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Abstract
Background  Loop diuretics became a cornerstone in the therapy of hypervolemia in patients with chronic kidney disease or 
heart failure. Apart from the influence on water and electrolyte balance, these drugs were shown to inhibit tissue fibrosis and 
renin-angiotensin-system activity. The kynurenine (KYN) pathway products are suggested to be uremic toxins. Kynurenic acid 
(KYNA) is synthesized by kynurenine aminotransferases (KATs) in the brain and periphery. The cardiovascular and renal 
effects of KYNA are well documented. However, high KYNA levels have been correlated with the rate of kidney damage 
and its complications. Our study aimed to assess the effect of loop diuretics, ethacrynic acid, furosemide, and torasemide on 
KYNA synthesis and KATs activity in rat kidneys in vitro.
Methods  Quantitative analyses of KYNA were performed using fluorimetric HPLC detection. Additionally, molecular 
docking studies determined the possible interactions of investigated compounds with an active site of KAT I and KAT II.
Results  All studied drugs inhibited KYNA production in rat kidneys in vitro at 0.5–1.0 mmol/l concentrations. Only 
ethacrynic acid at 1.0 mmol/l concentration significantly lowered KAT I and KAT II activity in kidney homogenates, whereas 
other drugs were ineffective. Molecular docking results indicated the common binding site for each of the studied loop diuret-
ics and KYNA. They suggested possible residues involved in their binding to the active site of both KAT I and KAT II model.
Conclusions  Our study reveals that loop diuretics may decrease KYNA synthesis in rat kidneys in vitro. The presented results 
warrant further research in the context of KYN pathway activity regulation by loop diuretics.
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Abbreviations
AhR	� Aryl hydrocarbon receptor
AKI	� Acute kidney injury
ARB	� Angiotensin II type 1 receptor blocker
CKD	� Chronic kidney disease
DMSO	� Dimethyl sulfoxide
eGFR	� Estimated glomerular filtration rate
GFR	� Glomerular filtration rate
GPR35	� G protein-coupled receptor 35
HCAR​	� Hydroxycarboxylic acid receptor 3
hNPT4	� Human sodium phosphate transporter 4
hOAT1	� Human organic anion transporter 1
hOAT3	� Human organic anion transporter 3
HPLC	� High-performance liquid chromatography
KAT	� Kynurenine aminotransferase
KYN	� Kynurenine
KYNA	� Kynurenine aminotransferase
MRP4	� Multidrug resistance protein 4
mTAL	� Medullary thick ascending limb
NKCC2	� Sodium/potassium/chloride cotransporter 2
OAT1	� Organic anion transporter 1
OAT4	� Organic anion transporter 4
RAAS	� Renin-angiotensin-aldosteron system
TNF	� Tumor necrosis factor

Introduction

Water and electrolyte balance is vital for patients with heart 
failure, liver cirrhosis, or kidney diseases. Fluid overload is 
closely linked with frequency of hospitalizations, reduced 
quality of life, poor prognosis, and high costs of health care 
[1]. Therapy of congestion is complex, yet loop diuretics, 
due to their high efficacy and rather good bioavailability, 
remain the first-line treatment of overhydration [2]. Upon 
secretion to the proximal tubule, loop diuretics bind to 
sodium/potassium/chloride cotransporter 2 (NKCC2) at the 
luminal membrane of the thick ascending loop of Henle, 
which reduces sodium reabsorption and stimulates vigorous 
natriuresis [3]. However, a secondary increase of sodium 
chloride reabsorption in the distal convoluted tubule devel-
ops and contributes to nephron remodeling. Loop diuretics 
may also impair tubuloglomerular feedback thus prevent-
ing the decline of glomerular filtration. Competitive inhi-
bition of organic anion transporter 4 (OAT4), multidrug 
resistance protein 4 (MRP4), and human sodium phosphate 
transporter 4 (hNPT4) by loop diuretics were shown in the 
proximal tubules [4–6]. OATs play a major role in loop diu-
retics secretion in the proximal tubule [7, 8], and take part 
in transporter-related drug interactions [9].

Loop diuretics may also decrease intramedullary prosta-
glandin synthesis and medullary perfusion [10]. Commonly 
used loop diuretics include furosemide, torasemide, and 

ethacrynic acid. Furosemide displays variable bioavailabil-
ity and a short half-life, yet manifests a fast onset of action, 
whereas torasemide is more preferred in long-term treatment 
due to higher bioavailability, longer duration of action, and 
lower dependence on kidney function [11]. Importantly, con-
trary to other class representatives, torasemide was shown 
to inhibit the renin-angiotensin-aldosteron system (RAAS), 
with beneficial effects on tissue remodeling [12]. Ethacrynic 
acid, the first registered representative of loop diuretics, is 
used as an alternative for patients not tolerating sulfonamide-
containing drugs [11].

