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Abstract
The COVID-19 pandemic that started in 2019 and resulted in significant morbidity and mortality continues to be a signifi-
cant global health challenge, characterized by inflammation, oxidative stress, and immune system dysfunction.. Developing 
therapies for preventing or treating COVID-19 remains an important goal for pharmacology and drug development research. 
Polyphenols are effective against various viral infections and can be extracted and isolated from plants without losing their 
therapeutic potential. Researchers have developed methods for separating and isolating polyphenols from complex matrices. 
Polyphenols are effective in treating common viral infections, including COVID-19, and can also boost immunity. Poly-
phenolic-based antiviral medications can mitigate SARS-CoV-2 enzymes vital to virus replication and infection. Individual 
polyphenolic triterpenoids, flavonoids, anthraquinonoids, and tannins may also inhibit the SARS-CoV-2 protease. Polyphenol 
pharmacophore structures identified to date can explain their action and lead to the design of novel anti-COVID-19 com-
pounds. Polyphenol-containing mixtures offer the advantages of a well-recognized safety profile with few known severe side 
effects. However, studies to date are limited, and further animal studies and randomized controlled trials are needed in future 
studies. The purpose of this study was to review and present the latest findings on the therapeutic impact of plant-derived 
polyphenols on COVID-19 infection and its complications. Exploring alternative approaches to traditional therapies could 
aid in developing novel drugs and remedies against coronavirus infection.

Keywords  SARS-CoV-2 · Polyphenols · Antiviral effects · Antiviral targets · Polyphenol

Abbreviations
ACE2	� Angiotensin converting enzyme-2
AMPK	� AMP-activated protein kinase
AMs	� Alveolar macrophagesMahdi Vajdi and Arash Karimi have contributed equally to this 

work and share the first authorship.

 *	 Amirhossein Sahebkar 
	 amir_Saheb2000@yahoo.com

	 Gholamreza Askari 
	 askari@mui.ac.ir

1	 Department of Community Nutrition, School of Nutrition 
and Food Science, Isfahan University of Medical Sciences, 
Isfahan, Iran

2	 Traditional Medicine and Hydrotherapy Research Center, 
Ardabil University of Medical Sciences, Ardabil, Iran

3	 Department of Community Nutrition, Faculty of Nutrition 
and Food Science, Tabriz University of Medical Sciences, 
Tabriz, Iran

4	 Department of Community Nutrition, Food Security 
Research Center, School of Nutrition and Food Science, 
Isfahan University of Medical Sciences, Isfahan, Iran

5	 Anesthesia and Critical Care Research Center, Isfahan 
University of Medical Sciences, Isfahan, Iran

6	 Discipline of Pharmacology, School of Medical Sciences, 
University of Sydney, Sydney, NSW, Australia

7	 NICM Health Research Institute, Western Sydney University, 
Penrith, NSW, Australia

8	 Faculty of Pharmacy and Pharmaceutical Sciences, 
University of Alberta, Edmonton, AB T6G 2P5, Canada

9	 Biotechnology Research Center, Pharmaceutical Technology 
Institute, Mashhad University of Medical Sciences, Mashhad, 
Iran

10	 Applied Biomedical Research Center, Mashhad University 
of Medical Sciences, Mashhad, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s43440-024-00585-6&domain=pdf


308	 M. Vajdi et al.

APCs	� Antigen-presenting cells
ARDS	� Acute respiratory distress syndrome
ATF3	� Activating transcription factor 3
BAL	� Bronchoalveolar lavage
CBG	� Cytosolic β-glucosidase
CCL	� C–C motif chemokine ligand
CD	� Cluster of differentiation
COX	� Cyclooxygenase
CTLs	� Cytotoxic T lymphocytes
DAMPs	� Danger-associated molecular patterns
dsRNA	� Double-stranded RNA
EGCG​	� Epigallocatechin gallate
EGFR	� Epidermal growth factor receptor
ERGIC	� Endoplasmic reticulum-Golgi intermedi-

ate compartment
ERK	� Extracellular signal-regulated kinase
FOXP3	� Forkhead box P3
HIF-1	� Hypoxia-inducible factor 1
HLA	� Human leukocyte antigen
HRSV	� Human respiratory syncytial virus
IFNγ	� Interferon-γ
Ig	� Immunoglobulin
IκBα	� Inhibitor of κBα
IKKα	� Inhibitory κB kinase α
IL	� Interleukin
ILT	� Immunoglobulin-like transcript
iNOS	� Inducible nitric oxide synthase
JNK/SAPK	� C-jun N-terminal or stress-activated pro-

tein kinases
LPH	� Lactase-phlorizin hydrolase
LPSs	� Lipopolysaccharides
MAPK	� Mitogen-activated protein kinase
MBL	� Mannose-bound lectin
MDMs	� Monocyte-derived macrophages
MHC	� Major histocompatibility complex
MIP	� Macrophage inflammatory protein
NADPH	� Nicotinamide adenine dinucleotide 

phosphate
NETs	� Neutrophil extracellular traps
NF-Κb	� Nuclear factor kappa B
NK	� Natural killer
NLRP-3	� Nucleotide-binding domain, leu-

cine-rich-containing family, pyrin 
domain-containing-3

NO	� Nitric oxide
Nrf-2	� Nuclear factor erythroid 2-related factor 2
NSAIDs	� Non-steroidal anti-inflammatory drugs
PAMPs	� Pathogen-associated molecular patterns
PF	� Pulmonary fibrosis
PIK3CA	� Phosphatidylinositol 4,5-bisphosphate 

3-kinase catalytic subunit alpha
PMNs	� Polymorphonuclear neutrophils
RORγt	� Related orphan receptor gamma t

PPARγ	� Peroxisome proliferator-activated receptor 
gamma

PRRs	� Pattern recognition receptors
RBD	� Receptor-binding domain
RBM	� Receptor-binding motif
ROS	� Reactive oxygen species
SARS-CoV-2	� Severe acute respiratory syndrome corona-

virus 2
SeV	� Sendai virus
STAT​	� Signal transducers and activators of 

transcription
TBX1	� T-box transcription factor
TfR1	� Transferrin receptor protein 1
TLR-4	� Toll like receptor 4
TMPRSS2	� Transmembrane serine protease 2
TNFα	� Tumour necrosis factor α
Th1	� T helper 1

Introduction

In late 2019, a cluster of viruses identified as the severe 
acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) 
surfaced in Wuhan, China, resulting in cases of pneumonia 
[1, 2]. SARS-CoV-2, a highly transmissible virus with an 
initially unknown identity, has sparked a global pandemic, 
affecting more than 500 million individuals and leading to 
the tragic loss of over 6 million lives by April 2022 [3]. 
Patients infected with COVID-19 exhibit a diverse array of 
non-specific symptoms, such as high body temperature, ach-
ing throat, queasiness, throwing up, muscle pain, and a feel-
ing of lightheadedness [4]. While the majority of individuals 
typically recover from their illnesses within a short period, 
approximately five percent of patients may endure severe 
and life-threatening conditions, such as acute respiratory dis-
tress syndrome (ARDS) and multiple organ dysfunctions 
[5]. The elderly and individuals with chronic diseases are at 
a higher risk of severe COVID-19 [6]. Despite the develop-
ment of vaccines for COVID-19, new viral variants, such 
as Delta, Lambda, and Omicron, continue to emerge [7]. 
The increased spread of COVID-19 is attributed to the rapid 
genetic recombination of the S protein in the receptor-bind-
ing domain (RBD) [8]. The virus manifests itself in different 
organs such as the brain, kidneys, lungs, and gastrointestinal 
tract, with angiotensin-converting enzyme-2 (ACE2) being a 
key player in the development of the disease [9–11].

