nucleotides, this 
leads to the inhibition of RNA transcription necessary for 
protein synthesis. The induction of apoptosis is also an 
important mechanism underlying the toxic effects of 5FU 
[124–126].
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Table 1    The effect of curcumin in combination with chemotherapy agents in CRC treatment.

Type of intervention Experimental model Main findings References

CUR + 5FU HCT116/HCT116 + ch3 in 3D culture • Enhanced chemosensitivity to 5FU
• Enhanced disintegration of colonosphere
• Sensitized CRC cells to apoptosis
• Downregulation of CSCs markers

[74]

CUR + 5FU HCT116/HCT116 + ch3 in 3D culture • Significantly reduced survival of CRC 
cells

• Induced apoptosis by releasing 
cytochrome C, upregulation of pro-
apoptotic members, downregulation of 
anti-apoptotic and proliferative proteins

• Enhanced chemosensitivity to 5FU 
by downregulating NF-kB/PI-3K/Src 
signaling pathways

[75]

CUR + 5FU HCT116/HCT116 chemoresistant in 3D 
-alginate tumor model

• Decreased capacity for proliferation, 
invasion chemoresistance CRC cells

• Enhanced chemosensitivity to 5FU by 
inhibiting NF-κB signaling pathway

• Inhibited colony formation

[76]

CUR + 5FU HCT-8/HCT-8 chemoresistant • Inhibited the growth of CRC cells
• Reversed MDR by downregulation of 

BCL-2, survivin, P-gp, and HSP-27

[77]

CUR + 5FU HCT-8/HCT-8 chemoresistant • Induced apoptosis via upregulating Bax, 
and downregulating BCl-2

• Reversed MDR by downregulating Nrf2

[78]

CUR + 5FU SW480/SW480 chemoresistant • Enhanced chemosensitivity to 5FU by 
enhancement of the intracellular level 
of ROS

[79]

CUR + 5FU SW480/HT-29/ Xenograft model • Enhanced chemosensitivity to 5FU via 
suppression of cell proliferation, arrested 
cell cycle progression, and increased 
ROS production

[80]

CUR + 5FU SW480/SW480 chemoresistant • Decreased proliferation, migration, and 
colony formation of CRC cells

• Arrested of cell cycle progression and 
triggered cell apoptosis

• Reversed the resistance to 5FU by 
downregulating IGF-1 and MYC

[81]

CUR + 5FU HT-29 • Synergistic effect on the growth CRC 
cells by downregulating COX-2

[82]

HHCUR + 5FU HT-29 • Enhanced the anti-proliferative effect of 
5FU against CRC cells through down-
regulating COX-2

[83]

CUR + 5FU/ HHCUR + 5FU Male wistar rats • Reduced the size and number of Aber-
rant crypt foci

• Inhibited the growth of CRC by increas-
ing apoptosis and downregulating 
COX-2

[84]

CUR + 5FU SW480/HT-29 • Enhanced the anticancer activity of 5FU 
by suppressing MDR1, downregulation 
of Sp transcription factors, and suppres-
sion of microRNA-27a

[85]

CUR + 5FU HCT-8/HCT-8 chemoresistant • Arrested cell cycle progression at G0/
G1 and triggered cell apoptosis

• Reversed drug resistance in CRC cells 
via downregulating P-gp and HSP-27

[86]
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Table 1   (continued)

Type of intervention Experimental model Main findings References

CUR + 5FU HCT116/SW480
chemoresistant/
Xenograft model

• Enhanced cellular apoptosis and inhib-
ited proliferation

• Inhibited EMT process via downregu-
lating transcription factors involved in 
EMT such as BMI1, SUZ12 and EZH2

• Sensitized tumor growth to 5FU

[87]

CUR + 5FU HCT15/HT-29/LoVo chemoresistant • Inhibited the EMT process in CRC cells
• Enhancing chemosensitivity to 5FU via 

decreasing the ratios of p-PI3K/PI3K, 
p-AKT/AKT, and p-mTOR/mTOR

[88]

CUR + 5FU HCT116/HCT116 chemoresistant • Suppressed cell proliferation, enhanced 
cell apoptosis and arrested cell cycle at 
G0/G1

• Suppressed Wnt pathway and the EMT 
process

• Sensitized tumor growth to 5FU by 
regulating the TET1-NKD2-Wnt signal 
pathway to suppress the EMT process

[89]

CUR + 5FU SW620/ Xenograft model • Reduced cell proliferation, invasion, and 
migration

• Induced apoptosis
• Sensitized tumor growth to 5FU by sup-

pressing pERK activity and reducing the 
expression of L1

[90]

CUR + 5FU HCT116/MRC-5 fibroblasts • Inhibited colonosphere formation
• Sensitized tumor growth to 5FU via 

downregulating CSC markers, NF-κB 
pathways, and TGF-β

• Sensitized CSC cells to 5FU

[91]

CUR + OXA Caco2/HT-29/LIM1215/LIM-
2405

• Induced the DNA damage to CRC cells 
by prompting the platinum–DNA bind-
ing and apoptosis

[92]

CUR + CisPt/ CUR + OXA/ CUR + car-
boplatin

HT-29 chemoresistance • Arrested cell cycle progression at the 
G2/M phase

• Induced apoptosis
• Suppressed NF-kB
• Sensitized CRC cells to chemotherapy 

agents

[93]

CUR + OXA HCT116/HT-29 • Arrested cell cycle at G2/M and induced 
apoptosis via increasing the expression 
of p53

• Inhibited the proliferation of CRC cells

[94]

CUR + OXA HCT116 P53 wild-type, P53 –
chemoresistance/
Xenograft model

• Decreased cell proliferation by down-
regulating Ki-67, Notch-1 pathway and 
upregulating caspase-3

• Enhanced OXA efficacy

[95]