Although data about loop diuretics' effect on kidney func-
tion, especially in the case of acute kidney injury (AKI) 
remain controversial, some studies suggest the nephroprotec-
tive potential of this class of drugs, mainly due to antiapop-
totic effect and suppression of angiogenesis-related genes 
[13]. On the other hand, it has been postulated that loop 
diuretics may impair kidney function, possibly through the 
deterioration of oxygen utilization in the ischemia–reperfu-
sion injury model [14] or inhibition of mitochondrial activity 
[15].

The kynurenine (KYN) pathway is a major route of tryp-
tophan metabolism, resulting in the formation of numerous 
biologically active substances [16]. KYN metabolites are 
involved in various physiological processes, such as cellular 
survival, immune response, or cardiovascular and kidney 
function. Kynurenic acid (KYNA), produced in the brain 
and the periphery mostly through enzymatic conversion 
of KYN by kynurenine aminotransferases (KATs), KAT I 
and KAT II, is excreted in large quantities by kidneys [17]. 
KYNA targets glutamate receptors [18], blocks α7 nicotinic 
acetylcholine receptors [19], activates aryl hydrocarbon 
receptors (AhRs) [20], hydroxycarboxylic acid receptor 3 
(HCAR3) [21], and is a ligand of G protein-coupled recep-
tor 35 (GPR35) [22]. In the brain, KYNA exerts neuropro-
tective and anticonvulsant effects. Disturbed metabolism of 
KYNA has been therefore implicated in the pathogenesis of 
multiple neuropsychiatric conditions [23]. In the periphery, 
natriuretic [24] and chronotropic negative effects in sponta-
neously hypertensive rats were shown [25]. Through GPR35 
KYNA may also inhibit mitochondrial damage and reac-
tive oxygen species production, resulting in NLRP3 inflam-
masome blockade [26]. Decreased KYNA removal due to 
impaired kidney function results in its significant accumula-
tion in body fluids. Lower KYNA clearance was associated 
with chronic kidney disease (CKD) complications, namely 
hyperparathyroidism, hypertriglyceridemia [27], and car-
diovascular events [28], independently of kidney function 
or albuminuria level. Several groups of drugs, in particular 
hypoglycemic [29], hypolipidemic [30], anti-inflammatory 
[31], and antihypertensive agents [32, 33] have been pre-
sented as inhibitors of KYNA synthesis, with a possible 
direct effect on kidney function.
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Since KYNA was shown to take part in regulating water 
and electrolyte balance, and its production can be decreased 
by hypotensive drugs, the goal of this study was to analyze 
the effect of loop diuretics: ethacrynic acid, furosemide and 
torasemide, on KYNA synthesis and KATs activity in rat 
kidney in vitro. Additionally, molecular docking was per-
formed to evaluate the possibility of binding of tested com-
pounds to the active site of KAT I and KAT II.

Materials and methods

Animals

The experiments were performed on tissue obtained from 
male adult Wistar rats kept in the Experimental Medicine 
Center, Medical University of Lublin, Poland. Animals 
weighing 180–220 g were housed under standard labora-
tory conditions (temperature 20 °C; 12-h light–dark cycles), 
with food and water available ad libitum. Animals were used 
after 7 days of adaptation. The experiments were conducted 
between 9.00 a.m. and 1.00 p.m. All experiments were per-
formed according to the National Institute of Health Guide-
lines for the Care and Use of Laboratory Animals (8th edi-
tion), the European Community Council Directive for the 
Care and Use of Laboratory Animals of 22 September 2010 
(2010/63/EU) and with ARRIVE guidelines. During plan-
ning of experiments all efforts were made to maintain ani-
mals welfare protection according to the 3Rs rule. Kidneys 
from 6 animals were used in this study to obtain compara-
ble results. To avoid interference of anesthetics with KYNA 
synthesis and KATs activity no anesthesia was used, kidneys 
were harvested after animals rapid decapitation. According 
to current Polish and European legislation, the removal of 
organs or cells from vertebrates for scientific purposes is 
not considered an animal experiment if the animals have 
not been subject to surgical interventions or invasive treat-
ments prior to sacrifice. Consequently, the euthanasia of rat 
intended for the removal of brain tissue and all of the further 
procedures do not necessitate the approval or permission of 
local or governmental authorities.