COVID-19 follows three stages, including primary 
viral infection, the pulmonary stage, and the inflammatory 
stage [12, 13]. Cytokine storms of upregulated interleukins 
tumor necrosis factor and excessive coagulation contribute 
to further disease severity and mortality [14]. Critically ill 
COVID-19 patients show higher levels of neutrophils, pro-
inflammatory cytokines, and reactive oxygen species (ROS) 
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[15]. Endothelial cell dysfunction and platelet aggregation 
can also worsen the severity of COVID-19 [15]. Polyphe-
nols, which are abundant antioxidants found in the diet, can 
have anti-inflammatory and antiviral effects [16]. Polyphe-
nols have one or more phenolic rings containing hydroxyl 
groups and are classified into several active types, such as 
flavonoids, isoflavones, and phenols [17–20]. The immune 
system, inflammatory cytokine storm, and oxidative stress 
play significant roles in the pathogenesis of COVID-19 [21]. 
Therefore, therapeutic agents with anti-viral, anti-inflamma-
tory, antioxidant, and immunomodulatory activities may be 
beneficial in preventing and treating COVID-19 [22]. This 
review article aims to discuss the potential beneficial effects 
of various polyphenols in treating COVID-19.

Methods

For this research, we conducted a thorough search across 
various online databases like Web of Science, MEDLINE 
(PubMed), Scopus, and Embase, utilizing specific keywords 
such as "Polyphenols," "viral diseases," "virus-related dis-
eases," "COVID-19," "SARS-CoV-2," and "coronaviruses." 
Our focus was on selecting peer-reviewed studies written in 
English that were pertinent to our study. Any articles lacking 
sufficient data on polyphenols and COVID-19 were elimi-
nated from consideration. The features of the studies that 
met our criteria are summarized in Table 1.

Clinical manifestations of COVID‑19

COVID-19 presents a range of symptoms in the general popu-
lation. This infectious disease is primarily spread through air 
droplets, with pulmonary symptoms being the most common. 
Clinically, COVID-19 can appear as either a symptomless 
infection or a severe illness with complications such as severe 
pneumonia, acute respiratory distress syndrome, respiratory 
failure, or organ failure [39, 40]. The available data suggests 
that COVID-19 can impact organs beyond the lungs, includ-
ing the neurological, olfactory, cardiovascular, digestive, liver, 
kidney, endocrine, and skin systems. A significant number of 
patients experience a range of neurological symptoms related 
to COVID-19. Gastrointestinal symptoms are often linked to a 
longer duration of illness. Liver function impairment is associ-
ated with the severity of the disease. Critically ill COVID-19 
patients are more prone to experiencing acute kidney injury. 
Additionally, diabetes ketoacidosis and high blood sugar levels 
are among the endocrine issues observed in COVID-19 cases. 
The most common skin symptoms seen were skin bumps 
that looked like frostbite or cold sores, then red spots with 
bumps, blister-like sores, purple or dead skin patches, wide-
spread rashes, and tiny bruises [41]. Additionally, a thorough 

examination revealed that six symptoms were prevalent in over 
25% of cases, which included fever, cough, shortness of breath, 
fatigue, malaise, and sputum/secretions. Alongside these com-
mon symptoms were neurological manifestations, skin issues, 
loss of appetite, muscle pain, sneezing, sore throat, runny nose, 
goosebumps, headaches, chest discomfort, and diarrhea. Hem-
optysis was the least commonly reported sign/symptom. In 
studies that involved over 100 patients, fevers, coughs, and 
shortness of breath were the most frequently encountered 
symptoms [42].

SARS‑CoV‑2 entry and reproduction

The infection process of SARS-CoV-2 involves several 
important steps for the spike protein to attach and penetrate 
the host cell. The spike protein interacts with ACE2 recep-
tors on the cell surface, facilitating the entry of the virus [43, 
44]. The spike protein is then split by the activation of the 
S1 subunit in its receptor-binding domain, which releases 
the S1 and enables the S2 to merge with the cell membrane 
[45, 46]. The spike protein needs cellular proteases like 
Transmembrane serine protease 2 (TMPRSS2) to prepare 
for fusion with the host cell. The S protein also triggers the 
entry of SARS-CoV into the cell by endocytosis, which can 
be dependent or independent of the virus [47, 48]. Endo-
cytosis is the process of cells taking in substances from the 
outside. SARS-CoV can use different ways of endocytosis to 
get into cells, such as clathrin, caveolae, macropinocytosis, 
or other new methods that do not involve clathrin or cave-
olae. Endocytic pathways that rely on the virus are called 
SARS-CoV-dependent endocytosis, while those that do not 
are called SARS-CoV-independent endocytosis [49, 50].

The membranes of the virus and the host cell join 
together, forming a fusion pore that lets the viral genome 
enter the cell cytoplasm [51]. This is how the virus gets to 
the host cell’s DNA and makes copies of itself. The viral 
RNA genome that gets into the cytoplasm is replicated, and 
the new genome is turned into two structural proteins and 
polyproteins [52]. The enveloped glycoproteins then go to 
the Golgi or the endoplasmic reticulum [52]. The nucleocap-
sid, which is made of nucleocapsid proteins and genomic 
RNA, is also created [53]. The virus particles are then found 
in the endoplasmic reticulum-Golgi intermediate compart-
ment (ERGIC), and the virus-filled vesicles fuse with the 
plasma membrane to let the virus out [53, 54].

