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Abstract
Background  Glioblastoma multiforme (GBM), as the broadest cerebrum tumor, is resistant to current medical interventions, 
particularly chemo/radiation. Hence, it necessitates further therapeutic options that could enhance the efficacy of existing 
modalities.
Methods  A comprehensive and systematic review of literature on the NF-κB signaling pathway-contributed in the patho-
genesis of GBM with a focus on natural products was carried out.
Results  Several examinations have shown that nuclear factor (NF)-κB is participated in apoptosis, cellular proliferation, 
angiogenesis, metastasis, invasion, and many other processes implicated in GBM pathobiology. Recent studies have provided 
that NF-κB regulation is the primary pharmacological target for GBM therapy. Specific natural products are involved in 
several signaling pathways implicated in tumor growth and apoptosis of GBM cells.
Conclusion  In the current review, we elaborate on the role of NF-κB as a promising target in GBM and discuss some natural 
products affecting the NF-κB signaling pathway.
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Introduction

Glioblastoma multiforme (GBM), known as the terminator 
of the brain with an average survival rate of 1 year, is an 
incurable inflammatory brain tumor, regardless of maximal 
standard chemo/radiation therapy [1, 2]. Molecular patho-
genesis of GBM is believed to contain various genetic modi-
fications resulting in aberrant pathway activity involving cell 
motility, angiogenesis, regulation of the cell cycle, microme-
tastasis, and apoptosis [3, 4]. The current therapeutic inter-
ventions, particularly temozolomide (TMZ, an alkylating 
agent) and bevacizumab (an antiangiogenic agent), remain 
insufficient to ablate the invasive and metastatic behavior 
of GBM [5, 6]. Therefore, considering this extremely inva-
sive nature, new therapeutic modalities for GBM patients 
are essential.

The recent trials indicate that the activation of nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-
κB), as a characteristic feature of inflammation, causes an 
unfavorable prognosis in GBM patients [7]. Interestingly, it 
has lately been noted that inflammatory symptoms of GBM 
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(brain edema and necrosis of surrounding tissues affected by 
highly invasive nature of GBM cells) are identified through 
macrophages/microglia infiltrations, inflammatory cytokines 
production, and NF-κB activity, boosting GBM development 
and chemoresistance [8]. While aberrant activation of the 
NF-κB cascade is commonly discovered in GBM, its vital 
functions against tumor growth stay obscure.

Many oncogenic mechanisms are present in GBM, and 
several prior studies addressed how gliomagenesis can be 
suppressed by promoting procedures varying from cellular 
proliferation to invasion and metastasis [9]. Herein, this 
study will concentrate specifically on the participation of 
natural products affected NF-κB mechanism and the conse-
quences of aberrant NF-κB activity in GBM.

Structural and functional properties 
of NF‑κB

NF-κB is a cluster of proteins responsible for regulating 
cytokine production, survival, and DNA synthesis [10]. 
All proteins of the NF-κB family contain a Rel homology 
domain in their N-terminus. Based on its structure, NF-κB, 

as a multi-subunit transcriptional factor, is comprised by 
heterodimers and homodimers of the five members of the 
Rel family, including p65 (RelA), RelB, c-Rel, p52 (NF-
κB2, p100), and p50 (NF-κB1, p105) [11, 12]. RelA, RelB, 
and c-Rel have a transactivation domain in their C-termini. 
On the other hand, the NF-κB1 and NF-κB2 proteins are 
synthesized as significant precursors, p105, and p100, which 
are processed to generate the mature NF-κB subunits, p50 
and p52, respectively. The p50 and p52 proteins have no 
intrinsic ability to promote transcription and have, therefore, 
been indicated to behave as transcriptional repressors when 
interacting as homodimers κB components [13].

The inhibitors of kappa B (IκBs) are a class of associated 
enzymes with an N-terminal structural region, accompanied 
by six or more ankyrin chains and a PEST domain close 
to their C terminus. Although the IκB family consists of 
IκBε, IκBβ, IκBα, and Bcl-3, the best-studied and major IκB 
protein is IκBα [14]. Due to its contact with the inhibitor 
IκBα, NF-κB is kept inactive in unstimulated cells, and the 
structure is generally situated in the cytoplasm. In reaction to 
stimulators, such as cytokines (TRAIL, tumor necrosis factor 
[TNF]-α), vascular endothelial growth factor (VEGF), epi-
dermal growth factor (EGF), and DNA damage, IκB kinases 