CUR + OXA Colo205 • Induced the apoptosis of CRC cells by 
upregulating Bax and downregulating 
Bcl-2

[96]

CUR + OXA Xenograft model • Arrested cell cycle at S, G2/M and 
induced apoptosis through the upregulat-
ing apoptotic and downregulating anti-
apoptotic members, respectively

• Suppressed tumor formation

[97]

CUR + OXA HT-29/ LoVo/ DLD1
chemoresistance

• Sensitized CRC cells to OXA by sup-
pressing NF-κB activation and inducing 
CXCL1

[98]
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Table 1   (continued)

Type of intervention Experimental model Main findings References

CUR + OXA HCT116/SW480
chemoresistance/
Xenograft model

• Reversed OXA resistance by suppress-
ing EMT progression via attenuation of 
the TGF-β/Smad2/3 pathway

• Inhibited pro-survival signaling through 
downregulating p-p65 and Bcl-2 and 
upregulating on the caspase3

[99]

CUR + OXA HCT116 chemoresistance • Reduced OXA resistance by downregu-
lation of miR-409-3p mediated ERCC1 
expression

[100]

CUR + OXA HT-29/ HT-29 chemoresistance • Reduced nuclear translocation of IGF-
1R

[101]

CUR + CisPt HT-29 • Induced apoptosis by upregulating Bax 
and downregulating Bcl -2

• Increased the inhibitory effects of CisPt 
on Notch-1 signaling pathway

[102]

CUR + CisPt HC-T8 chemoresistance • Restrained proliferation and facili-
tated apoptosis by downregulation of 
LncRNA KCNQ1OT1 via miR-497/ 
Bcl-2 axis

[103]

CUR + CisPt HT-29 chemoresistance • Sensitized CRC cells to CisPt by 
upregulating miR-137 and inhibiting 
metabolism of glutamine

[104]

CUR + FOLFOX HCT116/HT-29 • Reduced FOLFOX resistance by reduc-
ing in CSCs, EGFR, colony formation

[105]

CUR + FOLFOX HCT116/HT-29 • Inhibited cell growth and stimulated 
apoptosis by downregulating EGFR, 
HER-2, HER-3, IGF-1R, COX-2 and 
upregulating IGFBP3

[106]

CUR + FOLFOX HCT116/HT-29 • Reduced the survival of chemoresistant 
cells through reducing EGFR, HER-2, 
IGF-1R, AKT activation, and COX-2 
and cyclin-D1 expression

[107]

CUR + Dasatinib HCT116/ SW-620/ Xenograft model • Inhibited the growth of CRC cells 
through attenuating signaling pathways 
involve in EGFRs, IGF-1R and c-Src

• Induced apoptosis by decreasing p-AKT 
and p-Erks (1/2), Bcl-XL and Cox-2

[108]

CUR + Dasatinib HCT116/ SW-620/ Xenograft model • Inhibited cellular growth, invasion and 
colonosphere formation

• Sensitized CRC cells to 5FU by decreas-
ing the population of CSCs

[109]

CUR + CPT-11 HT-29/ LoVo • Inhibited cell growth, arrested cell 
cycle and induced apoptosis through 
increasing the accumulation of ROS and 
endoplasmic reticulum tress response

[110]

CUR + CPT-11 LoVo chemoresistance • Synergistic inhibitory effect on growth 
of chemoresistance CRC cells to CPT-11

• Attenuated chemoresistance CRC cells 
to CPT-11 by inducing apoptosis, sup-
pressing CSCs markers, and formation 
of tumor sphere

[111]

CUR + CPT-11 LoVo/LoVo
chemoresistance

• Increased cell apoptosis
• Enhanced chemosensitivity to 5FU by 

suppressing the EMT process via aug-
menting the expression of E-cadherin 
and reducing the expression of vimentin 
and N-cadherin

[112]
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Table 1   (continued)

Type of intervention Experimental model Main findings References

CUR + CPT-11 LOVO chemoresistance • Promoted inhibitory effects of CPT-11 
by downregulating GSTM5 and inducing 
cell apoptosis

[113]

CUR + capecitabine HCT 116/HT 29/SW 620/ Xenograft 
model

• Inhibited cell proliferation and induced 
apoptosis

• Potentiated the antitumor and anti-
metastatic activities of capecitabine via 
reducing the activation of NF-κB and 
inflammatory genes

[114]

CUR + DOX HCT116 • Sensitized CRC cells to DOX by reduc-
ing cellular viability

[115]

CUR + DOX HT-29 chemoresistance • Prevented the development of chemore-
sistance by downregulating P-gp, and 
Cox-2, and interacting with C1qbp

[116]

CUR + DOX SW620 chemoresistance • Enhanced chemosensitivity to DOX by 
suppressing polyamines biosynthesis 
and metabolism of D-glutamine and 
downregulating P-gp

[117]

CUR + EGCG + tannic acid + DOX HCT116/Caco2 • Reversed resistance to the DOX through 
suppression of P-gp activity

• Reduced the cytotoxicity needed dose 
of DOX

[118]

CUR + VCR HCT-8 chemoresistance / Xenograft 
model

• Sensitized MDR CRC cells to chemo-
therapy agents by downregulating P-gp 
and survivin

[119]

CUR + VCR HCT-8 chemoresistance • Reduced VCR resistance by downregu-
lating GSTP1 and PRDX6, and enhanc-
ing apoptosis

[120]

CUR + FOLFOX Clinical trial/ ex vivo • Co-administration of curcumin plus 
FOLFOX was safe and tolerable

• Synergistic effects on apoptosis and 
anti-proliferation of colorectal liver 
metastases

• Reduced number of spheroids
• Decreased CSCs population by reducing 

the expression of CSCs markers, EGF, 
IGFs, and Notch signaling

[121]