The role of coronavirus infection 
in the presentation of antigens

When the virus infiltrates the host cells, its antigens are 
transferred to the antigen-presenting cells (APCs), which 
play a crucial role in the body's immune response against 
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the virus [55]. The identification of antigenic peptides occurs 
through the interaction with the major histocompatibility 
complex (MHC) of the human leukocyte antigen (HLA), 
ultimately resulting in the activation of specific cytotoxic T 
lymphocytes (CTLs) targeting viral infections [55, 56]. By 
focusing on the STAT1-IRF1-NLRC5 axis, SARS-CoV-2 
has been able to lower the levels of MHC-I expression by 
hindering the activation of the MHC class I pathway respon-
sible for introducing antigens to T cells. This decrease in 
MHC-I activation is a result of the virus's spike glycopro-
tein interfering with peptide binding to MHC molecules [57, 
58]. Furthermore, variations in the mannose-binding lectin 
(MBL) gene, which influences antigen presentation, have 
been correlated with susceptibility to SARS-CoV infection 
[59].

Humoral and cellular immunity

The humoral and cellular immune antigen response is 
induced by both B and T cells [60]. As with other acute 
viral infections, IgM and IgG antibody profiles are produced 
against the SARS-CoV virus [60, 61]. IgM antibodies are 
significantly reduced by the end of week 12, while IgG anti-
bodies can persist for a long time, suggesting that IgG anti-
bodies may primarily play a protective role [62, 63]. Patients 
with SARS-CoV-2 have been observed to have significantly 
fewer CD8+ and CD4+ T cells in their peripheral blood, 
although they are still active [64].

Immune response

COVID-19 pneumonia is characterized by hypoxemia, 
which can progress to acute respiratory distress syndrome 
and alveolar edema in severe cases [65]. The over-expression 
of inflammatory cytokines is a hallmark of critical COVID-
19, which can be detected in both the bloodstream and the 
lungs [65, 66]. Various immune system responses, such as 
from neutrophils and macrophages, sense damaged struc-
tures and pathogens and trigger inflammatory reactions, 
which are supported by endothelial and epithelial cells that 
are susceptible to infection and inflammation-induced cell 
death [67, 68].

Cytokines are induced downstream of pattern recognition 
receptors (PRRs) that sense danger-associated molecular 
patterns (DAMPs) or pathogen-associated molecular pat-
terns (PAMPs) related to the disorder of homeostasis or viral 
molecules, respectively [69, 70]. This leads to the production 
of specific cytokines and increases the likelihood of develop-
ing "viral sepsis" [61]. SARS-CoV-2-induced viral sepsis is 
characterized by high levels of pro-inflammatory cytokines, 
including TNFα, IL-8, IL-6, interferon-γ (IFNγ), and IL-17, 
which are closely associated with disease severity [62, 71]. Ta
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In contrast, the essential antiviral response, dominated by 
type III IFN (IFNγ) and type I IFN (IFNα/β) responses, is 
delayed and reduced in COVID-19 patients [71, 72].

Coronavirus immune evasion

There have been sophisticated mechanisms developed by 
SARS-CoV-2 to evade the host immune response [73, 74]. 
Antagonizing dsRNA sensors [75], inhibiting IFN synthesis, 
and targeting viral sensing processes [76] are some strategies 
for evasion. Furthermore, the virus utilizes several evasion 
mechanisms, including spike protein camouflage, MHC-I 
inhibition, and interferon inhibition [77]. There are several 
ways in which the spike protein of SARS-CoV-2 contributes 
to immune evasion, including mutations that alter neutraliz-
ing antibodies and immunity to antibody-mediated immunity 
[78]. RBMs of RBDs are primary targets for neutralizing 
antibodies, and most vaccine developments for COVID-19 
target the spike protein [79]. Antiviral responses are slowed 
by viral proteins that act on viral sensing processes so that 
the virus can block the immune response [76]. Additionally, 
SARS-CoV can create double-membrane vesicles that lack 
PRRs, allowing the virus to replicate within them undetected 
by the host cells [74, 80].

Food sources, bioavailability, 
and pharmacological characteristics 
of polyphenols

Several molecules with polyphenol structures (many 
hydroxyl groups on aromatic rings) have been recognized 
in plants and fungi [81]. These compounds are classified into 
diverse groups based on the structural elements that connect 
the rings or the number of phenolic rings they have in their 
structure. The flavonoids have two aromatic rings in their 
structure, which are connected by 3 carbon atoms, form-
ing an oxygen heterocycle (ring C) that includes anthocya-
nidin flavones, flavonols, flavanones, and isoflavones [82]. 
Polyphenols can also be associated with various organic 
acids and carbohydrates, as well as with each other. Drinks 
and fruits such as red wine and tea are essential sources 
of polyphenols. Some polyphenols, such as quercetin, are 
found in the vast majority of plant products (cereals, veg-
etables, fruits, juices, legumes, tea, wine, etc.), while others 
are found in certain foods (isoflavones in soy, flavonoids in 
citrus, fluoride in apple) [83, 84].

Although polyphenols are prevalent in human food, they 
may not initially be effective in the body because they may 
be poorly absorbed in the intestine, metabolized or substrates 
for transporters, and are often rapidly eliminated [84]. Many 
polyphenols are metabolized similarly with the aglycone 
(without sugar) form absorbed from the small intestine 

[85]. The vast majority of polyphenols exist in food in the 
form of polymers, esters, or glycosides that cannot be read-
ily absorbed in their native form [85]. The small intestine 
and the liver are the two main sites where polyphenols are 
conjugated during the absorption process [86]. This proceed-
ing phase-II metabolism chiefly involves glucuronidation, 
methylation, and sulfation. In this process, many xenobiot-
ics undergo metabolic detoxification that serves to limit any 
potential toxic effects and enhances their hydrophilicity, thus 
enabling the polar metabolites to be effectively eliminated 
through bile and urine [86].

The conjugation mechanisms are very efficient, so agly-
cones are commonly present in low concentrations in blood 
after the use of nutritional doses. Circulating polyphenols 
are extensively bound to albumin. Lactase-phlorizin hydro-
lase (LPH), which is particularly abundant in small intesti-
nal epithelial cells, is substrate-specific for flavonoid-O-beta 
glycosides, and the released aglycone may enter epithelial 
cells as a result of inactive release [87]. On the other hand, 
there is also another digestive enzyme called cytosolic beta-
glucosidase (CBG) in epithelial cells, which intermittently 
hydrolyzes many phenolic glycosides after transfer through 
the epithelium [88]. For CBG glycosylation to occur, (polar) 
glycosides must first be transferred to epithelial cells [87, 
89].

Numerous polyphenols, such as luteolin, curcumin, 
quercetin, and resveratrol, play an important role in various 
physiological conditions of the body, such as regulating the 
body's metabolism, including pain, digestion, depression, 
and detoxification [90–95]. Polyphenols are also effective 
in biochemical pathways such as inhibiting NF-κB, TLR-4, 
and MAPK pathways, reducing the expression of lipid per-
oxidation, increasing the expression of Nrf-2, and modulat-
ing the activity of the immune system [96]. Furthermore, 
polyphenols have been shown to play a significant role in the 
prevention and management of various diseases, including 
cancer, infectious diseases, cardiometabolic disorders, and 
weight loss [84, 97–109], though controversial reports also 
exist [110–113]. Ongoing research is focused on determin-
ing the exact mechanisms by which these compounds exert 
their effects on disease processes. As such, incorporating 
polyphenol-rich foods into our diets may have potential 
therapeutic benefits in the prevention and treatment of vari-
ous diseases. Figure 1 shows the structure of some selected 
flavonoids.