Fig. 1   Mechanism of action of NF-κB in cells. The NF-κB subunits, 
including Rel and p50 proteins, are utilized as an example. In an inac-
tivated situation, NF-κB is complexed to IκBα (an inhibitory protein). 
A variety of signals might induce the enzyme IκB kinase (IKK), 
leading to phosphorylation of the IκBα protein, resulting in ubiquit-
ination, dissociation of IκBα from NF-κB, and eventual proteasome 
degradation of IκBα. Then, the activated NF-κB translocated into the 
nucleus and bound to specific sequences of DNA. The structure of 

DNA/NF-κB then produces other enzymes such as coactivators and 
RNA polymerase that transcribe downstream DNA into mRNA. The 
result will be a shift in the feature of the cell, mRNA being trans-
formed into the protein. TNF-α tumor necrosis factor-alpha, IL-1β 
interleukin 1 beta, ROS reactive oxygen species, IκBα inhibitor of 
kappa B, RelA RELA proto-oncogene, NF kappa B subunit, IKK 
inhibitor of NF-kappa B kinase
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(IKKα or IKKβ), are triggered and phosphorylate IκBα, 
causing to its degradation by a K48 ubiquitin-mediated pro-
teasomal process [13]. As shown in Fig. 1, we demonstrated 
the mechanism of NF-κB action in human cancer.

A range of stimuli might trigger the mammalian NF-κB 
signaling mechanisms, including stress, cytokines (IL-1β 
and TNF–α), ultraviolet and ionizing irradiation, patho-
gen-associated molecular patterns, DNA damage, onco-
genic stress, reactive oxygen species (ROS), and growth 
factors [12, 15]. The NF-κB family is involved in numer-
ous mechanisms, such as apoptosis, reprogramming of 
metabolism, immunity, cell cycle progression, tumor 
progression, invasion, metastasis, angiogenesis, cell sur-
vival, chemoresistance, and inflammation (Fig. 2) [16, 
17]. Upregulation of inflammatory cytokines, including 
IL-8, IL-6, IL-11, IL-1β, IL-15, and C–C motif chemokine 
ligand (CCL)-2 and genes with diverse pathobiological 
activities, including proteolysis (TFPI2, PLAU), cell 
adhesion (CD44), cell cycle modulators (Cyclin D1), and 
cyclooxygenase (COX)-2 are the well-known targets of the 
NF-κB pathway [18]. In addition to nuclear translocation, 
the regulation of NF-κB signaling involves some other 
regulatory processes, including post-translatory alterations 
of particular NF-κB subunits, protein–protein interactions 
found in specific gene regulatory locations, and nuclear 
export mechanisms. Thereby, a complex combination 
of specific processes that might differ in their upstream 

stimuli and/or downstream targets typically results in dif-
ferent cellular responses to NF-κB [15].

The NF‑κB‑based mechanisms involved 
in GBM

P50 and p65 are the main dimers for NF-κB found in rest-
ing GBM cells. P50 is formed from parental protein p105 
in a co-translational manner. Since p50 does not have a 
C-terminal transactivation domain, it works at an inhibi-
tory capacity except when it is either dimerized with a 
C-terminal transactivation domain subunit such as p65 
or linked with a transactivating coregulator [19]. Even 
though p65 is frequently retained in the cytoplasm at rest, 
a high amount of cytokine and oncogene activation occurs 
in malignant cells, which results in an enhanced IKK acti-
vation and translocation of the nuclear p65. Given the 
crucial role that p65 played to promote the transcriptional 
activity of NF-κB, this subunit has been the focus of the 
majority of the studies examined for NF-κB in GBM [20].

As mentioned, NF-κB is the center of intracellular 
signal transductions implicated in influencing numerous 
physiological and pathological procedures, such as cell 
proliferation, angiogenesis, and apoptosis [21]. A study 
indicated that several gene promoters or enhancers, such as 
Cyclin D1, intercellular adhesion molecule-1 (ICAM-1), 
C-Myc, Bcl-xL, and Bcl-2 were correlated with cell apop-
tosis and proliferation. Consequently, NF-κB can lead to 
the expression of these genes, which causes anti-apoptosis 
and other biological impacts [22]. In addition, in a multi-
tude of malignant cancers, such as pancreatic cancer, pros-
tate cancer, melanoma, and GBM, NF-κB is progressively 
expressed [23]. Over the past few years, a vast amount of 
research has shown that by adjusting associated genetic 
variables, the NF-κB signaling pathway can mediate the 
development and progression of GBM cells [16, 24, 25]. 
The genetic alterations detected most frequently in GBM 
include p53 downregulation, epidermal growth factor 
receptor (EGFR, as a receptor tyrosine kinase) amplifica-
tion and mutation, INK4A loss, phosphoinositide 3 kinase 
(PI3K)/protein kinase B (Akt) upregulation, phosphatase 
and tensin homolog (PTEN) loss, and neurofibromin 1 
(NF1, as a consequence of PI3K/Akt activation) down-
regulation, and MDM2 amplification [11, 26]. Many tri-
als have indicated that oncogenic EGFR pathways signifi-
cantly contribute to tumor development and invasion of 
GBM, implicating a pivotal role for NF-κB in at least some 
of the tumor-inducing functions of this receptor [27].

