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Abstract
Type 2 diabetes mellitus (T2DM) is the most common chronic metabolic condition. Several genetic and environmental 
factors are involved in developing T2DM. Aging, inflammation, and obesity are the main contributors to the initiation of 
T2DM. They cause chronic sterile meta-inflammation and insulin resistance, thereby making a person more susceptible to 
developing T2DM. Metformin, a natural cationic biguanide, is widely used as the first-line treatment of T2DM. The exact 
action mechanism behind the glucose-lowering effect of metformin is not clear, but, presumably, metformin utilizes a broad 
spectrum of molecular mechanisms to control blood glucose including decreasing intestinal glucose absorption, inhibition of 
the hepatic gluconeogenesis, decreasing insulin resistance, etc. Recent studies have shown that metformin exerts its effects 
through the inhibition of mitochondrial respiratory chain complex 1 and the AMP-activated protein kinase (AMPK) activa-
tion, but it has been identified in the other studies that AMPK is not the sole hub in metformin mode of action or there are 
other unknown mechanisms which are involved and yet to be explored. Therefore, here, we discuss the updated findings of 
the mechanism of action of metformin that contributes to the meta-inflammation and inflammaging action. It is proposed 
that figuring out the precise mechanism of action of metformin could improve its application in the fields of obesity, inflam-
mation, aging, and inflammaging.
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T2DM	� Type 2 diabetes mellitus
STK11	� Serine/threonine kinase 11

Introduction

Type 2 diabetes mellitus (T2DM) is a chronic life-lasting 
condition that is characterized by high blood glucose and 
insufficient insulin to overcome the already existing insulin 
resistance. It causes many complications like neuropathy, 
nephropathy, and retinopathy, and reduces life expectancy. 
A sedentary lifestyle and genetic factors, besides some medi-
cations, infections, and endocrinopathies, make an individ-
ual more susceptible to developing T2DM. If exercise and 
change in lifestyle fail to control high blood glucose levels, 
the administration of some medications like metformin is 
inevitable [1–3].

Metformin is a natural biguanide compound derived from 
the French lilac (also known as Galega officinalis) and has 
been introduced as a medication for T2DM treatment in 
the 1950s and has been widely prescribed ever since. Met-
formin reduces both fasting and postprandial blood glucose, 
via inhibition of hepatic gluconeogenesis and alleviating the 
insulin resistance [4].

Recently, the pleiotropic effects of metformin have made 
it more attractive for researchers. Metformin has extensive 
effects on cell metabolism. It inhibits complex 1 in mito-
chondrial ETC and decreases ATP synthesis by mitochon-
dria which in turn leads to an increase in AMP: ATP ratio 
and 5'adenosine monophosphate-activated protein kinase 
(AMPK) activation [5]. Recent studies have shown that 
AMPK acts as a cellular energy level sensor and is not acti-
vated just by ETC inhibition. Therefore, metformin can acti-
vate AMPK indirectly and independently of ETC. AMPK is 
known as the main target of metformin, which is activated by 
various pathways and has led to its perception as a glucose 
reducing drug in the first line of treatment of T2MD. AMPK 
and an increase in its activity cause a transformation from 
anabolic to catabolic state. Consequently, not only does acti-
vation of AMPK impede protein synthesis and lipogenesis, 
but it also increases autophagy and fatty acid β-oxidation 
[6] (Fig. 2). Therefore, understanding these mechanisms is 
important, because it can help us explore the other effects of 
this drug and utilize it for advanced purposes.

Glucose-lowering effect of metformin is the most 
important mechanism of action that reduces blood sugar 
by improving the sensitivity of insulin receptors and the 
translocation of GLut4 in the cell membrane. However, the 
hypoglycemic effects of metformin are exerted by inhibit-
ing hepatic gluconeogenesis, inhibiting glucose uptake in 
the intestine, inhibiting the glucagon signaling pathway, and 
reducing cortisol [7]. Different findings are available on how 
metformin affects AMPK, in which LKB plays a major role 

in regulating its activity. Metformin inhibits gluconeogenesis 
and stops the de novo synthesis of glucose in the liver by 
regulating the glucagon hormone and cortisol, Glyceralde-
hyde-3-phosphate dehydrogenase inhibition, and modulat-
ing cellular redox [8]. However, this is not sufficient and 
the absorption of glucose from the intestine is reduced by 
metformin, which is known to be the most important effect 
today [9]. Among the functional mechanisms of metformin, 
some non-canonical signaling pathways have emerged that 
can define metformin with advanced effects such as anti-
aging, anti-obesity, and anti-inflammation.

Obesity and aging are the two main contributing causes 
of T2DM. Chronic sterile inflammation is a common fea-
ture of aging and obesity. In aged individuals, SASP factors 
like IL-6, IL-1 β/α, and MCP-1, which are secreted from 
senescent cells, disrupt immune system homeostasis and 
lead to low-grade chronic inflammation. The same disrup-
tion occurs in obese individuals by secretion of cortisol and 
some other hormones as well as pro-inflammatory cytokines 
from adipose tissues [10, 11]. Furthermore, insulin sensitiv-
ity declines in obese and also aged individuals, making them 
more prone to developing diabetes [12].