Anti‑inflammatory and antioxidant effects 
of polyphenols

Polyphenols have been shown to possess anti-inflammatory 
properties by inhibiting the production of pro-inflammatory 
cytokines and enzymes [114]. These substances can disrupt 
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the communication pathways associated with inflamma-
tion, ultimately decreasing the release of substances that 
cause inflammation. By inhibiting the creation of signal-
ing molecules like interleukin-6 (IL-6) and tumor necro-
sis factor-alpha (TNF-α), polyphenols have the potential 
to alleviate the extreme inflammatory reaction observed in 
severe cases of COVID-19 [115]. Curcumin and resvera-
trol exert antioxidant effects by activating Nrf2 and inhib-
iting the NFκB pathway [93, 94, 116–118]. The synergis-
tic blend of curcumin, vitamin C, and glycyrrhizinic acid 
enhances interferon production and modulates the inflam-
matory response, thereby bolstering the immune defense 
against SARS-CoV-2 infection. Additionally, curcumin 
and quercetin are pivotal in regulating iron levels through 
their iron-chelating properties. Essentially, they function 
as iron chelators, resulting in hepatocyte degradation, a 
reduction in the iron storage protein ferritin, an elevation 
in TfR1, and stimulation of iron regulatory proteins [119, 
120]. Research has shown that hydroxytyrosol possesses 
strong antioxidant and anti-inflammatory properties, mak-
ing it a potential treatment for pulmonary fibrosis in rats. 
Additionally, it has been found to reduce oxidative stress 
caused by respiratory neutrophil bursts. Another polyphenol, 
Epigallocatechin gallate (EGCG), commonly found in teas, 

has been proven to inhibit pro-inflammatory agents includ-
ing TNF, IL-1, COX-2, iNOS, IL-1β, and IL-6 signaling 
pathways [121] and suppress the gene or protein expres-
sion of inflammatory cytokines and inflammation-related 
enzymes in green tea [28]. EGCG can also play a role in 
suppressing inflammation by reducing the expression of 
nuclear factor-kB and other inflammatory factors such as 
MAPKs and AKT/PI3K/mTOR [29, 121]. Kaempferol has 
been recognized as a promising candidate for treating both 
COVID-19 and pulmonary fibrosis (PF) conditions. It works 
by targeting key proteins such as epidermal growth factor 
receptor (EGFR), proto-oncogene tyrosine-protein kinase 
SRC (SRC), mitogen-activated protein kinase 3 (MAPK3), 
MAPK1, MAPK8, RAC-alpha serine/threonine-protein 
kinase (AKT1), transcription factor p65 (RELA), and phos-
phatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit 
alpha isoform (PIK3CA) [122]. Furthermore, studies have 
revealed that EGFR, interleukin 17 (IL-17), tumor necro-
sis factor (TNF), hypoxia-inducible factor 1 (HIF-1), phos-
phoinositide 3-kinase/AKT serine/threonine kinase (PI3K/
AKT), and Toll-like receptor signaling pathways play a criti-
cal role in combatting the co-occurrence of COVID-19 and 
pulmonary fibrosis [122]. In a study conducted by Tang et al. 
[123], it was found that administering quercetin to rats with 

Fig. 1   Chemical structure of selected flavonoids
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sepsis led to a notable decrease in the expression of TNF-α 
and HMGB 1, while also resulting in an increase in AMPK 
expression. Additionally, quercetin was observed to hinder 
the production of inflammatory mediators like leukotrienes 
and prostaglandins in septic mice by suppressing inflamma-
tory enzymes such as COX-2.

Moreover, quercetin was found to be effective in pro-
moting the M2 polarization of macrophages through the 
activation of AMPK-activating transcription factor 3 
(ATF3) pathways, which are calcium-dependent. This 
natural compound also prevents the excessive production 
of inflammatory factors [124]. Not only do polyphenols in 
green tea possess antioxidant qualities, but they have also 
been found to exhibit pro-oxidant properties, though this 
impact is not necessarily detrimental. Research has indi-
cated that the consumption of green tea can help lower 
oxidative stress and protect cells from damage. In certain 
illnesses, the polyphenols found in green tea may contrib-
ute to maintaining redox balance [125]. Due to their prop-
erties, polyphenols have been discovered to have anti-
inflammatory and health-promoting effects that play a key 
role in preventing disease. Moreover, polyphenols help in 
reducing the production of inflammatory cytokines and 
genes related to inflammation by modulating the immune 
system and employing anti-inflammatory mechanisms 
[126]. Studies have indicated that Resveratrol can off-
set the negative impacts of the angiotensin II (Ang II)/
angiotensin II type 1 receptor (AT1R) pathway, as well as 
boost the AT2R/Angiotensin 1–7 (Ang 1–7)/Mas receptor 
pathway. This helps protect the aging kidney from damage 
[127]. This particular impact of resveratrol on the two 
opposing pathways within the renin-angiotensin system 
(RAS) may also prove advantageous for individuals with 
SARS-CoV-2 infection [128]. Angiotensin-converting 
enzyme 2 (ACE-2) governs the classical RAS, which reg-
ulates blood pressure and fluid balance, but unfortunately, 
this enzyme is exploited by SARS-CoV-2 to infiltrate 
cells [129]. Resveratrol has a significant impact on the 
essential pathways related to the development of SARS-
CoV-2. These pathways include the regulation of the RAS 
system, the expression of ACE-2 receptors, the activation 
of the immune system, and the inhibition of the release of 
inflammatory cytokines [130]. Significantly, resveratrol 
supplementation has been observed to decrease ACE-2 
levels along with leptin, a pro-inflammatory adipokine, in 
adipose tissue where ACE-2 is abundantly present. This 
positive impact could potentially influence the course of 
COVID-19 [131]. More research is needed to fully grasp 
and explain the exact process by which resveratrol hin-
ders the entry of the SARS-CoV-2 virus or reduces the 
severity of COVID-19. Current studies are looking into 
different combinations and preparations containing res-
veratrol. It has been observed that resveratrol effectively 