CUR + FOLFOX Clinical trial • Co-administration of curcumin plus 
FOLFOX was safe and tolerable

[122]

CUR + capecitabine Clinical trial • Co-administration of curcumin plus 
capecitabine did not have any effect 
on pathologic complete response, time 
to local regional failure, and survival 
of locally advanced rectal cancer after 
surgery

[123]

CUR​ Curcumin, 5FU 5-fluorouracil, CRC​ Colorectal cancer, CSCs Cancer stem cells, NF-κB Nuclear factor-kappa B, PI3K/ Akt Phosphoi-
nositide 3-kinase/protein kinase B, Bcl-2 B cell lymphoma-2, P-gp P-glycoprotein, HSP-27 Heat shock protein-27, Bax Bcl-2-associated protein 
x, MDR Multi-drug resistance, Nrf2 Nuclear factor erythroid2–related factor 2, ROS Reactive oxygen species, IGF-1 Insulin-like growth fac-
tor-1, COX-2 Cyclooxygenase-2, HHCUR​ Halogenated hydrocarbon curcumin, MDR1 multi-drug resistance protein1, EMT Epithelial-to-mes-
enchymal transition, BMI1 B cell-specific Moloney murine leukemia virus integration site1, EZH2 Enhancer of zeste homolog2, SUZ12, Sup-
pressor of zeste12, mTOR Mammalian target of rapamycin, NKD2 Naked cuticle homolog 2, ERK Extracellular signal-regulated kinase, Notch-1 
Neurogenic locus notch homolog protein-1, TGF-β Transforming growth factor-β, OXA Oxaliplatin, CisPt Cisplatin, CXCL1 CXC chemokine 
ligand1, ERCC1 Excision repair cross-complementing gene, IGF-1R Insulin-like growth factor-1 receptor, lncRNAs Long non-coding RNAs, 
KCNQ1OT1 KCNQ1 opposite strand/antisense transcript 1, FOLFOX 5FU plus OXA plus folinic acid, EGFR Epidermal growth factor receptor, 
HER Human epidermal growth factor receptor, CPT-11 Irinotecan, GSTM5 Glutathione S-transferase Mu 5, DOX Doxorubicin, VCR Vincristine, 
PRDX6 Peroxiredoxins 6,
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Previous studies have revealed that curcumin in combina-
tion with 5FU could potentially reduce resistance to 5FU. 
In particular, pre-treatment with curcumin (5 µM) raised 
the sensitivity of 5FU (0.1 M) and reversed MDR in DNA 
mismatch repair (MMR)-deficient CRC models [74]. As the 
activation of the NF-κB pathway has been shown to enhance 
chemoresistance to drugs, NF-κB inhibitors have the poten-
tial to increase the efficacy of chemotherapy. It has been 
demonstrated that curcumin boosts 5FU sensitivity in CRC 
cells resistant to 5FU by inhibiting NF-κB signaling and 
NF-κB-regulated genes expression. Indeed, the activation 
of inflammatory pathways, such as the NF-kB and PI-3K/
Src pathways, by 5FU stimulates survival responses that 
lead to MDR and potentially contribute to the development 
of resistance. Curcumin has been reported to counteract 
this effect by increasing apoptosis in CRC cells resistant 
to 5FU, ultimately enhancing the efficacy of 5FU. In addi-
tion, curcumin can synergize the effect of 5FU on apoptosis 
via upregulation of pro-apoptotic proteins including Bax, 
caspase-8, caspase-9, caspase-3, and poly ADP ribose pol-
ymerase (PARP), while downregulating the anti-apoptotic 
protein Bcl-xL and the proliferative protein cyclin D1 [75, 
76]. The activation of apoptotic pathways was achieved by 
hampering the activation of IKK and IκBa phosphorylation 
[75]. In 5FU-resistant HCT-8 cells, a combination of 5FU 
(10 mM) with curcumin (10 µM) has been shown to reduce 
the mRNA expression of nuclear factor erythroid2–related 
factor 2 (Nrf2), a transcription factor related to cell survival 
and chemoresistance, inhibit the Bcl-2/Bax ratio, and induce 
apoptosis, ultimately reversing resistance to 5FU and MDR 
[78]. Additionally, curcumin (5 µM) has been reported to 
increase ROSs generation, thereby facilitating apoptosis and 
consequently promoting chemosensitivity in CRC cells with 
resistance to 5FU [79]. Recently, Zheng et al. showed that 
low concentration of curcumin (10 µM) in combination with 
5FU (5 µM) could inhibit cell proliferation and induce apop-
tosis in SW620 cells via suppression of pERK and STAT1 
and reduced expression of L1 [90].

Overexpression of the COX-2 protein contributes to 
the upregulation of Bcl-2, resulting in the suppression of 
tumor cell apoptosis and the development of chemoresist-
ance [127]. The combination of curcumin (20 µM) with 5FU 
(50 µM) and halogenated hydrocarbon curcumin (HHC) (25 
µM) with 5FU (5 µM) have been demonstrated to synergisti-
cally inhibit the growth of HT-29 cells. These combination 
remarkably downregulated COX-2 expression by almost six-
fold compared to each agent alone. As a result, it enhanced 
the anticancer effects of 5FU in HT-29 cells [82, 83]. In an 
in vivo study, orally treatment of HHC (50 mg/kg) in com-
bination with intraperitoneal injection of 5FU (50 mg/kg) 
significantly reduced the number and size of aberrant crypt 
foci. Furthermore, HHC enhanced the inhibitory effects 
of 5FU on CRC progression by increasing apoptosis and 