In this review, an update of molecular mechanism of 
action of metformin based on glucose-lowering effect 
have been discussed. In the following, we have been focused 
on non-canonical signaling pathways and molecular mode 
of actions which underlie the advanced application of this 
anti-diabetic agent like as anti-obesity, anti-inflammation, 
and anti-aging.

Glucose‑lowering effect of metformin

Metformin has an extensive effect on cells and, recently, 
we are witnessing a growing number of its applications, for 
example in cancer treatment, regenerative medicine, and 
recently, its anti-aging and anti-inflammatory effects have 
been further explored [13]. The glucose-lowering effect of 
metformin is a complicated process that has raised some 
controversies (Fig. 1). We will mention prevailing theories 
about the role of metformin in Gluconeogenesis, insulin sen-
sitivity, and in the following paragraphs.

Improving insulin sensitivity

Insulin resistance is a complicated process in which insu-
lin-dependent tissues, like adipose tissue and skeletal mus-
cles, fail to respond properly to insulin and cannot read out 
the insulin message [10]. AMPK α2 is a primary determi-
nant in insulin sensitivity of the whole body. AMPK α2 
knock-out mice manifest a high blood glucose level after 
eating or oral glucose challenge [14]. Glut-4, a glucose 
transporter, is expressed in insulin-dependent tissues. It 
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is so important in controlling the blood glucose level and 
causes glucose uptake in response to insulin. Glut-4 is pre-
sent in the membrane of vesicles inside the cytoplasm of 
fat and muscle cells. Insulin stimulates translocation and 
fusion of Glut-4 carrier vesicles to the cell membrane [15]. 
Its trafficking and translocation get impaired in subjects 
suffering from insulin resistance. Reduction in number 
or ligand-binding efficiency of insulin receptor as well as 
decreased tyrosine kinase activity of the insulin receptor 
leads to insulin resistance [16]. PTP1B is another factor 
that influences insulin sensitivity. PTP1B is a negative 
modulator of insulin signaling and causes IRS-1 (Insu-
lin Receptor Substrate 1) dephosphorylation and thereby 
blunts insulin signaling [17]. PTP1B also inhibits leptin 
signaling and causes obesity. Inhibition of PTP1B is a 
potential therapy for insulin resistance, obesity, and T2D 
[12]. In some studies, it has been identified that metformin 
could inhibit PTP1B [18]. The precise mechanism behind 
the pathophysiology of insulin resistance is not completely 
understood. However, in the next following paragraphs, 
we will introduce some of the causal factors in insulin 
resistance (Table 1).

Improving GLUT‑4 translocation

Overeating high caloric foods increases free fatty acids 
(FFA), and on the other hand, it has been shown a high 
concentration of FFA induces insulin résistance [19, 20] 
(Table 1). Additionally, high fructose intake can also lead 
to developing insulin resistance [21]. Insulin sensitivity can 
be improved by medications like PTP1B inhibitors and also 
fibroblast growth factor 21 (FGF 21) [12, 16]. In diabetic 
persons, to deal with insulin resistance, the body increases 
insulin secretion and unfortunately long time exposure to a 
high level of insulin, by itself, exacerbates insulin resistance 
[16]. By decreasing the serum FFA level, metformin reduces 
insulin resistance [22]. It was shown that treatment with met-
formin is able to increase insulin receptor tyrosine phos-
phorylation activity in vitro [23, 24]. A study by Garabadu 
et al. reveled that metformin improves the hepatic PI3K/
Akt/GLUT-4 signaling pathway in T2DM rats [25]. It was 
also shown that metformin increases Glut-4 translocation 
to the cell surface. Activated AMPK mediates this effect of 
contraction on GLUT-4 translocation and glucose transport 
in muscle. This increase in GLUT-4 is partly responsible for 

Fig. 1   Glucose-lowering 
mechanisms of metformin. 
Metformin can control blood 
glucose level by reducing 
intestinal glucose absorption, 
blood cortisol level, insulin 
resistance, as well as the inhibi-
tion of glucagon signaling and 
gluconeogenesis

Table 1   Contributing factors which lead to insulin resistance

Contributing factors Examples Roles Ref.