Substances

l-Kynurenine (sulfate salt) (K3750), tested drugs: ethacrynic 
acid (SML1083), furosemide (F4381), and torasemide 
(T3202); reagents used to prepare Krebs Ringer buffer: 
sodium chloride (S7653), potassium chloride (P9333), 
magnesium sulfate heptahydrate (M7506), calcium chloride 
anhydrous (C1016), sodium phosphate monobasic dihy-
drate (71,505), sodium phosphate dibasic (S0876), glucose 
(G8270), distilled water; drugs solvent: dimethyl sulfoxide 
(DMSO) (D1435); reagents necessary for KATs analysis 

conduction: Trizma base (T1503), acetic acid (A6283), 
pyridoxal 5′-phosphate hydrate (P9255), 2-mercaptoetha-
nol (M3148), sodium pyruvate (P2256), and d-glutamine 
(D9003) were purchased from Sigma-Aldrich. Compounds 
essential for high-performance liquid chromatography 
(HPLC) were obtained from J.T. Baker Chemicals and 
Sigma-Aldrich. All examined drugs were dissolved in the 
DMSO, with a final DMSO concentration not higher than 
5% [34].

KYNA synthesis in rat kidney homogenates in vitro

Both kidneys were collected immediately after the decapi-
tation of each animal and transferred into the ice-cold bath 
(+ 4 °C). Subsequently, organs were weighed and homog-
enized in freshly oxygenated Krebs–Ringer buffer pH 
7.4 (1:4; w/v). Afterward, 100 μL of kidney homogenate 
was incubated in oxygenated Krebs–Ringer buffer, for 2 h 
at 37 °C, in the presence of 2 µmol/l l-KYN and studied 
substances. Substances were tested in six different con-
centrations: 1 μmol/l, 10 μmol/l, 50 μmol/l, 100 μmol/l, 
500 μmol/l, and 1 mmol/l, and six kidney samples were 
used for each concentration (N = 6). The procedure was ter-
minated by a rapid transfer of samples into an ice bath and 
the addition of 100 μL of 1 N HCl into each tube. Samples 
were centrifuged (15,133×g, 15 min), and obtained super-
natants were stored until further HPLC analysis. Presented 
experiments were performed twice, obtained results from 
both repetitions were similar.

KATs activity in rat kidney homogenates in vitro

KAT isoenzymes activity evaluation in rat kidneys in vitro 
was adapted from Gramsbergen et al. [35]. In short, obtained 
rat kidneys were homogenized in dialysate buffer contain-
ing 5 mmol/l Tris–acetate buffer (at pH 8.0), 50 μmol/l 
pyridoxal 5′-phosphate, and 10 mmol/l 2-mercaptoethanol. 
Prepared kidney homogenate was centrifuged (15,133×g, 
15 min), and collected supernatant was dialyzed against 4 l 
of the dialysate buffer for 12 h, at 8 °C, by using cellulose 
membrane dialysis tubing. Next, harvested semi-purified 
enzymatic preparation was incubated for 2 h, at 37 °C, with 
l-KYN (2 μmol/l), and analyzed drugs at 6 different concen-
trations (1 μmol/l to 1 mmol/l). To achieve maximal enzy-
matic activity, the pH of the reaction mixture was set at 9.5 
and 7.0 for KAT I or KAT II activity analysis, respectively. 
The KAT I inhibitor, glutamine (2 mmol/l) was added to test 
tubes intended to assess the activity of KAT II. All reactions 
were stopped by transferring samples into an ice-cold bath. 
Samples were centrifuged and resulting supernatants were 
stored until further HPLC analysis. In vitro experiments 
were performed twice with technical triplicates. The results 
from both repetitions were similar.
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HPLC analyses

KYNA content in samples was quantified using HPLC anal-
ysis (Thermo Fisher Scientific HPLC system), as previously 
described by Shibata [36]. ESA catecholamine HR-80, 3 μm, 
C18 reverse-phase column was used. The mobile phase con-
taining: 250 mmol/l zinc acetate, 25 mmol/l sodium acetate, 
5% acetonitrile, and pH at 6.2 was run with a flow rate of 
1.0 ml/min through the system. The fluorescence detector 
was set at the following parameters: excitation 344 nm, 
emission 398 nm.

Molecular docking of ethacrynic acid, furosemide, 
torasemide, and kynurenine to KAT I and KAT II

The available crystal structure of the hKAT I in PMP form 
at 2.90 Å atomic resolution (PDB ID: 1W7N) [37] as well 
as hKAT II in complex with its substrate KYN and co-factor 
PMP at 1.95 Å atomic resolution (PDB ID: 2R2N) [38] was 
used to perform the molecular docking simulations. In the 
next step, ethacrynic acid, furosemide, and torasemide (Mol-
file) were imported from the PubChem Database and opti-
mized using the semi-empirical method AM1 and then trans-
ferred for the subsequent step of ligand docking. Molegro 
Virtual Docker (v 6.0.0, Molegro ApS, Aarhus, Denmark) 
was used for docking simulations of flexible ligands into the 
rigid KAT I and KAT II structures. The docking parameters 
were used as previously described [33]. The lower energy 
conformations were selected from possible clusters of super-
posed poses for each studied ligand to both targets (KAT I 
and KAT II).

