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Abstract
Background  The upregulation of cyclooxygenase-2 (COX-2) is involved in neuroinflammation associated with many neuro-
logical diseases as well as cancers of the brain. Outside the brain, inflammation and COX-2 induction contribute to the patho-
genesis of pain, arthritis, acute allograft rejection, and in response to infections, tumors, autoimmune disorders, and injuries. 
Herein, we report the radiochemical synthesis and evaluation of [18F]6-fluoro-2-(4-(methylsulfonyl)phenyl)-N-(thiophen-
2-ylmethyl)pyrimidin-4-amine ([18F]FMTP), a high-affinity COX-2 inhibitor, by cell uptake and PET imaging studies.
Methods  The radiochemical synthesis of [18F]FMTP was optimized using chlorine to fluorine displacement method, by 
reacting [18F]fluoride/K222/K2CO3 with the precursor molecule. Cellular uptake studies of [18F]FMTP was performed in 
COX-2 positive BxPC3 and COX-2 negative PANC-1 cell lines with unlabeled FMTP as well as celecoxib to define specific 
binding agents. Dynamic microPET image acquisitionwas performed in anesthetized nude mice (n = 3), lipopolysaccharide 
(LPS) induced neuroinflammation mice (n = 4), and phosphate-buffered saline (PBS) administered control mice (n = 4) using 
a Trifoil microPET/CT for a scan period of 60 min.
Results  A twofold higher binding of [18F]FMTP was found in COX-2 positive BxPC3 cells compared with COX-2 negative 
PANC-1 cells. The radioligand did not show specific binding to COX-2 negative PANC-1 cells. MicroPET imaging in wild-
type mice indicated blood–brain barrier (BBB) penetration and fast washout of [18F]FMTP in the brain, likely due to the 
low constitutive COX-2 expression in the normal brain. In contrast, a ~ twofold higher uptake of the radioligand was found 
in LPS-induced mice brain than PBS treated control mice.
Conclusions  Specific binding to COX-2 in BxPC3 cell lines, BBB permeability, and increased brain uptake in neuroinflam-
mation mice qualifies [18F]FMTP as a potential PET tracer for studying inflammation.
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Introduction

Cyclooxygenase (COX) or prostaglandin endoperoxidase 
synthase, is an enzyme involved in the biosynthesis of 
prostaglandins, prostacyclins and thromboxanes from ara-
chidonic acid [1–3] Among the three known isoforms of 
COX (COX-1, COX-2 and COX-3), COX-1 has predomi-
nantly constitutive activity and is involved in many normal 
physiological functions [1–3]. In contrast, COX-2 is induc-
ible, with relatively low constitutive activity and mostly 
found in kidney, brain, and heart [1–6]. The third isoform, 
COX-3, may be responsible for febrile response and medi-
ates the antipyretic effects of aspirin and acetaminophen. 
COX-2 inhibition mediates the analgesic activities of non-
steroidal anti-inflammatory medications (NSAIDs) [7–9]. 
COX-2, induced by inflammatory stimuli, catalyzes pros-
tanoid formation associated with inflammation and prolif-
erative diseases.1–3 In the central nervous system (CNS). 
Neuroinflammation and COX-2 induction are implicated 
in the pathogenesis of neurodegenerative diseases such as 
Alzheimer’s disease (AD), Parkinson’s disease (PD), amyo-
trophic lateral sclerosis (ALS), as well as psychiatric disor-
ders, smoking, seizure disorders, and traumatic brain injury 
(TBI) [10–15]. COX-2 induction is also involved in pain, 
arthritis, cancers, myocardial infarction, and acute allograft 
rejection [5, 16–21]. COX-2 inhibitors (COXIBs) have anti-
inflammatory effects [22–24].