inhibits the replication of the SARS-CoV-2 virus without 
causing significant damage to cells [132, 133]. Another 
study conducted on human primary bronchial epithelial 
cell cultures infected with SARS-CoV-2 yielded similar 
results [134]. Xu, Li [135] showed in a study that resvera-
trol and polydatin, compounds extracted from the Chinese 
herb Polygonum cuspidatum, have a targeted inhibition 
on certain proteases of SARS-CoV-2 when tested in a 
lab setting. Furthermore, Marinella proposed that res-
veratrol (combined with indomethacin) may serve as a 
potential supplements in managing or preventing SARS-
CoV-2 infection, as evidenced by promising results in a 
canine coronavirus model [136]. In a recent study that 
was randomized, double-blind, and placebo-controlled, it 
was demonstrated that resveratrol had a significant impact 
on reducing the number of hospitalizations, emergency 
room visits related to COVID, and cases of pneumonia 
in outpatients with mild COVID-19 when compared to 
those in the placebo group [137]. The research empha-
sizes the potential healing benefits of resveratrol and its 
ability to combat respiratory tract infections. This was 
explored in a review article by Filardo and colleagues 
in a review article [138]. Resveratrol's potential to sup-
press hypoxia-inducible factors indicates promise in 
mitigating severe symptoms of COVID-19, especially in 
individuals who are obese [139, 140]. In addition, res-
veratrol has been shown to have anti-thrombotic and anti-
inflammatory effects that may help lessen the severity 
and mortality of COVID-19. There is potential for further 
research to investigate its ability to alleviate blood clot-
ting complications linked to DNA Adenovirus vector vac-
cines [141]. Additional research is needed to investigate 
the role of resveratrol specifically in pediatric patients 
and elderly COVID-19 patients experiencing excessive 
oxidative stress [141]. To evaluate the positive impact 
of curcumin on patients with COVID-19, Hassaniazad 
et al. [142] conducted a randomized, triple-blind clini-
cal trial. Their study focused on examining the effects 
of nano micelles containing curcumin on various types 
of immune responses at a cellular level and the overall 
clinical outcomes. The researchers found that curcumin 
was able to significantly reduce the activity of the T-Box 
Transcription Factor (TBX1) gene, which is associated 
with Th1 responses. At the same time, curcumin was 
shown to increase the expression of the forkhead box P3 
(FOXP3) gene, which is linked to the regulatory T-cell 
population in COVID-19 patients. Th1 responses are 
known to promote inflammatory reactions by activat-
ing CD8 T lymphocytes and macrophages through the 
release of cytokines such as IFN-γ and IL-12 [143]. In 
individuals infected with COVID-19, the heightened cel-
lular immune reactions targeting virus-infected lung cells 
frequently result in a cytokine storm, which plays a role 
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in the damage to lung tissue [144]. One way to poten-
tially reduce the impact of COVID-19 is by adjusting how 
the body's immune system responds. Curcumin has been 
shown to effectively adjust the body's immune response 
by decreasing the activity of the TBX1 gene, which is 
linked to a type of immune response known as Th1. Fur-
thermore, curcumin also affects the activity of the RORC 
gene associated with Th17 responses and the GATA3 
gene related to Th2 response. This suggests that curcumin 
not only helps regulate inflammatory immune responses 
through Th1 and regulatory T cells but also through Th17 
and Th2 responses [145]. Curcumin has shown promise in 
regulating T cell-mediated immune responses in individu-
als with COVID-19. Research indicates that curcumin can 
reduce the expression of the RORC gene, which is linked 
to the Th17 response seen in COVID-19 patients. This 
suggests that curcumin may have an immunomodulatory 
effect on inflammatory responses driven by neutrophils, 
as well as the inflammation that occurs following Th17-
related responses [145]. Multiple proposed mechanisms 

of how polyphenols can act on COVID-19 are illustrated 
in Fig. 2.

Immunomodulatory effects of polyphenols

Effects of polyphenols on polymorphonuclear 
macrophages and monocytes

Monocytes, myeloid cells, and macrophages are crucial play-
ers in the progression of severe COVID-19. This includes 
various types such as monocytes, monocyte-derived mac-
rophages (MDMs), resident alveolar macrophages (AMs), 
and transmissible MDMs. Their significant role cannot be 
understated in the severity of critical COVID-19 outcomes 
[146]. Research indicates that in cases of severe disease, 
Anti-inflammatory Macrophages (AMs) are depleted from 
bronchoalveolar lavage (BAL) fluids, whereas proinflamma-
tory Monocyte-Derived Macrophages (MDMs) are plenti-
ful in the BAL fluids of critically ill COVID-19 patients. 

Fig. 2   Proposed multiple 
mechanisms of action of 
polyphenols on COVID-19. 
AMPK, AMP-activated protein 
kinase; ERK, extracellular 
signal-regulated kinase; IKKα, 
inhibitory κB kinase α; IL-1β, 
interleukin-1β; iNOS, inducible 
nitric oxide synthase; IκBα, an 
inhibitor of κBα; JNK/SAPK, 
c-jun N-terminal or stress-
activated protein kinases; LPSs, 
lipopolysaccharides; NF-κB, 
nuclear factor kappa B; NO, 
nitric oxide; NK, natural killer; 
Nrf-2, nuclear factor erythroid 
2-related factor 2; p-IκBα, 
phosphorylated-IκBα; RNS, 
reactive nitrogen species; ROS, 
reactive oxygen species; TNF-α, 
tumor necrosis factor-α
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This imbalance leads to an overproduction of inflammatory 
cytokines by macrophages in critically ill patients, exacer-
bating the severity of COVID-19 [147, 148]. Medical treat-
ments that influence the body's immune system can be key in 
managing diseases. These treatments include non-steroidal 
anti-inflammatory drugs (NSAIDs) and small non-peptide 
molecules like polyphenols. Research on animals with con-
ditions like sepsis, SARS-COVID, dynamic simulation, 
and molecular docking has shown that polyphenols found 
in plants, such as resveratrol, quercetin, epigallocatechin 
gallate, and curcumin, may have the ability to inhibit the 
impact of SARS-CoV-2 infection by regulating the immune 
response [149–153].