Statistical analysis

The results of experiments on kidney homogenates and 
KATs are presented as mean ± standard deviation (SD), 
whereas results of KAT I and KAT II activity analyses are 

shown as median with interquartile range. Data analysis was 
carried out by the one-way analysis of variance (one-way 
ANOVA) followed by Tukey’s multiple comparison test 
(KYNA synthesis experiments) or Kruskal–Wallis test fol-
lowed by post-hoc Dunn’s test (KAT I and KAT II activity 
experiments) in the GraphPad Prism 6. The p-value < 0.05 
was established as statistically significant.

Results

Influence of loop diuretics on KYNA production 
in rat kidney in vitro

Standard KYNA synthesis in tested rat kidney homogenates 
under 2 µmol/l l-KYN was 1.72 ± 0.35 pmol/mg of fresh 
kidney tissue. Ethacrynic acid at 0.5 mmol/l and 1 mmol/l 
lowered KYNA formation in rat kidney homogenates to 
92% and 86% of control value, respectively (F6,35 = 8.911, 
p < 0.0001, ANOVA followed by Tukey’s multiple compari-
son test) (Fig. 1A). Similarly, furosemide inhibited KYNA 
synthesis in rat kidney in vitro at 0.5 mmol/l and 1 mmol/l 
concentration to 80% and 70% of control, respectively 
(F6,35 = 4.816, p = 0.0011, ANOVA followed by Tukey’s 
multiple comparison test) (Fig. 1B). Torasemide, decreased 
KYNA production in analyzed rat kidney homogenates at 
0.5 mmol/l concentration to 68% of control (F5,30 = 3.041, 
p = 0.0245, ANOVA followed by Tukey’s multiple compari-
son test) (Fig. 1C).

Influence of loop diuretics on KAT I activity in rat 
kidney in vitro

The mean production of KYNA in rat kidney semi-
purified KAT I in the presence of 2 µmol/l l-KYN was 
82.58 ± 11.35 pmol/mg of protein. Only ethacrynic acid at 
1 mmol/l concentration significantly reduced KAT I activity 

Fig. 1   The influence of loop diuretics: ethacrynic acid (A), furosem-
ide (B) and torasemide (C) on kynurenic acid (KYNA) production 
in rat kidney in vitro. Data are presented as a percentage of control 
KYNA production, mean ± SD, N = 6, *p < 0.05, **p < 0.01. ANOVA 

followed by Tukey’s multiple comparison test. Standard KYNA syn-
thesis in tested rat kidney homogenates under 2 µmol/l l-kynurenine 
(l-KYN) was 1.72 ± 0.35 pmol/mg of fresh kidney tissue
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in rat kidneys to 27% of control value (H = 12.73, N1 = 3, 
N2 = 3, N3 = 3, N4 = 3, N5 = 3, N6 = 3, N7 = 3, p = 0.0149, 
Kruskal–Wallis test followed by post-hoc Dunn’s test) 
(Fig. 2A). Other diuretics, furosemide (Fig. 2B) and tora-
semide (Fig. 2C) lowered KAT I activity in kidney homoge-
nates, however results were statistically not significant.

Influence of loop diuretics on KAT II activity in rat 
kidney in vitro

KAT II activity in tested rat kidney in the presence of 
2  µmol/l l-KYN was 192 ± 73.58  pmol/mg of protein. 
Ethacrynic acid lowered the activity of KAT II in rat kidney 
in vitro at 1 mmol/l concentration to 28% of control value 
(H = 12.83, N1 = 3, N2 = 3, N3 = 3, N4 = 3, N5 = 3, N6 = 3, 
N7 = 3, p = 0.0120, Kruskal–Wallis test followed by post-hoc 
Dunn’s test) (Fig. 3A). Furosemide (Fig. 3B) and torasemide 

(Fig. 3C) did not significantly decrease KAT II activity in 
kidney homogenates at all tested concentrations.

Molecular docking of loop diuretics to KAT I and KAT 
II

The molecular docking results suggested that all examined 
loop diuretics (structures depicted in Fig. 4) bind to the 
active site of both KAT I and KAT II. More specifically, 
docking simulations of each ligand to the active site of KAT 
I suggested that KYN, ethacrynic acid, furosemide, and tora-
semide interact with common residues in the KAT I active 
site, including Gly36, Phe37, Tyr101, Phe125, Gly253, and 
Lys255 (Table 1 and Fig. 5). In addition, hydrogen bond 
was suggested between hydroxyl group of either ethacrynic 
acid or furosemide and side chain of Gly36. In the case of 
torasemide, the hydrogen bond was formed with Lys255. 
π–π interactions were suggested either between the furyl 