It has been shown that an oncogenic upstream acti-
vator of NF-κB, receptor-interacting protein 1 (RIP1), 
upregulates MDM2, a specific inhibitor of p53, indicat-
ing a mechanical relation between NF-κB and p53. It is 

Fig. 2   NF-κB-regulated processes and factors involved in cancer 
pathobiology. Bcl-2 B cell lymphoma-2, COX-2 cyclooxygenase-2, 
TNF-α tumor necrosis factor-alpha, IL interleukin, ICAM-1 intercel-
lular adhesion molecule-1, VEGF vascular endothelial growth factor
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noteworthy to say that both MDM2 and RIP1 are usually 
overexpressed in GBM [28, 29]. It has been established 
that EGFR variant III (EGFRvIII) induces GBM growth 
and angiogenesis through the IL-8, as a common proan-
giogenic gene, and NF-κB signaling pathway [21, 30]. In 
addition to this, NF-κB induces the VEGF expression, 
a significant factor of angiogenesis. Consistently, GBM 
growth and angiogenesis significantly decreased in nude 
mice by inhibiting the signal of NF-κB [31].

Numerous studies have indicated that EGFR promotes 
NF-κB by way of AKT (especially mTORC2 complex), 
and this signaling cascade induces chemoresistance in 
GBM cells [32]. AKT utilizes at least three separate pro-
cesses to activate the transactivation capability of NF-κB. 
First, the IKK α-component, which enhances IKK action, 
can be phosphorylated by AKT. Second, AKT stimulates 
IKK by stimulating the phosphorylation of the mitogen-
activated protein kinase (MAPK). Finally, AKT can also 
target the transactivation domain of RelA, improving the 
activation of NF-κB. This stimulation tends to be inte-
grated into a positive feedback loop, where Akt activation 
of NF-κB further stimulates Akt via down-regulation of 
the PTEN as a PI3K negative modulator [33, 34]. The 
Grb2-associated binder 1 (Gab1) protein and the tyrosine 
phosphatase SHP-2 are two main molecules that are cru-
cial for the association of EGFR to NF-κB transcriptional 
activity via the PI3K/Akt signaling cascade in GBM cells. 
It is found that the Akt/NF-κB signaling pathway regulates 
cell survival, apoptosis, proliferation, and malignant trans-
formation, including GBM [35]. Therefore, in agreement 
with Kapoor et al.’s study, deletion (but not mutated) of 
IκB impacts in GBM pathogenesis and poor survival are 
comparable similar to EGFR amplification [36]. It has also 
been demonstrated in the latest research that NF-κB p65 in 
GBM has often been phosphorylated; p65 was phosphoryl-
ated in 20 out of the 23 GBM tumors tested [37].

Numerous chemical agents have cytotoxic effects 
on GBM through NF-κB blocking. Sulfasalazine, as a 
potent inhibitor of NF-κB activation, induced apoptosis, 
and blocked the cell cycle in some GBM cells and pri-
mary cultures [38]. In addition, the mechanism of action 
of anthelmintic niclosamide revealed inhibitory effects 
through NF-κB signaling pathways in GBM cells [39]. In 
another research that focused on GBM cells (U138MG, 
C6, U87, and U373), the mitochondrial-dependent apop-
tosis induced by the MG132, as a proteasome blocker, was 
specifically inhibited by both PI3K and NF-κB pathways 
[40]. Other chemical agents, including BAY117082 and 
arsenic trioxide, have also been revealed to induce apop-
tosis of GBM cells through NF-κB inhibition [40, 41]. 
These combined observations fortify the role of the NF-κB 
signaling pathway and provide a mechanistic explana-
tion in the pathogenesis of GBM. In the next section, we 

discussed some natural products affecting the NF-κB sign-
aling pathway in GBM.