Monitoring in  vivo changes in COX-2 expression 
allows quantification of inflammation, tracking of disease 
course, and assessing target occupancy of newly developed 
NSAIDs and or monitoring clinical use of FDA-approved 
COXIB medications. At present, COX-2 quantification is 
accomplished by ex vivo assays of tissue samples, inva-
sively obtained from biopsies. PET imaging would allow 
non-invasive and in vivo visualization of COX-2 through-
out the body. Existing COX-2 PET ligands are not suc-
cessful for in vivo quantification of COX-2 due to limita-
tions such as suboptimal COX-2 affinity, high nonspecific 
binding, de18F-fluorination, and skeletal uptake, poor brain 
or organ uptake, inability to detect basal or low level of 

COX-2, and poor signal to noise ratio due to lipophilicity 
[25–35].[11C]TMI, a highly potent COX-2 inhibitor, devel-
oped by our group is the only radiotracer exhibiting par-
tial blocking of constitutive COX-2 level in baboon brain, 
however, its ability to image inflammation in animal dis-
ease models is yet to be proven [36]. A recent report dem-
onstrates that [18F]pyricoxib, a COX-2 inhibitor belonging 
to the class of 2-(4-methylsulfonylphenyl)lpyrimidines, 
and triazole analog [18F]triacoxib showed a higher binding 
in COX-2 positive cells (HCA-7) compared with COX-2 
negative cells (HCT-116). However, both tracers demon-
strated only modest binding in xenografts, in vivo and did 
not show significant uptake in the brain (Fig. 1) [37–39]. 
Similarly, [11C]MC1, another member of the class of 
arylpyrimidines, showed increased binding to COX-2 
in animal models of neuroinflammation (Fig. 1) [40]. 
Despite promising uptake in neuroinflammation, [11C]
MC1 failed to detect constitutive or low level of COX-2 in 
the brain under conditions without inflammation and cold 
MC1 confirmed no specific binding in CNS and periph-
ery organs [41]. We posit that COX-2 selective inhibitors 
with sub-nanomolar affinity and radiolabeled with long-
lived isotopes such as 18-F (decay half-life 110 min) may 
help to overcome some of the limitations of the known 
tracers. Hence, herein, we report the radiosynthesis and 
evaluation of [18F]6-fluoro-2-(4-(methylsulfonyl)phenyl)-
N-(thioph-en-2-ylmethyl) pyrimidin-4-amine ([18F]
FMTP; COX-2 IC50 = 2.5 nM), as potential PET ligand 
for COX-2 imaging in brain and periphery (Fig. 1) [42, 
43]. The synthesis of unlabeled FMTP was reported by 
reacting thiophen-2-ylmethanamine with 4,6-difluoro-
2-(4-(methylsulfonylphenyl) pyrimidine [44]. We choose 
[18F]FMTP, belonging to the pyrimidine class of COX-2 
inhibitors, as a potential PET tracer for COX-2 imaging 
owing to the presence of a chemically and metabolically 
stable radiolabeling position on the aromatic ring, level 
of lipophilicity for passive brain entry, and high COX-2 
affinity and high selectivity index of COX-1/COX-2 of the 
pyrimidine-based class of COX-2 inhibitors having the 
FMTP structure [44, 45].

Fig. 1   Chemical structures of [11C]MCI, [18F]Pyricoxib, [18F]Triacoxib and [18F]FMTP
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Materials and methods

All commercial chemicals and solvents used in the synthe-
sis were purchased from Sigma-Aldrich Chemical Co. (St. 
Louis, MO), or Fisher Scientific Inc. (Springfield, NJ) and 
were used without further purification. 18F-fluoride was pro-
duced using RDS112 cyclotron (Siemens, Knoxville, TN). 
Gamma-ray detector (Bioscan Flow-Count fitted with a NaI 
detector) coupled in series with the UV detector (Waters 
Model 996 set at λ 254 nm) was used for detection of radi-
olabeled products. Data acquisition for both the analytical 
and preparative systems was accomplished using a Waters 
Empower Chromatography System. BxPC3 and PANC1 
pancreas carcinoma human cell lines were obtained from 
ATCC (Manassas, VA). Dynamic microPET image acquisi-
tions were performed with Trifoil microPET/CT scanner.