Insulin resistance PTP1B Upregulation of PTP1B accelerates IRS-1 dephosphorylation and blunts insulin 
signaling

[9, 13]
[12]

Insulin receptor Reduction in number or efficiency of insulin receptor decreases insulin sensitivity
Dietary habits FFA and fructose An elevated amount of them in the blood leads to insulin resistance [15–17]
Obesity Inflammatory mediators

Cortisol
Insulin

TNF-α, IL-6, etc. cause insulin resistance
Decreases insulin responsiveness
Exposure to high insulin level induces insulin resistance

[86]
[42, 43]
[10, 11]

Aging Mitochondrial dysfunction
ER Stress
ROS
SASP

Lead to insulin resistance [7, 79]
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the increased insulin sensitivity [26]. Treatment with met-
formin activates P38 MAPK and causes a subsequent rise 
in glucose uptake through Glut-4 translocation. In insulin-
resistant myotubes, insulin-stimulated activation of ERK and 
JNK is unchanged, but P38 MAPK activation is impaired 
[23]. In another study, the authors reported that metformin 
causes Glut-4 translocation to the cell surface via activating 
Cbl and subsequent CAP (Cbl-associated proteins) activa-
tion by AMPK [27]. Metformin improves insulin sensitivity 
and impaired Glut-4 trafficking, created by chronic hyper-
insulinemia, in adipocytes through inhibiting Glut-4 endo-
cytosis [28].

Reduction of intestinal glucose absorption

The PET-computed tomography (CT) scan has shown that 
metformin accumulates in the intestine in high concentra-
tions, up to 30–300 times its concentration in the blood [29]. 
Intravenous administration of metformin is less effective in 
reducing the blood glucose level than the orally taken drug 
[30]. Horakova et al. shed light on the new aspect of glucose 
reduction by metformin. The authors emphasized that the 
role of AMPK in the acute glucose-lowering effect of met-
formin is negligible. They demonstrated that metformin hin-
ders glucose transport through the intestinal lumen into the 
blood. They identified that metformin can make it easy for 
the body to decrease food-borne glucose elevation simply by 
inhibiting transepithelial glucose transport into blood [31]. 
Some researchers give special importance to the role of gut, 
gut–brain neural axis, and gut microbiome in the glucose-
lowering effect of metformin [32–36]. However, this aspect 
of mechanism of action of metformin needs more studies.

Gluconeogenesis inhibition by mG3PD

In healthy individuals, gluconeogenesis is responsible 
for ~ 50% of EGP, endogenous glucose production, after 
overnight fasting, and it increases up to 90% of EGP after 
40 h fasting [37, 38]. In a T2D person, relative glucagon 
increment and insulin resistance lead to a sustained glu-
cose production in the liver. Therefore, in diabetes, we have 
unchecked and sustained gluconeogenesis [39]. Most sci-
entists believe that metformin decreases the blood glucose 
level by inhibition of gluconeogenesis in the liver. G-6-Pase 
catalyzes the conversion of glucose-6-phosphate to glucose 
which finally is released from the liver. However, mice 
lacking liver-specific G-6-Pase have normal blood glucose 
even after long-term fasting [40]. While PEPCK is a crucial 
enzyme in gluconeogenesis, liver-specific PEPCK knock-out 
mice have a normal glucose level even after 24 h of fasting 
[41]. These observations are likely because of the compensa-
tory increase of extra-hepatic gluconeogenesis [42].

FBPase, which catalyzes the conversion of fructose-
1,6-bisphosphate to fructose-6-phosphate, is another impor-
tant enzyme in the gluconeogenesis pathway. It is a promis-
ing target for the treatment of type 2 diabetes. MB07803 is 
a second-generation FBPase inhibitor that is in the phase Ib 
clinical trial. It is beneficial in controlling fasting blood glu-
cose level, but in the postprandial state, it fails to decrease 
blood glucose as fast as metformin [39, 43]. By considering 
that FBPase inhibitors are more efficient in gluconeogenesis 
inhibition than metformin, inhibition of gluconeogenesis is 
not likely to solely be responsible for the acute glucose-low-
ering effect of metformin that can decrease blood glucose 
back to pre-eating level within less than 3 h [31].

Van Poelje et  al. demonstrated that in diabetics, the 
increase in gluconeogenesis is twice as high as in normal 
individuals. Three months of treatment with metformin 
causes an about 36% decrease in gluconeogenesis and a 30% 
decrease in fasting plasma glucose concentration. Because in 
this study the statistical sample was small, further research 
using more subjects may yield different results [39]. There 
are several studies about the mechanism by which metformin 
inhibit gluconeogenesis. Cao et al. demonstrated metformin 
even at low concentrations through the activation of AMPK 
can suppress endogenous glucose production and gluconeo-
genic gene expression in hepatocytes. Interestingly, changing 
in cAMP level is dispensable from the metformin-mediated 
inhibition of gluconeogenesis [44].

Foretz et  al. reported that in LKB−/− hepatocytes or 
primary hepatocytes lacking AMPK, metformin inhibits 
glucose production almost normally and so this inhibition 
is independent of AMPK or LKB1 [45]. In another study, 
authors determined that metformin exerts a glucose-lower-
ing effect through inhibition of glycerophosphate dehydro-
genase and change in redox status of cytoplasm [46]. What 
is universally accepted is that metformin inhibits gluconeo-
genesis, and by doing so, it results in blood glucose reduc-
tion. In addition to the AMPK signaling pathway, metformin 
inhibits gluconeogenesis through various pathways that yet 
to be identified.