Therapeutic natural targeting of the NF‑κB 
pathway in GBM

There are currently at least 120 distinct natural substances 
isolated from plants that are regarded to be significant 
medicines, which is utilized as anticancer agents [4, 
42–46]. Some of the examples include vincristine, vin-
blastine, and paclitaxel [47, 48]. To date, several medicinal 
plants and natural products are used against inflammatory 
diseases, including cancer. For instance, oral administra-
tion of Scutellaria solution, as a genus of flowering plants 
in the mint family, postponed the development of F98 
GBM in F344 rats through inhibition of glycogen synthase 
kinase (GSK)-3α/β, Akt, and NF-κB phosphorylation [49]. 
In addition, Avarol and its derivates, as sesquiterpenoid 
hydroquinone, has potent cytotoxicity on different cancer 
cells [50–54], including U251 GBM cells [44].

It is recognized that several nutritional chemopreven-
tive compounds, including curcumin, resveratrol, and 
some potential flavonoids, prevent the initiation of NF-κB 
[55–58]. These surveys highly favor the hypothesis that 
NF-κB is a functionally appropriate target for chemopre-
ventive medicines and nutritional compounds, displaying 
their feature in the earliest oncogenesis phases [59]. The 
importance of natural products as modulators of NF-κB 
in the treatment of GBM may be a beneficial strategy; 
therefore, we reviewed some natural products that have 
been used to block NF-κB signaling.

Resveratrol

Resveratrol is a polyphenolic compound that exhibits anti-
tumor, anti-inflammation, immunomodulation, and anti-
invasion activities in multiple cancer cells [60]. Many 
studies have demonstrated that resveratrol effectively 
suppressed NF-κB signaling by inhibiting the actions 
of NF-κB and IκB kinase, providing a novel strategy 
for treating cancer [55, 61]. Jiao et al. proved that res-
veratrol inhibited PI3K/Akt/NF-κB signaling pathway and 
the subsequent suppression of matrix metalloproteinase 
(MMP)-2 expression, leading to inhibition of invasion in 
GBM-initiating cells [62]. In line with this, it has been 
discovered that the connection between NF-κB action and 
GBM invasiveness is owing to the processing of fibronec-
tin by MMPs, which enables the integration of this matrix 
element directly into the surrounding tumor cells [63]. 
Besides, resveratrol reversed TMZ resistance by down-
regulation of O-6-methylguanine-DNA methyltransferase 
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(MGMT) in GBM cells (T98G) by the NF-κB-dependent 
pathway [64]. Numerous studies have indicated that 
NF-κB activation in various cancer cells, mainly related 
to drug resistance, is mediated by many chemotherapy 
drugs and radiation due to its role in MGMT transcription 
[65]. NF-κB-p65, a subunit of NF-κB, has led to enhanced 
expression of MGMT in a study reported, while NF-κB 
inhibitor abolishes the elevated MGMT expression [66, 
67]. Hence, targeting NF-κB, IκB kinase, and MGMT 
might be useful in the anti-GBM potential of resveratrol.

Quercetin

Quercetin, as a plant-derived phenolic compound, induces 
cell death of breast, liver, and brain cancer cells, and reports 
to have antihypertensive, anticarcinogenic, anti-inflamma-
tory, and antioxidant properties [68]. Notably, quercetin 
regulates various protein kinases, especially the PI3K sign-
aling pathway [69]. Kiekow et al. showed quercetin induces 
apoptosis in GBM cells by modulating caspase-3 activation 
and NF-κB nuclear translocation, suggesting that quercetin 
is a potential flavonoid compound to develop a new anti-
GBM treatment [70]. It has been proved that overexpression 
of phospholipase D (PLD) induces expression of MMP-2, 
and consequently, GBM cell invasion via protein kinase C 
and protein kinase A/NF-κB-mediated signaling pathways 
[71, 72]. In line with this, a study indicated that quercetin 
suppressed NF-κB-induced PLD-1 expression via the miti-
gation of NF-κB transactivation [73].

Apigenin

Apigenin, as a dietary flavonoid, presents in tea leaves and 
fruits, exerting various biological effects, including immu-
noregulatory, antioxidant, cytotoxic, anti-viral, anti-inflam-
mation, and anticancer (lung, breast, liver, and prostate) 
effects [74, 75]. It has been proved that the immunoregu-
latory of apigenin is mediated by the inhibition of PI3K/
Akt/NF-κB (regulation of IκBα and IKK) axis in multiple 
human cancers [75–77], leading to a reduction in invasion 
and metastasis. Chen and co-workers in their study have 
shown that apigenin mitigated the proliferation of GBM cells 
through suppression of NF-κB and inhibited metastasis via 
the downregulation of MMP-9 [78].