Synthesis of Cl‑MTP

Thiophen-2-ylmethanamine (68 mg, 0.6 mmol) was added 
to a solution of 4,6-dichloro-2-(4-(methylsulfonyl)phenyl) 
pyrimidine (0.3 mmol, 90 mg) in 4 mL dry dichloromethane 
and 0.1 mL triethylamine. The reaction mixture was stirred 
at room temperature for 1 h and at this time, HPLC analy-
ses showed > 95% consumption of the chloro-substrate. The 
reaction mixture was evaporated and chromatographed over 
silica gel using 40:60 ethylacetate-hexane to afford 75 mg 
(65%) of Cl-MTP as pale yellow solid.

Cl-MTP: mp: 169–171  °C [42, 43, 45]; 1H NMR 
(400 MHz, CDCl3): 3.0 (3H, s, CH3), 4.85 (2H, bs, CH2), 
5.3 (1H, bs, NH), 6.3 (1H,s), 6.9 (1H, m), 7.0 (1H,d, 
J = 2.81 Hz), 7.2 (2H, d, overlapped with CDCl3), 7.9 (2H, 
d, J = 8.53 Hz),8.5 (2H,d, J = 8.56 Hz).

Synthesis of fluoro‑MTP

Tetra-n-butyl ammonium fluoride (TBAF) (0.1 mL, 1 M 
solution in. THF) was added to a solution of Cl-MTP 
(20 mg, 0.05 mmol) in DMF (2 mL). The resulting solution 
was heated at 140 °C for 1 h at which time point, HPLC 
analyses showed > 95% consumption of Cl-MTP. The reac-
tion mixture was then allowed to cool, diluted with water 
(20 mL), and extracted with ethyl acetate (3 × 10 mL). The 
combined ethyl acetate fractions were further washed with 
saturated brine, dried over anhydrous MgSO4 and chromato-
graphed over silica gel (20:80 ethyl acetate-hexane) to afford 
15 mg (85%) of FMTP as pale yellow solid. The analytical 
data of F-FMTP is in agreement with the reported data [44].

FMTP: m.p: 131.5 °C; 1H NMR (400 MHz, CDCl3): δ 
3.0 (3H, s, CH3), 4.8 (2H, bs, CH2), 5.9 (1H, bs, NH), 6.4 
(1H, s), 6.9–7 (1H, m), 7.05 (1H, d, J = 2.82 Hz), 7.2 (2H, 

d, overlapped with CDCl3), 8 (2H, d, J = 8.51), 8.6 (2H,d, 
J = 8.54); HRMS (MH+) calculated for: C16H15FN3O2S2: 
364.0512; Found: 364.0533.

Radiosynthesis of [18F]FMTP

18F-fluoride (Eclipse cyclotron, Siemens) trapped from 
QMA was eluted with 1 mL of 10:1 acetonitrile: water, 
containing kryptofix K222 (36 mg) and potassium carbon-
ate (2 mg). The reaction mixture was azeotropically heated 
and dried at 98 ºC under a stream of argon by the repeated 
addition of acetonitrile (4 × 0.5 mL). A solution of ~ 2 mg 
of Cl-MTP in 500 μL of DMSO was then added to the 
reaction vial, sealed, and heated for 20 min at 140 ºC. The 
reaction mixture was allowed to cool to room temperature 
and diluted with 20 mL water and passed through a clas-
sic C-18 Sep-Pak cartridge and eluted with 1 mL acetoni-
trile. The crude product in acetonitrile was injected onto 
a semi-preparative HPLC column (Phenomenex, Prodigy 
ODS-Prep 10 × 250 mm, 10 μ; and eluted with 50:50 ace-
tonitrile-0.1 M ammonium formate with a flow rate of 8 mL/
min).[18F]FMTP eluted at 9–10 min was collected based on 
the γ-detector reading, diluted with 50 mL of deionized 
water, and passed through a classic C-18 Sep-Pak cartridge, 
washed with 10 mL of deionized water and eluted with 1 mL 
of ethanol. Reconstruction of the product in 1 mL of abso-
lute ethanol afforded [18F]FMTP in 35 ± 5% yield (EOS). 
A portion of the ethanol solution was analyzed by analyti-
cal HPLC (Phenomenex, Prodigy ODS(3) 4.6 × 250 mm, 
5 μ; mobile phase; 60:40 acetonitrile-0.1 M AMF, flow rate 
2 mL/min, tR =  ~ 5 min) to determine the specific activity, 
chemical and radiochemical purities. The ethanol solution 
was then diluted to a volume of 10 ml with saline and filtered 
through a sterile environment, and a portion of this solution 
was formulated for injection.