Research conducted on animals and in controlled labora-
tory environments has shown that quercetin can enhance 
the immune system by promoting various immune func-
tions. These include increasing the movement of neutrophils 
toward infection sites, enhancing the ability of macrophages 
to engulf pathogens, boosting the cytotoxic activity of natu-
ral killer cells, and stimulating the proliferation of lympho-
cytes when exposed to certain compounds. Furthermore, 
data is suggesting that quercetin plays a role in regulating 
specific genes involved in the production of cytokines [154]. 
Moreover, studies have shown that curcumin can boost the 
differentiation of T-reg cells and promote the polarization 
of M2 macrophages in laboratory settings. This increase 
in M2 macrophages and T-reg cells could potentially aid 
in the reduction of pulmonary inflammation and facili-
tate tissue repair following curcumin administration [149, 
155]. Patients suffering from COVID-19 may experience 
myelosuppression, a condition marked by a reduction in the 
amount of neutrophils and monocytes, thereby heightening 
their susceptibility to secondary infections. Studies in mice 
have shown that curcumin enhances myelopoiesis, although 
the exact mechanisms behind this effect remain unknown 
[149]. Curcumin, quercetin, and epigallocatechin gallate 
can influence the function of cells in bronchoalveolar lavage 
(BAL) fluid, which consists of five distinct subpopulations 
of monocytes/macrophages in the lungs. These cells play a 
crucial role in producing cytokines like TNF-α, IL-8, IL-6, 
IL-1β, and C-X-C motif chemokine 10 (CXCL10) [149–152, 
156, 157]. These compounds can control a specific group of 
macrophages known as Macro C2-CCL3L1 and monocytes 
known as Mono C1-CD14-CCL3. These cells are known to 
produce inflammatory molecules like CCL8, CXCL10/11, 
CCL20, CX3CL2, CX3, and IL-6 [158–160]. Furthermore, 
substances like curcumin and quercetin have been found 
to suppress the generation of IL-8, a type of inflamma-
tory protein produced by macrophages. Additionally, these 
compounds can decrease the production of IL-12, MIP-1α 
(MCP-1), by interfering with the activation of the NF-κB 
signaling pathway in monocytes and macrophages. Research 
trials have indicated that curcumin and quercetin have the 

potential to elevate IL-12 levels in the nearby lymph nodes 
by enhancing the population of antigen-presenting cells 
(APC) [161–163]. IL-12 plays a crucial role in enhancing 
the activity of T cells, particularly T helper 1 (Th1) cells, 
by boosting the production of IFN-γ. Various research stud-
ies have suggested that polyphenols such as quercetin and 
curcumin can inhibit the secretion of MIP-1α, IL-1β, MCP-
1, IL-8, and TNF-α by alveolar macrophages and mono-
cytes that have been stimulated by LPS [161, 164, 165]. 
Resveratrol has been identified as a safe immunomodulatory 
substance in SARS-CoV-2 viral infection. Previous research 
has shown that it can block various mediators, leading to 
the irreversible inhibition of IFNγ and IL-2 production in 
splenic lymphocytes. In addition, it can also suppress the 
release of GM-CSF and CXCL8 chemokines, decrease 
IL-6 and TNFα secretion, and downregulate NF-κB in 
lung inflammatory cells. Furthermore, resveratrol has been 
found to reduce the levels of cytokines such as IL-1β, IL-8, 
and IL-12. In summary, resveratrol has a calming effect on 
the cytokine storm and helps alleviate hyper-inflammatory 
responses in the body [166]. Moreover, Chen et al. [167] 
conducted a study to examine the impact of resveratrol at a 
concentration of 100 mg/mL on stimulating macrophages 
during cases of acute kidney injury. Their findings indicated 
that resveratrol reduced the negative impacts of LPS on mac-
rophages by significantly inhibiting the release of cytokines 
and preventing TLR-4 activation. Furthermore, Lovelace 
et al. [168] noted a significant reduction in pro-inflamma-
tory cytokines and immune response in HIV patients due to 
the inhibitory effects of silymarin, a polyphenol, on T-cell 
stimulation.

Effect of polyphenols on polymorphonuclear 
neutrophil cells

In the human body, polymorphonuclear neutrophils (PMNs) 
are the most abundant type of white blood cells found in 
circulation. These cells play a crucial role in the body's 
natural immune defenses [169]. Chemokines released from 
virus-infected lungs attract neutrophils, causing them to 
infiltrate the lungs and release inflammatory cytokines like 
IL-8 [170]. Curcumin, luteolin, resveratrol, and quercetin 
have been found to diminish the migration of neutrophils 
into inflamed tissues by interacting with receptors on the 
neutrophils. These polyphenols also hinder the movement 
of neutrophils by suppressing the production of superoxide, 
AKT phosphorylation, PI3K activity, and IL-8, which acts 
as a mediator for neutrophil movement. Moreover, quercetin, 
luteolin, and curcumin influence the chemotactic behavior of 
neutrophils to decrease the formation of neutrophil extracel-
lular traps (NETs), a major complication in viral sepsis that 
can lead to organ failure [161].
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Kaneider et al. [171] demonstrated that resveratrol and 
quercetin interfere with the proinflammatory signaling of 
thrombin, leading to the prevention of decreased neutrophil 
function and adenosine nucleotide discharge from activated 
platelets. In another study, Tsai and Chen [172] indicated 
that resveratrol reduces integrin expression, degranulation, 
respiratory burst, and cell adhesion in activated neutrophils 
in a dose-dependent manner. Furthermore, Kaneider et al. 
[173] indicated that EGCG blocked neutrophil infiltration 
via direct action on neutrophils.

Immunomodulatory effect of polyphenols 
on polymorphonuclear adaptive and innate 
lymphocytes

Extensive research has been conducted regarding the 
involvement of both adaptive and innate lymphocytes in the 
progression of COVID-19. Specifically, Natural killer (NK) 
cells play a crucial role in combating the SARS-CoV-2 virus 
through their antiviral activity [173]. In individuals suffering 
from COVID-19, there is a heightened activity of blood NK 
cells, leading to the increased presence of CD56 bright cells. 
These CD56 bright cells are characterized by the expression 
of the cytotoxic molecules granzyme B and perforin [174]. 
Polyphenolic plant compounds like quercetin, curcumin, 
and resveratrol can decrease the release of inflammatory 
substances such as IL-15 and IFN/α&β by regulating the 
function of natural killer (NK) cells [175–177]. The decrease 
in the production of inflammatory substances leads to a 
decrease in the production of antigens and IFN/gamma by 
NK cells, ultimately decreasing the Th1 activity [177, 178].

Meroni et al. [179] investigated how different amounts 
of silybin (0.5, 10, and 25 mg/mL) affected the activation of 
human T lymphocytes. They found that silybin had a signifi-
cant dose-dependent effect on decreasing the proliferation 
response to the monoclonal anti-CD3 antibody. Additionally, 
they noted that silybin led to an increase in the prolifera-
tion of alloantigen or mitogen-stimulated lymphocytes in a 
dose-dependent manner, as well as an enhancement in the 
secretion of IL-4, IFN-γ, and IL-10 [179, 180]. The immune 
system of COVID-19 patients responds by activating more 
lymphocytes, which are white blood cells that include CD8+ 
and CD4+ T cells. These T cells also multiply and diversify 
their receptors to fight the virus. CD4+ Th lymphocytes are 
divided into several subunits, including T regulatory cells, 
Th17, Th1, and Th2 [181, 182].