Hormonal changes: cortisol and glucagon

It is demonstrated that in some of the diabetic subjects, there 
is an elevated level of cortisol. The overall flattening of the 
cortisol curve and elevated daily cortisol level makes it hard 
for a diabetic person to control blood glucose [47]. Gluco-
corticoids, like cortisol, exert their diabetogenic effects par-
tially by increasing lipolysis (in adipocytes) and subsequent 
rise in plasma free fatty acid level and reduction of insulin 
responsiveness. Cortisol induces insulin resistance, impairs 
glucose uptake by skeletal muscles, and promotes hepatic 
gluconeogenesis [48]. It was shown that metformin admin-
istration decreases cortisol back to the normal level [49]. 
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However, whether metformin has a direct effect on cortisol 
secretion is not clear. As mentioned in previous headings, 
metformin can potentially antagonize glucagon signaling by 
decreasing the cAMP level. Hormonal changes induced by 
metformin play a significant role in reducing blood glucose 
and importance of that needs further studies.

Metformin mode of action

Metformin is a positively charged natural biguanide com-
pound. Despite the relatively long-term use of this drug, the 
precise mechanism of its action has not been fully elucidated 
and there are some disagreements among the scientists in 
this field [50]. Therefore, in the following paragraphs, we 
will introduce some of the common theories and some con-
troversies about the metformin mode of action.

Complex 1 inhibition and AMPK activation

It is almost accepted that metformin exerts its effects by 
inhibiting mitochondrial electron transport chain, complex 
1, and this inhibition occurs just at mM concentration. Nev-
ertheless, the level of this drug in the blood and extracellular 

fluids does not exceed mM concentration. There are two 
explanations in the literature for the inhibitory effect of 
metformin on the mitochondrial complex 1. First, some sci-
entists showed that, in the intact cells and in vivo studies, 
metformin triggers a signaling pathway which in turn causes 
inhibition of complex 1, although such a pathway has not yet 
been identified. On the other hand, thiol groups in several 
complex 1 subunits have been identified as the targets of 
post-translational modification, but how metformin affects 
the thiol groups has yet to be determined [51].

The second hypothesis, which is more popular, states that 
metformin accumulates in mitochondria and its concentra-
tion reaches to mM, and then it can inhibit complex 1 [5]. By 
inhibiting complex 1, metformin increases AMP:ATP ratio 
and activates AMPK (Fig. 2). However, there is not enough 
evidence to prove this.

Metformin has an extensive role in cell metabolism and 
exerts most of its effects through AMPK (Fig. 2). AMPK 
increases glucose uptake by muscles via stimulating Glut-4 
translocation to the cell membrane. AMPK also phosphoryl-
ates HMG-COA reductase and decreases cholesterol syn-
thesis. AMPK lowers triglyceride and phospholipid syn-
thesis as well as glycogen production in cells [52]. AMPK 
phosphorylates and inactivates acetyl-CoA carboxylase 

Fig. 2   AMPK Mode of Action. AMPK is activated by several enzymes such as TAK-1, LKB-1, and CaMKK2. AMPK has extensive effects 
inside the cells, some of which are depicted above
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(ACC1/2), and inhibits the conversion of acetyl-CoA to 
malonyl-CoA and fatty acid synthesis. Malonyl-CoA is a 
potent inhibitor of CPT1. By removing the inhibition from 
CPT1, AMPK increases the acyl-CoA entrance into mito-
chondria via CPT1. Acyl-CoA in mitochondria undergoes 
beta-oxidation and produces NADH and FADH2 that enter 
the ETC. Besides, the produced acetyl-CoA can be utilized 
in the Krebs cycle [53]. Protein synthesis is an energy-con-
suming process and is more active in growing cells. AMPK, 
by phosphorylation of RNA polymerase I, reduces ribosomal 
RNA synthesis and subsequently decreases protein synthesis 
[54]. AMPK also inhibits protein synthesis via phospho-
rylation of eukaryotic translation elongation factor (eEF2). 
Also, by inhibition of mTORC1, it abrogates phosphoryla-
tion of Eukaryotic translation initiation factor 4E-binding 
protein 1 (4EBP1) and p70 S6 kinase [55]. Phosphorylation 
of 4EBP1 and p70 S6 kinas is so important in protein syn-
thesis. Furthermore, through the inactivation of mTORC1, 
AMPK increases autophagy. It also directly influences the 
autophagy by phosphorylating of Unc-51 like autophagy 
activating kinase 1 (ULK1) [56].

AMPK activation leads to CREB binding protein (CBP) 
phosphorylation in Ser436 via PKCι/λ and causes its disso-
ciation from CREB co-activator complex and inhibition of 
gluconeogenic genes expression [57]. Furthermore, AMPK 
phosphorylates and activates peroxisome proliferator-acti-
vated receptor-gamma co-activator 1 α (PGC-1 α), which 
in turn causes mitochondrial biogenesis and reduces ROS 
production [58].