Cell uptake of [18F]FMTP.

BxPC3 and Panc1 pancreas carcinoma human cell lines 
were plated on a 24-well plate at 2 × 105 cells/well. After 
48 h, [18F]FMTP was added (2.0 µCi/mL) to the cell medium 
for 30 min. For blocking experiments, non-labelled FMTP 
or celecoxib (5 M) was added to cells 30 min before [18F]
FMTP. After incubation with [18F]FMTP cells were washed 
4 times with cold PBS, lysed with 0.1 N NaOH, and counted 
in a gamma counter (Hidex AMG, LabLogic, Tampa, FL).

Micro PET imaging

The animals (male white mice) were anesthetized with iso-
flurane (1–2% isoflurane in 100% oxygen) using a nose cone, 
and a 29-gauge needle connected to a catheter was placed 
into the lateral tail vein (n = 3). For neuroinflammation, mice 
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were stereotactically injected with 5 µg of LPS or PBS (con-
trols) in the brain, adopting a known procedure [46, 47], and 
waited 24 h for imaging experiments (n = 4). The animal 
was placed in a prone position on the platform of the scan-
ner and moved into the center of the field of view guided by 
laser beam calibration. Immediately after scan start, [18F]
FMTP (~ 2.5 MBq 25 mL in 20% ethanol-saline solution) 
was injected through the tail-vein catheter manually. The 
error caused by the injector and catheter was corrected by 
subtracting the remaining dose. 40 min dynamic imaging 
was acquired on a microPET scanner (Siemens Inveon). The 
acquired list-mode data were reconstructed with 3-D ordered 
subset expectation maximization (OSEM) algorithm [48, 49] 
using the software of Siemens Inveon Acquisition Work-
place with a framing protocol of 2 × 30 s, 4 × 60 s, 3 × 120 s, 
3 × 180 s, and 4 × 300 s.

PET data analysis

Using PMOD software (version 4.0, Switzerland), the three-
dimensional ellipsoid volume of interests (VOIs) ranging 
from 2-to-6 mm were placed manually at the center of the 
brain, heart (blood-pool), liver, proximal humerus (bone) 
and posterior cervical muscle. The standardized uptake val-
ues (SUVs) were estimated using a calibration factor cal-
culated from the phantom study and time-activity curves 
(TACs) were derived from VOIs in the series of recon-
structed images.

Results and discussion

Synthesis of FMTP and radiosynthesis of [18F]FMTP

Synthesis of Cl-MTP, the radiolabeling precursor molecule, 
was achieved in four steps from commercially available 
4-(methylthio)benzimidamide in 65% yield by adopting a 
previously reported procedure (Scheme 1) [45]. The non-
radioactive standard FMTP was obtained in 85% yield by 
reacting Cl-MTP with TBAF in dimethyl sulfoxide (DMSO) 
as shown in Scheme 1. Our approach for the synthesis of 
FMTP was different than previously reported [43]. The 
radiosynthesis of [18F]FMTP was optimized by reacting 
18F-fluoride/K222/K2CO3 using chlorine to 18F-fluorine dis-
placement reaction with the precursor molecule (Scheme 1). 
To our knowledge, this is the first successful radiolabeling of 
a chlorine to-18F-fluorine displacement at the 6th position 
of aryl[1,3]pyrimidines.[18F]FMTP was obtained in 35 ± 5% 
yield at EOS with > 99% radiochemical purity and a molar 
activity of 92.5 ± 18.5 GBq/μ mol (n = 10). The total synthe-
sis time of [18F]FMTP was 1 h at EOS and the radioligand 
was found to be stable in 10%-ethanol-saline formulation.