Multiple research studies have demonstrated that certain 
polyphenols like luteolin, resveratrol, quercetin, green tea, 
and curcumin can hinder the growth and specialization of 
Th17 cells. This is achieved by inhibiting the production 
of related orphan receptor gamma t (RORγt) IL‐17, IL‐21, 
and IL‐6, as well as the phosphorylation of signal trans-
ducers and activators of signal transducer and activator 

of transcription 3 (STAT3) [183–185]. Polyphenols such 
as curcumin, resveratrol, quercetin, and luteolin also 
help reduce the expression of CD8+ T cells by reducing 
macrophage-derived inflammatory factors such as IL-1β, 
CXCL10, and IL-6 [124, 186–188]. Furthermore, research 
has demonstrated that EGCG is capable of hindering the 
replication of HIV-1 at multiple points in the process. Spe-
cifically, the compound found in tea disrupts the interaction 
between gp120 and CD4 by interfering with the activity of 
reverse transcriptase [189]. A study suggested that EGCG 
prevents the expression of p24 antigen on macrophages, iso-
lated CD4+ T cells, and CD4 receptor cells, relative to its 
dose [190].

Innate and adaptive immunity responses can be regulated 
by CD4+ CD25+ Tregs. Tregs produce cytokines such as 
IL-4 and IL-10, which can significantly impact the immune 
response to COVID-19 [191]. The activity and develop-
ment of CD25+ CD4+ Tregs are dependent on FOXP3, 
a transcription factor protein expressed mostly by these 
cells. Studies have shown that resveratrol and curcumin can 
increase the expression of CD25+ CD4+ Foxp3+ Tregs, 
leading to upregulation of IL‐10 and TGF‐β production, 
which can reduce the proliferation activity of CD25− CD4+ 
T cells in the spleen of septic mice [192–194].

DCs play a crucial role in initiating both adaptive and 
innate immune responses and are part of the proprietary 
antigenic prescribing cells [195]. Curcumin has been found 
to prevent the maturation of DCs and block the up-regulation 
of CD 80, MHC II, CD86, and CD40 on the surfaces of DCs, 
while also inhibiting LPS-induced TNF-α, IL-1β, IL-12, and 
IL-6 production, as well as MAPK phosphorylation and 
NF-κB nuclear translocation [195]. Additionally, treatment 
with quercetin has been shown to reduce IL-12 production 
and increase the expression of ILT4, ILT5, immunoglobulin-
like transcript (ILT)-3, CD39, and CD73 in septic rats [194].

Effects of polyphenols on reduced mucin 
hypersecretion

Early symptoms of COVID-19 mediated by SARS-CoV-
2-induced cytokine storm include excessive mucin secre-
tion, which activates various inflammatory pathways and 
contributes to the pathogenesis of the disease [196]. Mucins 
play a crucial role in defending the respiratory tract's front 
line against invading microbes and viruses in response to 
physiological stimuli [197, 198]. A high viral load can cause 
overproduction of mucins, leading to obstruction of the res-
piratory tract lumen and limited airflow [197]. Addition-
ally, hypersecretion of mucins leads to ciliary dysfunction, 
which further exacerbates COVID-19 symptoms by com-
promising respiratory clearance [198]. The initial signs are 
connected to the excessive production of mucins caused by 
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SARS-CoV-2, leading to an inflammatory storm that has 
the potential to trigger various inflammatory pathways [197, 
199].

Several studies have shown that natural compounds can 
alleviate COVID-19 symptoms related to excessive mucin 
production. Liang et al. [200] demonstrated that epigallo-
catechin-3-gallate (50 mg/kg) reduced inflammation, neu-
trophils, airway mucus production, and collagen deposition 
in rats. In other studies, Li et al. showed that quercetin can 
prevent the induction of MUC5AC by human neutrophil 
elastase in a dose-dependent manner, by utilizing the PKC/
MAPK/EGFR/ERK1/2 signal transduction pathways [201]. 
Additionally, a further study demonstrated that curcumin at 
a dose of 10 mg in NCI-H292 cells inhibits LPS-induced 
inflammation and airway mucus hypersecretion via the 
upregulation of Nrf2 gene expression [202]. Curcumin also 
attenuated mucus hypersecretion and inflammation in mice, 
blocked IL-4-induced expression of MCP-1 and MUC5AC 
both in vivo and in vitro through a peroxisome proliferator-
activated receptor gamma (PPARγ) dependent NF-κB sign-
aling pathway [203].

Polyphenols preventing SARS‑CoV‑2 entry/
fusion

Polyphenols attaching to S protein

Protein S is one of the major membrane glycoproteins, which 
is part of the class I viral fusion glycoproteins [204]. The cir-
cumferential amino subunit (S1) attaches independently to 
cellular receptors, while the carboxy terminus (S2) is located 
in the viral coat and is critical to aid in the integration of cell 
membranes and viruses [38, 205, 206]. Coronaviruses are only 
capable of entering cells via their S protein [206]. Luteolin, 
quercetin, emodin, and curcumin in different doses prevented 
SARS-CoV infection by hindering the virus from entering 
Vero-E6 cells [207, 208]. Luteolin's strong affinity for the 
SARS-CoV S protein suggests a potent antiviral mechanism 
that disrupts the protein's function [207, 209]. In addition, one 
study discovered that emodin, an anthraquinone polyphenol 
found in rhubarb roots (Rheum officinale), interfered with the 
S-ACE2 protein [210]. Research using computer simulation 
techniques has revealed that fifteen specific plant compounds 
found in A. paniculata can bind and engage with the S-pro-
tein, as well as the C-terminal and N-terminal cleavage sites 
on the viral polyprotein of SARS-CoV-2 [211]. According 
to dynamic simulation and molecular docking analyses, it is 
predicted that various plant polyphenols like neohesperidin, 
apigenin 6,8-diC-glucoside, hesperidin from C. medical, cur-
cumin, and citrus can interact with the protein S RBD. As a 
result, these polyphenols can potentially inhibit the effects of 
SARS-CoV-2 [212–214]. Hesperidin is believed to interact 

with the binding site between ACE2 and the S protein by bind-
ing to the central shallow pit on the surface of the S protein 
RBD [215]. A temporary treatment for COVID-19 approved 
by the FDA involves naringenin, a polyphenol present in vari-
ous fruits and herbs such as grapefruit. This compound has 
shown strong binding energy with the spike glycoprotein asso-
ciated with the virus [215, 216]. Epigallocatechin gallate, a 
compound plentiful in tea and Rhodiola spp. (Golden Root), 
has been shown to interact with the S RBD protein [217].