downregulating of COX-2 [84]. NF‐κB through activation of 
COX‐2 leads to produce prostaglandins and promotes apop-
tosis resistance on cancerous cells. Furthermore, curcumin 
in combination with 5FU potentially led to downregulation 
of P-gp and heat shock protein 27 (HSP-27) expression 
[86]. The ability of this combination to sensitize resist-
ance to 5FU may be attributed to the increasing expression 
of ATP-dependent topoisomerase II and the reduction in 
survivin, p-AKT in the NF-κB pathway, and Bcl-2 expres-
sion, which induce apoptosis [77]. The toxicity profile was 
improved when co-treating with curcumin, as it reduced the 
concentration of 5FU required to inhibit the proliferation of 
tumor cells in a 3D model which was achieved via inhibiting 
arresting the cell cycle at G0/G1 phase through degradation 
of cyclin D1 [86, 89]. Another study focusing on the cell 
cycle observed that combination of curcumin (5 µM) with 
5FU (1 µM) arrested cell cycle at S phase and subsequent 
activated both the extrinsic and the intrinsic apoptotic path-
ways in 5FU-resistant HCT116 cells [75]. The combined 
treatment of curcumin with 5FU inhibited cell proliferation 
and induced apoptosis in 5FU-resistant and parental SW480 
and HCT116 cells. Moreover, curcumin (10 µM) augmented 
the anticancer effects of 5FU (10 µM) in cancerous cells by 
attenuating EMT due to downregulation of transcript factors 
involved in EMT such as B lymphoma Mo-MLV insertion 
region 1 homolog, suppressor of zeste12 and Enhancer of 
zeste homolog2 [87]. A recent study showed that curcumin 
was a potential agent to suppress CRC cell growth and 
increased sensitivity to 5FU by inhibiting EMT through the 
reduction of MACC1 expression, which was associated with 
the activation of the PI3K/AKT/mTOR pathway [88].

Curcumin significantly inhibited multiple pathways asso-
ciated with CSCs, suggesting its potential as an adjunctive 
treatment to enhance the effectiveness of existing therapies 
while reducing adverse side effects [128]. The administra-
tion of curcumin (5 µM) prior to 5FU (0.1 µM) treatment 
resulted in the modification of the interaction between tumor 
cells and fibroblasts. This modification led to the inhibition 
of EMT and the promotion of chemosensitivity in CSCs by 
reducing the expression of NF-κB, MMP-13, TGF-β, and 
EMT markers [91]. This created a favorable environment 
for increasing chemotherapeutic action of 5FU, particularly 
targeting CSCs resistance to 5FU. Curcumin (5 µM) also 
suppressed the CSC sub-population and downregulation of 
CRC markers including CD133, CD44, and aldehyde dehy-
drogenase 1 (ALDH1) expression, leading to enhanced sen-
sitivity to 5FU in DNA of MMR-deficient CRC cells [74].

Curcumin can induce epigenetic alterations, like modu-
lating methylation of DNA and miRNA expression, leading 
to enhanced chemosensitivity of CRC cells to 5FU treat-
ment [87, 129]. Lu et al. revealed that curcumin effectively 
halted the progression of EMT and inhibited Wnt signal-
ing by hindering the expression of ten–eleven translocation 
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methylcytosine dioxygenase1 (TET1), naked cuticle 
homolog2 (NKD2), and vimentin. Furthermore, curcumin 
decreased the levels of β-catenin, E-cadherin, transcription 
factor 4, and axin in HCT116 cells, which are implicated in 
chemoresistance. As a result, curcumin has the potential to 
counteract resistance to 5FU in HCT116 cells by regulating 
the TET1-NKD2-WNT signaling pathway and reversing the 
advancement of EMT [89]. In particular, It has been found 
that curcumin (10 µM) exerted the chemosensitve effects 
on CRC cell resistance to 5FU through regulation of miR-
NAs involved in suppression of the EMT process, including 
miR-200b, miR-200c, miR-141, miR-429, and miR-101 [87]. 
Additionally, curcumin degraded miR-21, which leads to 
inhibition of the CRC tumor’s ability to invade and spread. 
It was also able to inhibit miR-130a expression to block 
Wnt/β-Catenin signaling [130]. The presence of curcumi-
noids resulted in a decrease in drug resistance and hindered 
the growth of SW480. This was achieved by suppressing 
the Sp, pro-oncogenic transcription factors, and their associ-
ated genes, like MDR1. The downregulation of Sp factors 
was facilitated by disrupting the miR-27a:ZBTB10 axis, and 
this impact was reliant on the presence of ROS [85]. Thus, 
it seems that epigenetic modifications might be a crucial 
mechanism for curcumin-mediated chemoresistance.

It has been shown showed that curcumin (20 µM) inhib-
its the proliferation and migration of chemoresistant CRC 
cells. This effect was attributed to a substantial downregula-
tion of insulin receptor, insulin-like growth factor-1 recep-
tor (IGF-1R), and MYC. Consequently, curcumin was able 
to reverse the chemoresistance to 5FU in SW480 cell lines 
[81]. New evidence suggests that Nicotinamide N-methyl-
transferase (NNMT) plays a significant role in cancer pro-
gression, apoptosis inhibition, and drug resistance. Recently, 
Li et al. demonstrated that curcumin inhibits cell prolifera-
tion, arrests the cell cycle at the G2 phase, and increases 
the production of free radicals, leading to increased drug 
sensitivity in CRC cell lines with high NNMT expression 
[80]. Therefore, emerging evidence strongly supports the 
therapeutic potential of combining curcumin and 5FU to 
improve CRC treatment.

Curcumin enhances the efficacy of platinum‑based 
compounds in CRC treatment

Platinum-based agents like CisPt, and OXA, carboplatin are 
predominantly used for the treatment of solid neoplasms, 
including CRC. These drugs exert their effects by forming 
covalent bonds with DNA purine bases, resulting in the for-
mation of platinum–DNA adducts. As such, the replication 
and transcription of DNA is inhibited, ultimately causing 
apoptosis [131, 132].