Fig. 2   The influence of loop diuretics: ethacrynic acid (A), furosem-
ide (B) and torasemide (C) on kynurenine aminotransferase I (KAT 
I) activity in rat kidney in vitro. Data are presented as a percentage of 
control kynurenic acid (KYNA) production by KAT I, median with 

interquartile ranges, N = 3, *p < 0.05. Kruskal–Wallis test followed by 
post-hoc Dunn’s test. KAT I activity in control samples in the pres-
ence of 2 µmol/l l-KYN was 82.58 ± 11.35 pmol/mg of protein

Fig. 3   The influence of loop diuretics: ethacrynic acid (A), furosem-
ide (B) and torasemide (C) on kynurenine aminotransferase II (KAT 
II) activity in rat kidney in vitro. Data are presented as a percentage 
of control kynurenic acid (KYNA) production by KAT II, median 

with interquartile ranges, N = 3, *p < 0.05. Kruskal–Wallis test fol-
lowed by post-hoc Dunn’s test. KAT II activity in control rat kidney 
samples in the presence of 2 µmol/l l-KYN was 192 ± 73.58 pmol/mg 
of protein
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moiety of furosemide and Ty101 or between the benzyl moi-
ety of torasemide and Phe37 (Fig. 5C, D, respectively). For 
ethacrynic acid, cation-π interactions were formed between 
phenyl moiety and Lys255 (Fig. 5B).

In the case of KAT II, a comparable position of KYN 
within the KAT II active site was found, consistent with 
its orientation in the three-dimensional crystal structure 
determined by Han et al. of KAT II [38] with KYN (PDB 
ID: 2R2N). In this regard, the residues indicated for KYN 
were also found as important for studied loop diuretics (i.e., 
ethacrynic acid, furosemide, and torasemide) interactions 
with KAT II, including Ile19 (A), Arg20 (A), Gly39 (A), 
Leu40 (A), Tyr74 (A), Leu293 (A) from one subunit, and 
Tyr142 (B), Ser143 (B), Asn202 (B), Tyr233 (B), Phe355 
(B), Phe387 (B), and Arg399 (B) from the opposite subunit 
(see Table 1 for details). However, docking results suggested 
few orientations of each ligand in the KAT II active site, 
the main residues involved in binging were found similar 
for each orientation as included in Table 1 and shown for 
ethacrynic acid, furosemide, and torasemide in Fig. 6B–D, 
respectively. In the energetically lowest orientation of 
ethacrynic acid, three hydrogen bonds were suggested with 
its carboxyl group and Arg20, water molecule, and Leu293 
(Fig. 6B). For the lowest conformations of furosemide and 
torasemide, two hydrogen bonds with Arg399 were sug-
gested (Fig. 6C, D, respectively). Moreover, hydrogen bonds 
were formed between the sulfonamide group of furosemide 
and Ser17 or water molecule. In addition, π–π interactions 
were suggested between furyl moiety and Tyr142. Two 
possible hydrogen bonds were found between the sulfona-
mide group of torasemide and Arg20 or pyridine moiety 
of the ligand and Arg399 (Fig. 6D). π–π interactions were 
suggested between the pyridine moiety of torasemide and 
Arg399.

Discussion

The presented study reveals that loop diuretics, ethacrynic 
acid, furosemide, and torasemide inhibit KYNA produc-
tion in rat kidneys in  vitro. Moreover, ethacrynic acid 

significantly inhibited the activity of renal KAT I and KAT 
II. The obtained data indicate that loop diuretics may inhibit 
the production of KYNA, and this effect can be explained 
through direct binding to an active site of biosynthetic 
enzymes KAT I and KAT II.

Molecular modeling data suggested that the studied loop 
diuretics binding site overlaps the KYN binding pocket at 
both KAT I and KAT II crystal structures. More specifi-
cally, the results indicated that these ligands may interact 
with Gly36, Phe37, Tyr101, Phe125, Gly253, and Lys255 
at the KAT I site. For KAT II, we identified possible com-
mon residues involved in binding of studied diuretics and 
KYN (PDB ID: 2R2N), including Ile19 (A), Arg20 (A), 
Gly39 (A), Leu40 (A), Tyr74 (A), Leu293 (A) from one 
subunit and Tyr142 (B), Ser143 (B), Asn202 (B), Tyr233 
(B), Phe355 (B), Phe387 (B), and Arg399 (B) from the 
opposite subunit. It may suggest that they may inhibit the 
production of KYNA through direct binding to an active 
site of the biosynthetic enzyme. Since tested loop diuretics 
inhibit KYNA synthesis only in high concentrations, it also 
can be postulated that especially ethacrynic acid exerts its 
action through a competitive inhibition, and do not impact 
the enzymatic Vmax.

Dualism of tryptophan metabolites, both on molecular 
and clinical levels, disallows their unequivocal categoriza-
tion as toxic agents [39]. However, in a recently published 
study chronic KYN infusion in male Sprague Dawley rats 
resulted in mean arterial pressure elevation, decreased glo-
merular filtration rate (GFR), and histological patterns of 
kidney injury (mild proteinaceous casts and interstitial fibro-
sis in the medulla), suggesting that KYN and its metabolites 
may affect kidney function even in healthy animals [40].