Polyphenols that target ACE2

ACE2 is a metalloproteinase enzyme found on the cell mem-
brane in various tissues including the kidneys, heart, lungs, 
epithelial cells, blood vessels, and liver [218]. ACE2 plays 
a crucial role as an enzyme within the physiological renin-
angiotensin system. It has been hypothesized that ACE2 
could serve as a key gateway for SARS-CoV-2 to infect 
host cells, making it a potential target for therapeutic inter-
ventions against foreign substances [219, 220]. Research 
suggests that eriodictyol, a compound present in Yerba 
santa (Eriodictyon californicum), shows a strong attrac-
tion towards human ACE2 receptors. Through a molecu-
lar analysis utilizing a computational model of the SARS-
CoV-2 protein binding to the human ACE2 receptor, it was 
established that eriodictyol exhibits the greatest affinity for 
this receptor [37, 219]. Several other research studies have 
shown that compounds like catechin and curcumin, which 
are flavonoids, may have the ability to interact with ACE2 
through the formation of hydrogen bonds, carbon-hydrogen 
bonds, and π-σ interactions [221]. It is becoming increas-
ingly clear that regulatory ACE2 expression may contribute 
to modulating COVID-19 symptoms. SARS-CoV infection 
decreased ACE2 receptor expression, which may exacerbate 
the severity of the disease [36, 222]. New research indicates 
that polyphenols like curcumin and resveratrol, which are 
present in red wine grapes, have the potential to influence 
the impact of SARS-CoV-2 by controlling the function and 
expression of ACE2 [222, 223]. Therefore, polyphenols 
have the potential to reduce SARS-CoV-2 viral infection by 
attaching to the ACE2 receptor, preventing the virus from 
entering cells, and regulating the severity of lung damage 
associated with COVID-19 by altering ACE2 expression 
[223, 224].

Relationship between polyphenols 
and SARS‑CoV‑2 proliferation

Polyphenols preventing SARS‑CoV‑2 viral proteases

Coronaviruses rely on replicase polyproteins that undergo 
processing by viral proteases [225, 226]. Out of all the 



320	 M. Vajdi et al.

proteases identified, 3CLpro stands out for its crucial func-
tion in facilitating the replication and transcription processes 
of SARS-CoV-2, establishing it as a primary target for drug 
development against coronavirus infections [226–228]. Natu-
ral compounds that have been found to inhibit SARS-CoV 
proteases include terpenoids [229, 230], flavonoids [231–233], 
cinnamic amides [234], diarylheptanoids [235, 236], and cou-
marins [237]. In vitro, inhibition of 3CLpro has been dem-
onstrated with gallocatechin gallate, epigallocatechin gallate, 
isoquercetin, and quercetin [233, 238, 239]. Flavonoids lack-
ing the OH group at the 5'B-ring position have been shown 
to reduce the hindering activity of 3CLpro [233]. Flavonoids 
such as isoliquiritigenin, kaempferol, naringenin, margarine, 
and curcumin have been found to interfere severely with the 
SARS-CoV-2 3CLpro and PLpro substrate binding domains 
[232, 236]. Quercetin not only inhibits the H+-ATPase of lyso-
somal membranes and prevents virus coat removal [240], but 
also inhibits the ATPase of proteins related to drug resistance, 
which increases the bioavailability of some antiviral drugs [34, 
241]. Hence, quercetin shows great potential as a candidate for 
antiviral treatments [32, 242].

The role of polyphenols in inhibiting SARS‑CoV‑2 
RdRp

Focusing on inhibiting the SARS-CoV-2 RdRp enzyme 
has emerged as a key approach in developing treatments 
for COVID-19 [243]. Resveratrol has been found to nota-
bly inhibit MERS-CoV proliferation in vitro by preventing 
nucleocapsid protein and RNA expression [243]. Other 
studies have reported that myricetin, epigallocatechin gal-
late, baicalin from Scutellaria baicalensis, (2S)-eriodictyol 
7-O-(6″-O-galloyl)-β-d-glucopyranoside (EBDGp) from P. 
emblica, a β2-adrenoceptor polyphenolic receptor agonist, 
and quercetin showed high affinity for RdRp in both SARS-
CoV and SARS-CoV-2 [33, 215, 244, 245]. Furthermore, a 
research study investigating the efficacy of P. amarus against 
SARS-CoV-2 infection revealed that computer-generated 
docking models of polyphenol flavonoid compounds (such 
as astragalin, kaempferol, quercetin, quercetin-3-O-gluco-
side, and quercetin) along with tannins (such as corilagin 
and geraniin) exhibited a strong attraction towards binding 
to RdRp (RNA-dependent RNA polymerase) and papain-
like protease on SARS-CoV-2 in comparison to remdesivir 
[211].

Side effects and toxicity associated 
with polyphenols

Finding compounds with minimal cytotoxicity is one of the 
biggest challenges in the development of new therapeutic 
agents [31, 32, 246]. Polyphenols have an advantage in this 

regard, as they have a high safety profile without major side 
effects [224]. Studies have shown that when polyphenols 
are consumed in the form of fruits and vegetables, their 
toxic effects are highly unlikely [35, 247]. Additionally, 
most polyphenols do not exhibit cytotoxicity at high con-
centrations [25–27, 30, 246]. However, some polyphenols 
may have toxic effects in high doses. For instance, querce-
tin, despite being generally safe, may induce side effects 
such as headache and paresthesias in the hands and legs at 
doses of up to 1 g daily. High doses of quercetin may also 
pose a potential risk of renal toxicity, and it could interact 
with antibiotics such as quinolones and other drugs such as 
diclofenac, celecoxib, and immunosuppressants, leading to 
an increased side effect profile [24, 241, 248]. Similarly, 
under high-dose conditions, some studies have shown that 
EGCG may have a significant prooxidant effect, which can 
be both beneficial and potentially harmful. High doses of 
EGCG have been reported to cause cytotoxicity in vitro 
and may result in liver damage, kidney damage, and gas-
trointestinal disturbances (vomiting and diarrhea) [23, 249, 
250]. Furthermore, emodin may have irreversible pathologi-
cal effects on organs and disrupt glutathione and fatty acid 
metabolism in very high doses (4000 mg/kg). Emodin is also 
genotoxic and reproductively toxic [208]. To mitigate drug 
toxicity, it is crucial to avoid the long-term administration 
of high doses. Enhancing bioavailability is fundamental to 
reducing the administered dose.

Conclusion

The present review discussed the efficacy of various poly-
phenols in suppressing COVID-19. It has been shown that 
polyphenols can significantly reduce COVID-19 severity and 
the damage induced by viral infection by acting as immu-
nomodulators, anti-inflammatory, and antioxidants. There 
are multiple molecular and cellular pathways involved in 
their mechanism of action against COVID-19, including 
disrupting viruses' life cycle by binding to their essential 
proteins, inhibiting viral enzymes, and disrupting viral 
structural proteins from interacting with host cells which 
ultimately leads to inhibition of cytokine storm, reduction of 
oxidative damage, and increase in virus resistance. To con-
firm such findings, further studies on patients are required 
to demonstrate the efficacy and safety of the specific poly-
phenols. Moreover, polyphenols tend to be poorly bioavail-
able, which requires additional research into pharmaceutical 
technology leading to the right formulation.
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