AMPK structure and subtypes

AMPK is a heterotrimeric enzyme with two regulatory 
subunits, β and γ, and a catalytic subunit, α. There are some 
isoforms of AMPK which are different in subcellular locali-
zation, function, and regulation. Therefore, it is important 
to know which AMPK is most affected by metformin and 
what effects it has on the cells. For example, AMPK α1 and 
AMPK α2, the two well-studied isoforms of AMPK, have 
some differences including the following:

(1)	 AMPK α2 has a greater sensitivity to AMP level 
changes in comparison with AMPK α1 [59].

(2)	 After activation, AMPK α2 is found in both cytoplasm 
and nucleus, but AMPK α1 is exclusive to the cyto-
plasm. Therefore, AMPK α2 can regulate gene expres-
sion and so it performs a more significant role [59].

(3)	 LKB1 is a master upstream kinase of AMPK. It has 
been found that in the LKB1 lacking cardiac muscle 
cells under the ischemic condition, i.e., increased 
AMP:ATP ratio, AMPK α2 phosphorylation and 
activation do not occur, whereas, this deletion has no 
significant effect on AMPK α1 phosphorylation and 

activation. By considering these observations, it is pre-
sumable that the AMPK α1 activation mechanism is 
different from that of AMPK α2 [60].

(4)	 AMPK α1 knock-out mice have almost the same 
amount of blood glucose; however, AMPK α2 lack-
ing mice have impaired glucose homeostasis [61, 
62]. Given the above explanations and what will be 
discussed below, it is assumed that metformin has a 
greater effect on AMPK α2 and there is not enough 
information about its effect on AMPK α1.

AMPK mechanism of activation

AMPK can be activated through various mechanisms which 
in turn activates various signaling pathways. Phosphoryla-
tion of Thr172 in the α subunit and binding of AMP to γ 
subunit are the two essential steps in AMPK activation. 
There are at least three kinases upstream of AMPK, namely 
STK11 also known as LKB1, CaMKK2, and TAK1, which 
can activate AMPK [63]. There are some theories about the 
activation of AMPK which are more valid about AMPK α2, 
but we have little information about AMPK α1 (Fig. 3).

The first mechanism suggests that LKB1 is active con-
stantly in the cytoplasm and phosphorylates Thr172 in the 
α subunit, but phosphatases remove that phosphate group 
almost immediately. By attachment of AMP to γ subunit, 
AMPK undergoes a conformational change and the β subunit 
covers the phosphate group attached to Thr172 and prevents 
phosphatases’ access to that phosphate group [64] (Fig. 3). 
Hawley et al., using cell lines expressing mutant AMPK that 
was insensitive to AMP level, revealed that AMPK activa-
tion is dependent on AMP binding to γ subunit [65]. It has 
been demonstrated that metformin exerts its effects without 
increasing AMP:ATP ratio. However, this may be because 
of inefficient methods of measurement of AMP and ATP 
changes. Therefore, it is presumable that nM changes are 
enough for AMPK to be sensed. This mechanism is the most 
accepted notion about AMPK activation, but by consider-
ing it, we cannot explain energy independent activation of 
AMPK by CaMKK2 in hyperosmotic stress [66]. Moreo-
ver, in the LKB1 lacking cells, basal levels of phosphoryl-
ated and active AMPK are detectable and this suggests that 
AMPK can be phosphorylated from other pathways, as well 
[67].

The second mechanism holds that in endothelial cells, 
stimuli, such as nitrogen reactive species (RNS), blood pres-
sure, and metformin, cause proto-oncogene c-Src activation 
which in turn activates PKCζ. The phosphorylated PKCζ 
translocate to the nucleus and phosphorylates LKB1 and 
causes its exportation to the cytoplasm and subsequent acti-
vation of AMPK [68]. Moreover, SIRT1 deacetylates LKB1 
and enhances its nuclear exclusion and its association with 
STRAD and MO25, which are two accessory co-activators 
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of LKB1 complex [69] (Fig. 3). This type of activation 
mechanism was observed in endothelial cells and has yet to 
be studied in other cell types.

The third mechanism regarding the AMPK activa-
tion states that the lysosomal surface protein complex, 
V-ATPase-Regulator-AXIN/LKB1, is essential for APMK 
activation. According to this mechanism, AMPK is con-
sidered as a lysosomal surface residential protein. Under 
low energy state, LKB1/AXIN complex associates with 
V-ATPase-Regulator and causes inhibition of GEF activ-
ity of the regulator. This leads to the dissociation of the 
mammalian target of mTORC1 from the lysosomal surface. 
On the other hand, this interaction enhances the phospho-
rylation of AMPK by LKB1 [70] (Fig. 3). This mechanism 

contradicts the previous studies, demonstrating that LKB1 is 
found in the nucleus [71] and AMPK has a uniform distribu-
tion in the cell cytoplasm before activation [72].