OXA is commonly used as a first-line treatment for CRC 
and various other malignancies [99, 133]. Its mechanism 

of action involves the generation of ROS in physiological 
solutions, which leads to the formation of covalent bonds 
between platinum and DNA. As a result, inter- and intra-
strand platinum DNA adducts are formed, primarily between 
neighboring guanines or adenines and guanines [134]. These 
adducts disrupt crucial cellular processes, ultimately lead-
ing to cell death related to DNA damage. The treatment of 
cancer with OXA is usually associated with the emergence 
of chemoresistant-related relapses [105]. To enhance the 
effectiveness of OXA in cancer chemotherapy, it would be 
advantageous to identify a safe adjuvant that can improve 
therapeutic outcomes without causing additional toxicity 
[135]. Several studies have revealed that a combination of 
OXA and curcumin has synergistic effects and can improve 
the anticancer effects of OXA and overcome resistance in 
CRC both in vivo and in vitro. It has been revealed that 
curcumin enhanced the effects of OXA in damaging DNA 
and inducing apoptosis in cancer cells, attributed to the aug-
mentation of platinum–DNA binding [92]. Indeed, curcumin 
increased the cytotoxic effects of platinum (II)-based agents, 
including OXA, CisPt, and carboplatin on chemoresistant 
CRC cells. Its combination with platinum agents reversed 
chemoresistance. The increase in apoptosis rate, arrested cell 
cycle progression in the G2/M phase, as well as inhibited 
the expression of platinum (II)-based agents-induced nuclear 
NF-kB were attributed to this effect [93, 94]. The combina-
tion of OXA (2 µM) and curcumin (5 µM) enhanced the effi-
cacy of OXA by downregulating Ki-67, Notch-1 pathway in 
HT-29 and HCT116 cells. Such a combination makes tumors 
OXA-sensitive [95]. In addition, this combination exerted 
synergistic apoptotic effects by increasing p53 and Bax 
expression and decreasing Bcl-2 expression [94, 96]. Addi-
tionally, the intraperitoneal injection of OXA (50 mg/kg) 
and curcumin (25 mg/kg) reduced the proliferative capac-
ity of OXA- resistant CRC cells. In a HCT116 nude mouse 
xenograft tumor model, curcumin significantly enhanced the 
antitumor effectiveness of OXA. This combination caused 
a notable enhanced apoptosis in tumor cells, along with 
upregulation of Bax, caspase-3, and PARP expression, while 
suppressing Bcl-2, survivin, HSP70, pro-caspase-3, and pro-
PARP expression in colorectal tumors [97].

Several investigations have clarified that curcumin 
could reverse MDR via hampering NF-κB signaling 
responsible for the downregulation of genes related to 
chemoresistance and anti-apoptosis [98, 136]. Moreo-
ver, chemokines such as CXC motif chemokine ligand1 
(CXCL1) and CXCL8 are considered as autocrine tumor-
promoting factors and can enhance NF-κB transcriptional 
activity [137]. Curcumin in combination with OXA has 
been reported to downregulate the expression of CXCL1 
and CXCL8 genes in an OXA-resistant HTOXAR3 cell 
line, resulting in a substantial reduction in NF-κB signal-
ing, and decrease in the IC50 of OXA, thereby sensitizing 
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the cells to OXA. These findings suggest a potential role 
for these chemokines in acquired resistance to OXA 
through activation of the AKT/NF-κB pathway. Therefore, 
the levels of chemokines, specifically CXCL1, were sug-
gested as a potential predictive indicator for the efficacy 
of this combined therapy in CRC [98]. Moreover, a co-
treatment with curcumin (8 µM) reversed OXA (4 µM) 
resistance in CRC cells through the inhibition of EMT 
markers such as TGF-β, Smad-2, and N-cadherin [99].

The excision repair cross-complementing gene 
(ERCC1) plays a vital role in the nucleotide repair process, 
indicating its involvement in tumor resistance to platinum 
drugs [138]. Additionally, there is evidence indicating that 
the miR-409-3p-mediated regulation of ERCC1 might be 
associated with resistance to OXA in CRC cells. Recently, 
Han et al. demonstrated that curcumin (30 µM) effectively 
reduces the expression of ERCC1, Bcl-2, glutathione 
s-transferase-π (GST-π), multidrug resistance-related pro-
tein, P-gp, and survivin. Additionally, curcumin increases 
the expression of miR-409-3p and enhances the apoptotic 
rate of resistant cells. These findings suggest that curcumin 
has the ability to reverse drug resistance to OXA by modu-
lating miR-409-3p-mediated ERCC1 expression [100].

CisPt is another common cancer chemotherapy drug 
based on platinum that has been proven to improve sur-
vival rates in patients undergoing chemotherapy [139]. 
CisPt is a cytotoxic substance that primarily acts by 
interacting with proteins containing a HMG domain and 
cross-link to tumor cell DNA. The formation of adducts 
between the drug and cancer cells disrupts cell division. 
Consequently, the DNA is irreversibly damaged, leading 
to cell cycle arrest and apoptosis [140]. The ability of 
cell apoptosis was significantly enhanced after treatment 
with curcumin and CisPt, as evidenced by the increased 
expression of apoptotic proteins such as Bax, while the 
anti-apoptotic proteins like Bcl-2 and the Notch-1 path-
ways were suppressed [102]. There is evidence indicating 
that long non-coding RNAs (lncRNAs) are involved in 
chemotherapeutic resistance. The expression of one such 
lncRNA, KCNQ1 opposite strand/antisense transcript 1 
(KCNQ1OT1), is significantly increased in CRC tissues 
[141, 142]. It has been proposed that KCNQ1OT1 is also 
implicated in resistance to CisPt, something that is attrib-
uted to enhanced proliferation and inhibited apoptosis 
through the miR-497/Bcl-2 axis, thereby exacerbating 
resistance to CisPt [103]. Zheng demonstrated that cur-
cumin (10 µM) reverses resistance to CisPt by downregu-
lating KCNQ1OT1 expression [103]. Furthermore, cur-
cumin increased the expression of miR-137. Subsequently, 
miR inhibits the metabolism of glutamine by targeting 
glutaminase, resulting in suppression of the proliferation 
of chemoresistant CRC cells and increasing sensitivity to 
CisPt [104].