Cell uptake of [18F]FMTP

After the successful radiosynthesis and formulation, proof 
of concept and selectivity of [18F]FMTP binding to COX-2 

Scheme 1   Synthesis of FMTP and radiosynthesis of [18F]FMTP
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was examined by evaluating the tracer uptake in COX-2 
positive BxPC3 and a control COX-2 negative PANC1 
human pancreatic carcinoma cell lines. Figure 2 illustrates 
a > twofold uptake of [18F]FMTP in BxPC3 cells compared 
with PANC1 cells. This binding was substantially blocked 
with unlabeled FMTP. Blocking with celecoxib, an FDA 
approved COX-2 inhibitor, produced less proportional 
blocking compared with cold FMTP. As anticipated [18F]
FMTP showed negligible binding to PANC1 cells and no 
specific binding with FMTP or celecoxib block.

MicroPET evaluation of [18F]FMTP

MicroPET evaluation of [18F]FMTP was initially performed 
in nude white mice (n = 3). Figure 3 shows the summed early 
frames (0–10 min) and total frames (0–40 min) of microPET 
images. As evident from the images, the tracer penetrates 
the BBB and subsequently shows a fast washout of activity 
from the brain. Time activity curves (TACs) also indicate an 
initial rapid influx of radioactivity followed by rapid wash-
out (Fig. 4). The uptake of [18F]FMTP peaked around one 
minute in heart and brain and then decreases rapidly. The 
absence of retention of [18F]FMTP activity in these organs 
is predicted due to low COX-2 expression in the normal 
mouse brain. The highest radioactivity outside the heart was 
found in the liver, and the delay to peak at 5–10 min is prob-
ably due to the accumulation of radioactive metabolite(s). 
The tracer did not show uptake in the spine and skeleton 
which indicates a lack of de18F-fluorination, an advantage 
of [18F]FMTP for use in in vivo PET imaging. We studied 
the binding of [18F]FMTP in LPS-induced neuroinflamma-
tion in mice compared with vehicle (PBS) treated-mice [46]. 
Intracranial injection of LPS in mice is known to generate 
COX-2 induction and neuroinflammation after around 24 h 
[47]. Therefore, we performed PET imaging of LPS treated 
mice after 24 h with [18F]FMTP and found an approximately 
twofold increase of tracer binding in the brain compared 
with PBS-treated mice (n = 4) (Fig. 5). TACs in whole-brain 
confirmed higher binding of [18F]FMTP in LPS treated mice 
compared with PBS treated controls (Fig. 6).    
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Fig. 2   Binding of [18F]FMTP in BxPC3 and PANC-1 cells. Values 
are reported as the mean ± SD from four independent experiments

Fig. 3   microPET images of [18F]FMTP in mice, A: 0–10 min summed transaxial; B: 0–10 min summed sagittal; C: 0–40 min summed transax-
ial; D: 0–40 min summed sagittal. Crosses represent the region with the brain
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Conclusions

In summary, we report a new method for the radiosynthe-
sis of [18F]FMTP via a chlorine-to-18F-fluorine displace-
ment reaction of aryl[1,3]pyrimidine core molecule. Proof 
of concept of the use of [18F]FMTP for quantifying COX-2 
was established first, in vitro, in COX-2 positive BxPC3 
cells. MicroPET imaging of normal mice demonstrated 
BBB penetration and a fast washout of radioactivity from 
the brain, likely due to the low concentration of COX-2 in 

the normal brain.[18F]FMTP showed a higher binding in 
LPS-induced neuroinflammation compared to binding in 
the brain of control mice. Specific binding to COX-2 in 
cell lines, lack of in vivo de-18F-fluorination and skeletal 
uptake, and BBB permeability, and higher brain binding 
in neuroinflammation qualifies [18F]FMTP as a potential 
PET tracer for imaging inflammation where COX-2 over-
expression is reported.
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