Gluconeogenesis inhibition: its relation with redox 
changes

Glycerol-3-phosphate and aspartate/malate shuttles are the 
two main mechanisms for the regeneration of NAD+ from 
NADH, which is necessary for glycolysis maintenance. 
In glycerol-3-phosphate shuttle, cGPD and mGPD play a 
major role. cGPD causes NAD+ production from NADH, 
and in parallel, mGPD converts FAD to FADH2. By doing 
so, high energy equivalents produced in the cytoplasm can 

Fig. 3   AMPK Mechanism of Activation. A AMPK resides in the 
cytoplasm and its regulation is under the control of the LKB1 and 
phosphatases. LKB1 is permanently active and phosphorylate 
AMPK. Binding of AMP to the AMPK leads to a change in its con-
formation and prevents phosphatases activity. B LKB1 is inactive and 
is found in the nucleus. Stimuli such as reactive nitrogen species and 
metformin lead to activation of PKC-ζ, after activation and phospho-
rylation of SIRT1 at Ser47 committing SIRT1 to proteasome degra-
dation, SIRT1 increases LKB1 deacetylation and activation. LKB1 is 
exported to the cytoplasm, and with the help of the co-activators such 

as MO25 and STRAD phosphorylates and activates the AMPK. C: 
AMPK is not free in the cytoplasm and it is resident on the surface 
of lysosomes and its activity depends on V-ATPase-Regulator-AXIN/
LKB1 activation. When the cells are in the low energy state, AXIN 
puts LKB1 in the vicinity of the AMPK and activate it. On the other 
hand, LKB1/AXIN complex inhibits guanine nucleotide exchange 
factor (GEF) activity of the V-ATPase-Regulator, which leads to the 
breakdown of mTORC1 from the lysosomal surface and phosphoryla-
tion of AMPK by LKB1
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be transferred into mitochondria and enter ETC, resulting in 
ATP production. In the malate/aspartate shuttle, aspartate is 
transported from mitochondria to cytosol in which it is con-
verted to malate in two steps. NADH is used in this process. 
On the other hand, malate enters mitochondria where it is 
converted to aspartate in a two-step process which converts 
NAD+ to NADH. Glycerol-3-phosphate and lactate are the 
two reduced precursors for glucose production through glu-
coneogenesis. Acute and chronic treatments of hepatocytes 
with a low concentration of metformin efficiently cause a 
reduction in hepatic EGP. Metformin inhibits mG3PDH by 
about 50%. Cytosolic NADH/NAD+ ratio increases, whereas 
mitochondrial NADH/NAD+ ratio declines in metformin 
treatment. Inhibition of mGPD by metformin influences 
EGP using two mechanisms. First, this inhibition increases 
cytoplasmic NADH/NAD + ratio which in turn inhibits 
LDH and blocks the conversion of lactate to pyruvate and 
the subsequent glucose production using gluconeogenesis. 
On the other hand, the inhibition of mGPD impedes glucose 
production from glycerol. Hepatic mG3PDH Knockdown 
rats manifest impaired metformin-mediated increase in cyto-
solic redox state and gluconeogenesis inhibition [73, 74]. 
Recently, researchers challenged this model by showing that 
pharmaceutically inhibition of mG3PDH has an insignifi-
cant effect on gluconeogenesis [75]. Knocking down cGPD, 
an indispensable part of the glycerophosphate shuttle, has 
a minor effect on redox status in comparison with inhibi-
tion of mGPD and also is not able to reduce endogenous 
glucose production [74]. Furthermore, it was shown that a 
low concentration of metformin leads to inhibition of glu-
coneogenesis from both reduced and oxidized substrates 
by increasing these substrates utilization in glycolysis in a 
redox-independent manner [76].

cAMP reduction

Glucagon is a hormone secreted from alpha cells of islets 
of Langerhans in the pancreas and is responsible for keep-
ing blood glucose in a normal range in fasting state. Insulin 
and glucagon are the chief parts of a feedback system for 
controlling the blood glucose level. Glucagon is a primary 
regulator of gluconeogenesis. In a fasting state, it stimulates 
gluconeogenesis and glycogenolysis and raises blood glu-
cose. Cyclic AMP is the secondary messenger in glucagon 
signaling. Tengholm et al. revealed that acute reduction of 
gluconeogenesis by metformin is because of antagonizing 
glucagon signaling by reducing the level of cAMP and sub-
sequent protein kinases A (PKA) activity [77]. cAMP acti-
vates PKA, and then, it phosphorylates AMPK in Ser485, 
an inhibitory phosphorylation, that abrogates AMPK effects. 
Metformin increases AMP:ATP ratio and thereby inhibits 
adenylyl cyclase which consequently causes a cAMP level 
reduction (Fig. 2). A mutated AMPK in S485 is not capable 

of being phosphorylated by PKA [78]. In contrast, AMPK 
phosphorylates and activates cAMP-specific 3’, 5’-cyclic 
phosphodiesterase 4 (PDE 4B), and causes a drop in cAMP 
level [79].