Curcumin enhances the efficacy of FOLFOX in CRC 
treatment

The standard chemotherapeutic regimen for CRC, called 
FOLFOX, combines folinic acid with 5FU and OXA. This 
treatment is associated with severe side effects, and often 
results in poor outcomes, leading to cancer recurrence [105]. 
Studies have shown that almost half of all diagnosed CRC 
patients treated with first-line FOLFOX chemotherapy will 
experience cancer recurrence, and around 40% of non-
resectable patients with colorectal liver metastases do not 
respond to the administration of FOLFOX [134]. According 
to a study involving colon cancer cells, the percentage of 
CD44-positive cells, which indicates the presence of CSCs, 
was found to be 0.04% in wild-type cells. However, in CRC 
cells resistant to FOLFOX, the percentage of CD44-positive 
cells increased by tenfold [105]. Curcumin, whether used 
alone or in conjunction with FOLFOX, shows potential for 
effectively eliminating CSCs in CRC. Curcumin in conjunc-
tion with FOLFOX was found to reduce the expression of 
transcription factors related to CSC-like features, such as 
octamer-binding transcription factor3/4, Nanog, Otx2, and 
AFP [121].

When used alone or in combination with FOLFOX, 
curcumin not only downregulated several markers associ-
ated with CSCs and EGFR – but also remarkably reduced 
colony and tumor sphere formation of CRC cells resistant to 
FOLFOX. In fact, reduced EGFR promoter methylation was 
responsible for upregulation of EGFR in CRC cells resist-
ant to FOLFOX. However, treatment with curcumin (20 
µM) in 5FU-resistant cells exerted opposite effects which 
was correlated with DNA methyltransferase1 expression 
[105]. These findings suggest that the induction of specific 
growth factor receptors such as EGFR can assist the growth 
and survival of CSC, leading to the increased possibility 
of developing malignancies [105]. Extensive research has 
provided substantial evidence regarding the significance of 
the IGF signaling pathway in the initiation and progression 
of various cancers which has emerged as a crucial prognos-
tic factor. It activates pathways within colorectal epithelial 
cells that facilitate transformation, including both apoptosis 
and chemoresistance signaling pathways [143, 144]. Cur-
cumin (10 µM) in combination with FOLFOX was reported 
to considerably suppress cell growth and induce apoptosis in 
HCT116 and HT-29 cells. This was accompanied by a down-
regulation of EGFR, human epidermal growth factor recep-
tor-2 (HER-2), HER-3, IGF-1R, PI3K/Akt, and COX-2 and 
accompanied with a fivefold increase in the expression of 
IGF-binding protein-3 (IGFBP-3). This increase in IGFBP-3 
facilitated the sequestration of IGF, making IGF-1 unavaila-
ble for binding and activation of IGF-1R [106]. Furthermore, 
curcumin suppressed protein inhibitor of activated STAT3, 
a crucial factor in maintaining of IGF-1R in the nucleus and 
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preventing translocation of IGF-1R to the nucleus [101]. 
Consequently, these co-treatment can be associated with 
the prohibition of signaling pathways involving EGFRs and 
IGF-1R [101, 106]. In this context, the IGF-1/IGF-1R axis 
could represent promising therapeutic targets for the preven-
tion and treatment of CRC [18]. Notably, FOLFOX when 
combined with curcumin (25 µM) greatly attenuated the 
survival of CRC cells, followed by a simultaneous decrease 
of EGFR, HER-2, IGF-1R, AKT activation, as well as down-
regulation of COX-2 and cyclin-D1 expression [107].

Curcumin enhances the efficacy of other 
chemotherapy agents in CRC treatment

Dasatinib was discovered as a potent Src/Abl kinases inhibi-
tor, potentially exhibiting anti-proliferative effects against 
various cancer cell lines [145]. Dasatinib (1 μM) in conjunc-
tion with curcumin (10 μM) also inhibits the activation of 
HER-2, HER-3 and IGF-1R signaling, resulting in a decrease 
in the phosphorylation levels of AKT and Erks (1/2). Fur-
ther results on the downregulation of anti-apoptotic proteins 
such as Bcl-XL and of COX-2 indicated its possible efficacy 
in CRC treatment. [108]. The synergistic combination of 
dasatinib (1 μM) and curcumin (10 μM) effectively inhibits 
cell growth, migration, invasion, and formation of colono-
spheres. This combination was also reported to reduce the 
population of CSCs, as indicated by downregulation of CSC 
markers including CD133, CD44, CD166, and ALDH [109].

CPT-11 and its active metabolite, 7-ethyl-10-hydroxyca-
mptothecin, exert their anticancer effects by inhibiting DNA 
topoisomerase, leading to DNA double-strand breaks and 
triggering a cellular response to DNA damage. However, 
CPT-11-based chemotherapy for CRC is associated with 
the development of enterotoxigenesis and chemoresistance 
[146]. Studies on the potential synergistic effect of cur-
cumin with CPT-11 showed increased therapeutic efficacy 
of CPT-11 in human CRC cells. The combination of CPT-11 
with curcumin inhibited cell proliferation, arrested the cell 
cycle, and promoted apoptosis. The latter was attributed, 
at least in part, to the generation of ROS, the stimulation 
of the endoplasmic reticulum-based cellular stress response 
and the upregulation of binding immunoglobulin protein 
and CCAAT/enhancer-binding protein homologous protein 
[110]. In addition to reducing growth, curcumin significantly 
reduced the colon CSCs’ population. The co-treatment of 
curcumin (5 μM) with CPT-11 (100 μM) noticeably sup-
pressed the expression of CSC-associated markers, including 
CD44, CD133, CD24 and EpCAM, leading to substantial 
induction of apoptosis in colon CSCs and reversal of chem-
oresistance [111].