It is generally accepted that, in the brain, KYNA acts 
mostly as a neuroprotective agent. Some data suggested that 
KYNA may also prevent kidney damage, e.g. in an animal 
model of heat stroke [41], or in a model of ischemia reper-
fusion-induced kidney injury [42]. However, several reports 
linked high KYNA levels in the serum with multiple nega-
tive effects, including endothelial damage and hypercoagu-
lability [43], leucocyte recruitment to vascular endothelium 
[44], or hyperhomocysteinemia [45]. KYNA is claimed to 

Fig. 4   Molecular structures of 
ethacrynic acid, furosemide, 
and torasemide



Loop diuretics inhibit kynurenic acid production and kynurenine aminotransferases activity…

be a protein-bound uremic toxin [46], which excretion is 
highly dependent on the activity of transporters localized 
on the basolateral membrane of the renal proximal tubule, 
mainly human organic anion transporter 1 (hOAT1) and 
human organic anion transporter 3 (hOAT3) [47] and MRP4 
[48]. On the molecular level, many effects of KYNA result 

Table 1   Molecular interactions of loop diuretics with kynurenine 
aminotransferase I (KAT I) and kynurenine aminotransferase II (KAT 
II) active site

Compound 
Residues involved 

in binding 
Hydrogen Bonds Salt bridge 

KAT II PDB ID:2N2R 

Kynurenine 

(KYN) from 

PDB 2N2R 

Ile19 (A) 

Arg20 (A) 

Gly39 (A) 

Leu40 (A) 

Tyr74 (A) 

Leu293 (A) 

Tyr142 (B) 

Ser143 (B) 

Asn202 (B) 

Tyr233 (B) 

Phe355 (B) 

Phe387 (B) 

Arg399 (B)

Asn202 

Tyr74 

Ser142 

Ser143 

Arg399 

KYN Ile19 (A) 

Arg20 (A) 

Gly38 (A) 

Gly39 (A) 

Leu40 (A) 

Tyr74 (A) 

Leu293 (A) 

Tyr142 (B) 

Ser143 (B) 

Gly144 (B) 

Asn202 (B) 

Phe355 (B) 

Phe387 (B) 

Arg399 (B)

Gly39 

Ser142 

Tyr142 

Arg399 

Ethacrynic acid 

Orientation 1 

Ser 17 (A) 

Ile19 (A) 

Arg20 (A) 

Thr23 (A) 

Gly38 (A)

Gly39 (A) 

Leu40 (A) 

Tyr74 (A) 

Ser77 (A) 

Tyr142 (B) 

Ser143 (B) 

Gln289 (A) 

Leu293 (A) 

Arg399 (B)

Arg20 

Leu293 

H2O 

Ethacrynic acid 

Orientation 2 

Ser 17 (A) 

Ile19 (A) 

Arg20 (A) 

Gly39 (A) 

Leu40 (A) 

Tyr74 (A) 

Ser77 (A) 

Gln289 (A) 

Leu293 (A) 

His94 (A) 

Tyr142 (B) 

Ser143 (B) 

Gly144 (B) 

Asn202 (B) 

Phe355 (B) 

Leu382 (B) 

Phe387 (B) 

Arg399 (B)

Arg20 

Leu293 

Furosemide 

Orientation 1 

Ser17 (A) 

Pro18 (A) 

Ile19 (A) 

Arg20 (A) 

Gly38 (A)

Gly39 (A) 

Leu40 (A) 

Pro41 (A) 

Tyr74 (A) 

Leu293 (A) 

Tyr142 (B) 

Ser143 (B) 

Gly144 (B) 

Asn202 (B) 

Phe355 (B)

Arg399 (B) 

Ser17 

Arg399 

H2O

Furosemide 

Orientation 2 

Pro16 (A) 

Ser17 (A) 

Ile19 (A) 

Arg20 (A) 

Gly39 (A) 

Leu40 (A) 

Tyr74 (A) 

Ser77 (A) 

Gln289 (A) 

Val290 (A) 

Leu293 (A) 

His294 (A) 

Tyr142 (B) 

Ser143 (B) 

Gly144 (B) 

Gln147 (B) 

Leu293 

Arg20 

Torasemide  

Orientation 1 

Ser17 (A) 

Ile19 (A) 

Arg20 (A) 

Gly39 (A) 

Leu40 (A) 

Arg399 

Arg20 

Table 1   (continued)
Tyr74 (A) 

Ser77 (A) 

Gln289 (A) 

Leu293 (A) 

His294 (A) 

Tyr142 (B) 

Ser143 (B) 

Gly144 (B) 

Asn202 (B) 

Phe355 (B)

Arg399 (B)