Functional and clinical dose of metformin

The maximum approved concentration of metformin for the 
treatment of type 2 diabetes is 2.5 g daily (35 mg/kg body 
weight). After oral administration, metformin is absorbed 
in the intestine by PMAT and OCT3. Then, it is transferred 
to the liver via the portal vein. Metformin concentration in 
the portal vein is reported to be about 40–70 µM. Hepato-
cytes uptake metformin by OCT1/3, and it is excreted from 
hepatocytes through multidrug and toxin extrusion 1 (MATE 
1) transporter [80]. After hepatic uptake, the serum concen-
tration of metformin reaches 10–40 µM [80]. Metformin is 
absorbed by renal epithelial cells via OCT2 and its excre-
tion is performed by MATE1/2 [81]. In cultured primary 
hepatocytes, concentrations even were below 50 µM [82]. 
There are some disagreements about the rational and effi-
cient concentration of metformin among researchers. In 
most studies, researchers have used a high concentration 
of metformin, 200–400 mg/kg in preclinical, and 250 µM 
to ≥ 2 mM in vitro studies, which are much more than met-
formin concentration in the blood after an approved dose 
is administered [80]. It is noteworthy that the concentra-
tion of metformin inside the hepatocytes reaches five times 
more than extracellular or serum concentration, but its exact 
molecular mechanism is unclear. For a good in vivo simula-
tion, we must balance time and concentration. For example, 
100 µM for 4 h or 80 µM for 24 h are more recommended 
[44, 83]. The minimum concentration of metformin for acti-
vating AMPK in skeletal muscle is much higher than its con-
centration in blood. However, metformin may accumulate 
in muscles through time [84]. For in vitro studies, we have 
to simulate clinical conditions and use appropriate doses to 
achieve reliable results. In the next section, we will discuss 
how metformin exerts its glucose-lowering effects.

Alleviation of obesity‑induced 
meta‑inflammation by metformin

Obesity is an increasingly important cause of disease 
worldwide [10]. Body adiposity is highly heritable; a recent 
study by Akbari et al. showed that GPR75 is correspond-
ing to 1.8 kg/m2 lower BMI and 5.3 kg lower body weight, 
and knockdown of GPR75 in mice resulted in resistance 
to weight gain in a high-fat diet model which resulted in 
ameliorated glycemic control and insulin sensitivity [85]. 
Moreover, adipocytes act as endocrine cells and contribute 
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to the secretion of inflammatory mediators [10] that sug-
gest a potential association between GPR75 and the level 
of inflammatory cytokines. Since metformin act as glucose-
lowering and improves insulin sensitivity might be able to 
modulate GPR75 expression as a therapeutic strategy for 
obesity and inflammation which needs further studies.

Mitochondrial dysfunction, ER (endoplasmic reticulum) 
stress, ROS overload, that are hallmarks of aging, as well 
as SASP are implicated in insulin resistance [10, 86]. By 
aging, cells undergo substantial changes and accumulation 
of inefficient organelles that impair cell response to stimuli. 
Metformin can reduce the secretion of SASP factors and 
age-related meta-inflammation [87].

Inflammaging is a sterile, chronic, low-grade inflamma-
tion that contributes to aging and is fueled by SASP factors 
[88–90]. Cell senescence was coined by professor Hayflick 
in 1961 and refers to irreversible cell cycle arrest after con-
tinuous passages in vitro and it is assumed that the same 
phenomenon occurs in the body. It is believed that cell 
senescence is a tumor-suppressor response. Senescent cells 
fail to undergo apoptosis thus accumulate in the body by 
age [88]. By secreting early SASP factors, senescent cells 
become detectable for the immune system; however, after a 
while, their secretory phenotype starts to change and shifts 
to the secretion of late SASP factors. In this stage, they elude 
the immune system and induce senescence to the neighbor-
ing cells and accelerate senescence propagation [88, 91].

Late SASP factors contain inflammatory factors like IL-6, 
IL-1 β/α, and MCP-1, and promote cancer incidence. They 

also cause insulin resistance and chronic inflammation [88, 
91] (Table 1). Metformin, by inhibiting the NF-κβ pathway, 
decreases SASP factors production and mitigates inflam-
maging [87, 92].

SASP: an anti‑aging target of metformin

Adipocytes act as endocrine cells and are able to secrete 
inflammatory mediators (like TNF-α), steroid hormones 
(such as estrogen and cortisol), leptin, and adiponectin. 
All of these, together, contribute to obesity-related insulin 
resistance [93, 94]. TNF-α receptor knock-out mice with 
diet-induced obesity are almost immune to developing insu-
lin resistance [95]. Activation of AMPK by metformin and 
inhibition of NF-κβ can reduce the secretion of inflamma-
tory cytokines such as TNF-α and reduces the inflammation, 
which will be discussed in the following sections [87, 92] 
(Fig. 4).