Zhang et al. demonstrated that co-treatment of curcumin 
(5 μg) and CPT-11 (20 μg) significantly reduced cell pro-
liferation, induced apoptosis and reversed drug resistance 

in CPT-11-resistant CRC cells by inhibiting the EMT pro-
cess via increased expression of E-cadherin, and reduced 
expression of vimentin and N-cadherin [112]. Antioxidant 
enzymes such as GSTs can scavenge ROSs and detoxify 
toxic agents. In oxidative stress situations, GSTs are acti-
vated to protect the body's cell DNA against ROSs. How-
ever, evidence suggests that in chemoresistant cells, the 
level of GSTs is increased, potentially playing a protective 
role against chemotherapy agents [147]. Furthermore, the 
formation of Glutathione (GSH)-chemotherapeutic agents 
enhances intracellular agent solubility, leading to drug efflux 
from the cell, thereby inducing resistance to chemotherapy 
in cancer cells. It has been revealed that curcumin reduces 
the expression of GST M5 and prevents CPT-11 efflux from 
the cell, consequently reversing chemotherapy resistance by 
increasing cellular apoptosis [113].

Curcumin (1 g/kg, orally) in combination with capecit-
abine (60 mg/kg, orally)effectively suppressed metastasis 
in nude mice by attenuating the activation of the NF-κB 
pathway and NF-κB-regulated genes such as cyclin D1, 
c-MYC, Bcl-2, Bcl-xL, COX-2, and MMP-9, which resulted 
in increased susceptibility of CRC cells to the anticancer and 
antimetastatic activities of capecitabine [114].

Curcumin was reported to reverse resistance to DOX, a 
common chemotherapy agent used for a wide range of can-
cers including CRC, by decreasing cellular viability [115] 
via suppressing caspase-3, -8, and -9 activation in CRC cells 
[115, 148]. The treatment of polyphenols, including cur-
cumin, tannic acid, and epigallocatechin gallate with DOX 
attenuated chemoresistance. This attenuation was associated 
with the suppression of P-gp activity, which could render 
CRC cells sensitive to DOX [118]. Curcumin, in combina-
tion with DOX, was able to inhibit COX-2-induced P-gp 
expression, and by increasing intracellular DOX concentra-
tion, led to decreased cellular proliferation and increased 
apoptosis. Additionally, curcumin (10 μM) directly interacts 
with certain mitochondrial matrix proteins like C1qbp, dis-
rupting oxidative phosphorylation and ATP synthesis, thus 
preventing the advancement of chemoresistance in CRC 
[116]. Alteration of metabolic processes are implicated in 
the onset and progression of MDR [149]. The concentration 
of polyamines such as spermine, spermidine, and putres-
cine significantly augments in chemoresistant cells. This 
increase leads to heightened activation of tricarboxylic acid 
cycle cycles, generating more ATP, thereby providing the 
energy required for P-gp function. Additionally, polyamines 
enhance the synthesis of antioxidant enzymes like GSH, 
which protects DNA against ROSs and promotes chem-
oresistance [150, 151]. Besides, D-glutamine metabolism 
induces chemoresistance by increasing P-gp activation and 
GSH expression. Recently, Zhang and colleagues indicated 
that the combination of curcumin (5.5 μM) with DOX (0.5 
μM) was capable of inhibiting polyamine biosynthesis and 
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D-glutamine metabolism, subsequently reducing P-gp func-
tion due to decreased ATP availability. Thus, DOX accumu-
lation in cells and cytotoxic effects of it against cancer cells 
are strengthened [117].

Curcumin (˃25 μM) enhances the inhibitory effect of 
VCR on the growth of CRC cells. It suppressed the expres-
sion of the P-gp gene and its activity, significantly reducing 
the efflux of VCR from the cells while increasing its intracel-
lular concentration. Moreover, the combination of curcumin 
and VCR prevented tumor growth and reduced the expres-
sion of the anti-apoptotic protein such as survivin. Conse-
quently, curcumin diminished chemoresistant CRC cells and 
augmented their sensitivity to 5FU, VCR, and CisPt [119]. 
As mentioned, chemoresistant cells utilize the host's anti-
oxidant defenses to mitigate the cytotoxic effects of chemo-
therapy. Curcumin (25 μM) reduced resistance to VCR by 
downregulating pyridoxine 6 and GSTP1 while increasing 
apoptosis [120].

Clinical trials

Several clinical trials have investigated the effects of cur-
cumin on advanced CRC. Sharma and colleagues investi-
gated the safety and Pharmacokinetic/Pharmacodynamics 
of curcumin in advanced CRC patients. No toxic doses were 
observed after 16 weeks. Although the intervention with 36 
mg of curcumin for 4 weeks resulted in a significant reduc-
tion in GST activity, a similar reduction was not observed 
at higher doses per 28 weeks. Furthermore, curcumin or 
its metabolites were not detected in urine and plasma after 
8 weeks of intervention. Low doses of curcumin approxi-
mately 519 nmol/g and high doses of curcumin 1054 nmol/g 
of curcumin were detected in dry feces [152]. In another 
study, the administration of 3.6 g/day curcumin in patients 
with colon cancer reduced Tumor necrosis factor-α (TNF-α) 
concentration while increasing the expression of P53 and 
Bax in cancer cells, which was associated with an increase 
in apoptosis [153]. However, clinical studies investigat-
ing the effectiveness of combining curcumin with chemo-
therapy agents in CRC patients have been limited to date. 
Curcumin (2 g/day, orally) has been reported to enhance the 
effectiveness of FOLFOX in CRC patients with liver metas-
tasis [121]. Additionally, It was found to be safe and well-
tolerated [121]. It has been established that abdominal pain, 
dyspepsia, and nausea were the most common side effects 
of curcumin treatment. In this context, the combination 
of curcumin (2 g/day, orally) with FOLFOX significantly 
improved overall survival (Hazard ratio = 0.34), although it 
had no effect on progression-free survival and quality of 
life [122].Another phase II study using curcumin in CRC 
patients undergoing chemoradiotherapy demonstrated that 

curcumin (4 g, orally for 6 weeks) did not increase disease 
progression [123].