Torasemide  

Orientation 2 

Ser17 (A) 

Ile19 (A) 

Arg20 (A) 

Gly38 (A) 

Gly39 (A) 

Leu40 (A) 

Pro41 (A) 

Tyr74 (A) 

Ser77 (A) 

Gln289 (A) 

Leu293 (A) 

His294 (A) 

Tyr142 (B) 

Ser143 (B) 

Gly144 (B) 

Asn202 (B) 

Tyr233 (B) 

Lys263 (B) 

Phe355 (B) 

Leu382 (B) 

Phe387 (B) 

Arg399 (B)

Tyr142 

KAT I PDB ID: 1W7N 

KYN Gly36 

Phe37 

Tyr101 

Phe125 

Lys247 

Gly253 

Lys255

Ethacrynic acid Gly36 

Phe37 

Tyr101 

Phe125 

Tyr216 

Thr252 

Gly253 

Lys255

Tyr338 

Gly36  

Furosemide Gly36 

Phe37 

Tyr101 

Gly36  

Phe125 

Thr252 

Gly253 

Lys255  

Tyr338 

Torasemide Asn16 

Trp18 

Gly36 

Phe37 

Tyr101 

Lys247 

Thr252 

Gly253 

Lys255 

Lys255  

Residues in blue are from the crystal structure of KAT II (PDN ID: 
2R2N)
Underlined residues are common for all orientations presented for 
each studied ligand that interacts with KAT II
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from the stimulation of AhR, subsequent activation of the 
immune system, and higher cardiovascular risk [49]. Other 
metabolic effects of KYNA, including inhibition of UDP-
glucuronosyltransferases and mitochondrial succinate dehy-
drogenase activity in immortalized renal proximal tubule 
epithelial cells have been reported [50]. In the animal model 
of renal insufficiency [51] and in CKD patients [52], KYNA 
clearance was impaired, proportionally to the kidney func-
tion decline. Its serum level correlated with inflammatory 
parameters, in particular with high-sensitivity C-reactive 
protein and soluble tumor necrosis factor (TNF)-receptor-1 
[53].

KYNA was implicated in the pathogenesis of athero-
sclerosis and suggested to accelerate endothelial damage in 
patients with kidney insufficiency [43]. Correlations between 
serum KYNA and cellular adhesion molecules [43, 54], or 
with coagulation activation markers were shown [55, 56]. In 
patients with atrial fibrillation [57] or subjected to hemodi-
alysis [58], KYNA correlated with aortic stiffness, an echo-
cardiographic marker of endothelial dysfunction. In perito-
neal dialysis patients, higher KYNA levels correlated with 
hyperhomocysteinemia and the occurrence of cardiovascular 
disease [45]. However, a direct cause-and-effect relationship 
between KYNA and above mentioned conditions has not 
been proven.

Levels of protein-bound toxins, such as KYNA, are 
mainly dependent on residual kidney function, and cannot 
be efficiently decreased during standard kidney replacement 
therapy techniques [59, 60]. Thus, searching for other meth-
ods of lowering uremic toxins concentration, namely by inhi-
bition of their synthesis is of special interest in delaying kid-
ney damage progression [61]. Loop diuretics offer such an 
opportunity by decreasing KYNA production in the kidney.

Although data on the role of loop diuretics in kidney 
injury remain controversial, beneficial effects of these drugs 
on the preservation of kidney function were suggested. Furo-
semide significantly attenuated medullary thick ascending 
limb (mTAL) and proximal straight tubule damage in the 
isolated perfused rat kidney [62]. This is of special impor-
tance in the presence of limited oxygen supply, since lowered 
reabsorption by mTAL cells reduces their oxygen demand 

and improves their survival. Furosemide was also shown 
to decrease the ischemia reperfusion-induced apoptosis in 
rats, attenuate the expression of apoptosis-related genes, and 
upregulate Akt phosphorylation, involved in cellular survival 
[63]. Torasemide inhibits aldosterone binding to its cyto-
plasmatic receptor [64]. Moreover, in streptozotocin-induced 
diabetic nephropathy in rats, torasemide reduced the expres-
sion of mineral corticosteroid receptor and fibrosis-related 
proteins, which diminished kidney damage [65]. This effect 
was also observed after furosemide use [65], suggesting 
other mechanisms of kidney protection beyond the anti-
aldosterone effect.

Lowering KYNA production may provide a beneficial 
effect on complications related to kidney injury. Stimulation 
of the KYN pathway towards KYNA and increasing its brain 
levels may be neuroprotective, but, paradoxically, excessive 
KYNA synthesis in the brain may negatively impact cogni-
tion [66]. In fact, cognitive dysfunction is common among 
patients with CKD and was related to lower KYNA clear-
ance, independently from the estimated GFR (eGFR) [67].