The first observation about the relationship between 
inflammation and glucose homeostasis dates back to 
120  years ago when researchers observed that aspirin 
administration helps glucose control in diabetic patients 
[96]. Inflammatory mediators impair insulin responsive-
ness in different manners. JNK and IKKB phosphorylate 
insulin receptor and insulin response substrates (IRSs) in 
inhibitory sites and impede insulin signaling. Salicylates 
like aspirin, through inhibition of IKKB, improve insulin 
sensitivity. NF-κβ induces expression of SOCSs, suppressors 

Fig. 4   Meta-inflammation changes in adipose tissues. Monocytes can 
differentiate to the type-1 (M1) and type-2 (M2) macrophages in the 
exposure of different cytokines. As shown in the figure, in the lean 
adipose tissue monocyte differentiate mainly to M2 macrophages and 
through Th2 produces anti-inflammatory cytokines IL-10, TGF-β, 

PDL-1, and anginase 1. While in the obese state, they differentiate 
mostly to M1 macrophages and release, inflammatory factors such as 
TNF-α, IL-1α and β, IL-6, leukotriene B4 (LTB4), and nitric oxide 
(NO) which exacerbate the obesity-related inflammation
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of cytokine signaling, that are proteins that bind to insu-
lin receptor and hinder IRS phosphorylation by it. TNF-α 
increases lipolysis in adipocytes, raises FFA, and reduces 
insulin sensitivity. An elevated level of TNF-α, IL-6, and 
MCP-1 is reported in diabetic subjects [97, 98] (Fig. 4; 
Table 1).

There are two subtypes of macrophages including pro-
inflammatory, or M1 type macrophages, and anti-inflamma-
tory, or M2 type macrophages. Each type can repolarize to 
the other one in response to extrinsic factors. For example, in 
tumor niches, a high level of lactate stimulates polarization 
to M2 macrophages type. By elimination of the lactate, they 
repolarized to M1 state [99]. M1 macrophages are depend-
ent on glycolysis and Krebs cycle, while M2 macrophages 
rely on fatty acid oxidation. The other difference between 
M1 and M2 macrophages is their secreted factors. M2 cells 
produce anti-inflammatory cytokines like IL-10, whereas 
M1 cells release inflammatory factors such as TNF-α, IL-1α 
and β, IL-6, leukotriene B4 (LTB4), and nitric oxide (NO) 
[97] (Fig. 4). In lean adipose tissue, IL-4 level is high and 
leads to polarization of residential as well as newly attracted 
macrophages to M2 state. Adiponectin, secreted from adipo-
cytes, helps the M2 state maintenance. In contrast, in obe-
sity, adipose tissue undergoes substantial changes in cellu-
lar composition, and secreted mediators. Altogether, these 
changes are in favor of polarization to M1 macrophages 
[97, 100, 101]. MATE1 and OCTs are expressed strongly 
in macrophages and other inflammatory cells. Both OCT1 
and OCT3 are expressed on monocytes, macrophages, den-
dritic cells, CD4+ T cells, and peripheral blood mononu-
clear cells [102]. By taking these into account, immune cells 
are a good target for metformin. Metformin inhibits NF-κβ 
signaling through the hindrance of IKKα1β activation via 
TAK1, independent of AMPK [87]. Furthermore, activation 
of AMPK by metformin inhibits NF-κβ signaling and allevi-
ates inflammation [92]. Another study has shown that met-
formin could inhibit NLRP3 inflammasome through AMPK/
mTOR signaling axis and consequently boosts M1–M2 type 
macrophages polarization and accelerates tissue and wound 
healing. This finding is important in diabetic patients with 
diabetic ulcers, but this application of metformin is yet to be 
studied precisely [103].

Conclusion

This review aims to concisely discuss the pharmacodynam-
ics and pharmacokinetics of metformin. It was revealed 
that inhibition of hepatic gluconeogenesis by metformin 
through AMPK activation and inhibition of mG3PDH pro-
vides enough time for the body to manage the food-borne 
glucose increase. On the other hand, metformin can exert 
its glucose-lowering effect by increasing insulin sensitivity 

and inducing peripheral glucose disposal. Besides, it was 
demonstrated that metformin decreases glucose absorp-
tion from the intestine and it is enough for the body to 
deal with glucose increase after eating. Overall, it can be 
suggested that all of the mentioned mechanisms includ-
ing gluconeogenesis inhibition, decreasing cortisol level, 
antagonizing glucagon signaling, and decreasing glucose 
absorption from the intestine are altogether involved in 
acute and chronic glucose-lowering effects of metformin. 
Besides the glucose-lowering effect of metformin, it 
reduces obesity, inflammaging, and age-related sterile 
meta-inflammation which by increasing insulin sensitiv-
ity is also beneficial for its glucose-lowering effect.
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