However, current chemotherapeutic agents exhibit high 
toxicity and significant side effects; therefore, finding safe 
natural compounds with minimal side effects as adjunc-
tive therapies for chemotherapy is essential. The efficacy 
of curcumin in combination with chemotherapy in humans 
have been conducted, or still ongoing. Currently, clinical 
trials are exploring the effects of curcumin formulations in 
conjunction with chemotherapeutic agents in CRC. Jeon 
et al. indicated that nanoformulations of curcumin com-
bined with bevacizumab/FOLFIRI improved progression-
free survival in CRC patients with metastases. Additionally, 
this combination was found to be safe and well-tolerated 
[154]. NCT01859858 assessed the safety and pharmacoki-
netics of CPT-11 and curcumin in colon cancer patients. 
Another clinical trial, NCT02724202 is examining the safety 
of 5FU in combination with BCM-95, synthetic curcumi-
noid, in patients with metastatic colon cancer. However, the 
conducted studies have several limitations, including small 
sample sizes, different doses of curcumin and its deriva-
tives, short follow-up durations, and the lack of control for 
confounding factors.

Curcumin and immunotherapy

Immune cells exhibit variations in their phenotypes and 
functions over time, thereby facilitating the immune micro-
environment to possess both a "tumor- suppressing" and 
"tumor-promoting" effect as a whole [155]. However, cancer 
cells can hinder the functions of anti-tumor T cells, which 
reduces tumor infiltration and compromised cytotoxicity and 
proliferation [156]. One of the most significant challenges in 
cancer treatment is the evasion tumor cells from the immune 
response. In fact, they can escape the host immune response 
by increasing the population of regulatory T (Treg) cells and 
disrupting the function of CD8+ T and natural killer cells 
[157]. Therefore, the suppression of Treg cells is consid-
ered a potential strategy to enhance the efficacy of immu-
notherapy. It has been suggested that the combination of 
natural compounds such as curcumin with immunotherapy 
is associated with improved immune responses against can-
cer cells. Curcumin downregulated programmed cell death 
ligand 1 expression in a manner that enhances the effects of 
immunotherapy against cancer [158, 159]. It significantly 
augmented the expression of CD8+ T cells while downregu-
lating Treg cells [160]. In a clinical study, supplementation 
with curcumin in 40 patients with colon cancer reduced the 
population of Treg cells, while increasing the T Helper1 
cell population. Furthermore, it increased the interferon-γ 
produced by Treg cells which facilitates the conversion of 
Treg cells to T Helper1 cells [161]. Based on these findings, 
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curcumin appears to be an adjunctive compound for immu-
notherapy; however, additional preclinical and clinical stud-
ies are necessary to evaluate the efficacy of this combination.

Conclusion and future prospects

Finding an effective chemotherapeutic approach to combat 
cancer remains challenging. The toxicity to both cancer-
ous and non-cancerous cells of conventional chemotherapy 
agents and the presence of chemoresistance are two main 
contributing factors. Combining chemotherapy agents with 
curcumin has been identified as a promising approach for 
the treatment of CRC. Furthermore, Chemotherapy-related 
toxicity is considered one of the most main limiting fac-
tors in cancer treatment, leading to treatment inefficacy and 
discontinuation. For instance, fluoropyrimidine agents are 
associated with side effects such as stomatitis, diarrhea, 
nausea, and neuropathy [162]. Gastrointestinal symptoms, 
hematological abnormalities, and hepatotoxicity are among 
the most important adverse effects of OXA [162]. There is 
substantial evidence indicating that, in addition to increasing 
sensitivity to chemotherapy agents, curcumin has potential 
effects on certain chemotherapy-related side effects. It has 
been shown to protect against OXA-induced liver damage 
by reducing oxidative stress through the activation of Nrf2 
[163]. The suppression of NF-κB activation by curcumin 
alleviated intestinal and cardiovascular damage [164]. It 
has been observed curcumin could attenuate gastrointestinal 
symptoms induced by chemotherapy agents [162].

Although many in vitro and in vivo studies have demon-
strated the beneficial effects of curcumin in CRC, its bio-
availability poses a significant challenge in clinical studies. 
In other words, its low water solubility and conversion into 
inactive metabolites result in reduced Pharmacokinetic/Phar-
macodynamics, leading to potential limitations of curcumin 
in clinical settings. Therefore, structural modifications of 
the curcumin scaffold and the use of various nanocarrier 
formulations for drug delivery have already been explored to 
overcome the low oral bioavailability and enhance its Phar-
macokinetic/Pharmacodynamics and improve its efficacy of 
curcumin [165–167]. Future work should aim to evaluate 
the optimal safe dose of curcumin required to exert activity, 
the optimal formulation to ensure good oral bioavailabil-
ity, and the long-term toxicity of combinations of curcumin 
with selected chemotherapy agents. This will provide better 
insights into the role of curcumin in limiting the undesir-
able side effects of conventional anticancer drugs, reversing 
chemoresistance, and its potential for improving the quality 
of life for CRC patients.
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