KAT activity inhibition represents an intriguing strategy 
for dementia treatment [17]. In this context, loop diuretics, 
such as KYNA synthesis inhibitors, offer a new therapeutic 
option for cognitive decline treatment. Interestingly, it was 
already reported that furosemide inhibited cellular damage 
and cytokine production induced by lipopolysaccharide in 
microglial cells, pointing to an anti-inflammatory effect of 
this loop diuretic [68]. Similar suggestions are coming from 
human studies, in which bumetanide and furosemide use was 
recently associated with a significantly lower risk of Alzhei-
mer's disease (odds ratio 0.23 and 0.42, respectively) [69].

On the other hand, considering that KYNA was shown to 
attenuate kidney failure in animal models [41, 42], loop diu-
retics administration can be considered potentially nephro-
toxic. Indeed, loop diuretic-related impairment of kidney 
function was observed. Furosemide (5–10 mmol/l), and 
ethacrynic acid (0.1–5.0) mmol inhibited energy metabolism 
and ion transport in rat kidney cortex mitochondria [70]. 
Similarly, in the animal model of ischemia–reperfusion AKI, 
furosemide impaired oxygen consumption and structural 
damage of the kidney [14]. In human studies, loop diuretics 
increased the risk of AKI and lowered the chance of kidney 
function recovery [71]. However, other factors, including 
previous surgery or pretreatment with RAAS inhibitors 
may contribute to an increased risk of AKI among patients 
receiving furosemide [72].

The diagnostic aspect of the presented results should be 
also considered. The serum levels of KYNA increases faster 
than that of creatinine in the experimental cisplatin-induced 
AKI. Therefore, KYNA measurement may be superior to 
creatinine for the detection of kidney function decline [48].

In adults without significant kidney dysfunction, KYNA 
clearance had the strongest association with future eGFR 

Fig. 5   Molecular docking of loop diuretics to the crystal struc-
ture of kynurenine aminotransferase I (KAT I) (PDB ID: 1W7N). 
A All ligands binding sites, including ethacrynic acid (cyan) furo-
semide (magenta), and torasemide (purple) together with co-factor 
(orange) at enzyme active site. B 2D map for the residues involved 
in ethacrynic acid binding at energetically lowest orientation 1. C 2D 
map for the residues involved in furosemide binding at energetically 
lowest orientation 1. (D) 2D map for the residues involved in tora-
semide binding at energetically lowest orientation 1. Ligands are ren-
dered in stick mode; KAT I (chain A from chain B) structure is shown 
in grey. Oxygen atoms are colored red, nitrogens blue, phosphorus 
yellow, hydrogen white, and chlorine green. All hydrogen atoms are 
hidden
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decline [73]. Thus, inhibition of KYNA synthesis by loop 
diuretics could serve as a diagnostic test of kidney func-
tion. KYNA level analysis would be especially valuable dur-
ing AKI when rapidly progressing kidney damage cannot 
be adequately reflected by standard laboratory parameters. 
Indeed, measurements of kynurenines were already used 
to predict responsiveness to RAAS inhibitors. In diabetic 
kidney disease patients, a higher KYN/tryptophan ratio cor-
related with the degree of albuminuria and clinical response 
to angiotensin II type 1 receptor blockers (ARBs) [74]. Simi-
larly, KYN levels were significantly lower in CKD patients 
receiving RAAS inhibitors [75].

The limitations of the study are related to the fact that 
the inhibitory effect towards KYNA was displayed by the 
investigated compounds at high concentrations. In the clini-
cal scenario, therapeutic levels range from 0.32 µmol/l for 
ethacrynic acid, through 1.49–7.75 µmol/l for torasemide 
and 18.14–30 µmol in the case of furosemide [76–78]. How-
ever, it cannot be excluded that loop diuretics may achieve 
concentrations much higher and comparable to those evalu-
ated here locally, in the kidney. Indeed, loop diuretics in 
a high micromolar up to the millimolar range of concen-
trations were shown to affect the release of renin [79, 80] 
and modulate the loop of Henle’s function [81] and organic 
anion transporter 1 (OAT1) activity [82]. In healthy volun-
teers, torasemide’s concentration reached up to 555 µmol/l 
[83, 84].

Furthermore, while the in vitro findings are compelling, 
the lack of in vivo studies limits the immediate applicability 
of presented results to clinical settings. Future animal model 
research could help validate these findings in a living organ-
ism. The docking simulations suggest potential binding sites 
and interactions but do not confirm these interactions in a 
physiological context.

Conclusions

Our study indicates a novel mechanism of action of loop 
diuretics, i.e. a decrease of KYNA production in rat kidney 
in vitro. This effect seems to be in part mediated by the 

inhibition of KAT I and KAT II, exerted at the active site 
of both enzymes. Further studies are warranted to assess 
the role of loop diuretics in the modulation of renal KYN 
pathway and its potential clinical significance.
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