Isothiocyanates

Isothiocyanates, derived from cruciferous vegetables, pos-
sess anti-invasion, anti-inflammatory, and anticancer effects, 
suppressing pancreatic cancer, myeloma, and breast cancer 
[79, 80]. Recently, the neuroprotective and anti-inflamma-
tory impacts of isothiocyanates were evaluated in various 
cancer cells. Studies have shown that the anti-inflammatory 

activities of isothiocyanate might be through inhibition of 
c-Jun N-terminal kinase (JNK)/NF-κB/TNF-α signaling cas-
cade [81]. A study has shown that subsequent treatment of 
phenethyl isothiocyanate increases the sensitivity of TMZ 
resistant T98, U87, and U373 cells by inhibiting expression 
of MGMT via the NF-κB pathway [82]. Moreover, Lee et al. 
have shown that isothiocyanates exerted an inhibitory effect 
on MMP-9 transcription levels through the mitigation of 
NF-κB and activator protein-1 (AP-1), preventing the inva-
sion and migration of C6 GBM cells [83].

Sulforaphane

Sulforaphane, a phytochemical in broccoli sprouts, is con-
sidered to exert cancer prevention impacts by detoxifying 
and improving anti-oxidation ability [84, 85]. Recently, it is 
found that suppression of NF-κB and NF-κB-regulated gene 
expression by sulforaphane is through IκBα, IKK pathway 
in human cancer cells [86]. The studies have shown sul-
foraphane changed Bax/Bcl-2 ratio, caspase-3 activity, mor-
phological features, intracellular Ca2+, DNA fragmentation, 
calpain activity, the release of cytochrome C, caspase-9/-12 
cleavage, NF-κB, and IκBa protein levels in GBM U87MG 
and T98G cells [87]. Furthermore, sulforaphane caused a 
down-regulation of NF-κB expression through inhibition of 
inhibitor-of-apoptosis proteins (IAPs), and the up-regulation 
of IκBα in GBM cells [88].

Alantolactone

Alantolactone, as a sesquiterpene lactone isolated from Inula 
helenium, has a broad variety of pharmacological impacts, 
such as anti-inflammatory, antifungal, antibacterial, and anti-
cancer activities [89]. The antitumor effects of alantolac-
tone have been shown in liver cancer, lung cancer, colorectal 
cancer, brain tumors, and chronic myelogenous leukemia 
[90–92]. It was found that alantolactone causes cell death 
in GBM cells via ROS generation, mitochondrial dysfunc-
tion, and glutathione depletion [92]. The other mechanisms 
triggered by alantolactone include inhibition of COX-2 and 
iNOS expression and downregulation of AP-1 and NF-κB 
via the MyD88 signaling pathways [89]. In line with this, 
Wang et al. have reported that the antitumor effect of alanto-
lactone against GBM is mediated by blocking IKKβ kinase 
activity and interrupting NF-κB/COX-2-mediated signaling 
pathways [93]. Hence, alantolactone might be a potential 
natural agent against GBM due to its dual inhibitory effects 
on IKKβ and NF-κB expression.

Baicalein

Baicalein, as a bioactive flavonoid initially isolated from the 
Scutellaria baicalensis root and has historically been used in 
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anticancer therapies. Numerous studies have demonstrated 
that this compound inhibits NF-κB nuclear translocation, 
representing a useful anti-inflammatory agent in various 
cancer cell lines [94, 95]. It was shown that the NF-κB-p65 
expression and activity was significantly inhibited after bai-
calein treatment in U251 GBM cells, suggesting that baica-
lein is a potential therapeutic natural product against GBM 
[96].

Parthenolide

Parthenolide, a significant sesquiterpene lactone derived 
from Tanacetum parthenium, suppresses NF-κB by inhib-
iting the IκB kinase and modifying the p65 subunit [97]. 
Parthenolide has been utilized to cure migraine and rheu-
matoid arthritis due to its low toxicity characteristics and 
anti-inflammatory effects [98]. The impact of parthenolide 
therapy on animal malignancies has also been explored in 
many studies [15, 99]. Parthenolide suppresses invasion, 
angiogenesis, and proliferation of GBM cells (U373 and 
U87MG). Yu et al. have shown that suppression of NF-κB 

causes anti-GBM activity and inhibits TMZ-initiated chem-
oresistance by down-regulation of MGMT gene expression 
[100]. Molecular trials have demonstrated that parthenolide 
inhibits angiogenesis as well as reduces Akt phosphoryla-
tion and activated mitochondrial signaling, implying that the 
antitumor activity of parthenolide may be mediated by the 
inhibition of NF-κB, inhibition of Akt signaling, and induc-
tion of apoptosis [101]. Although, some evidence has shown 
that treatment of GBM cells with parthenolide causes rapid 
apoptosis through caspase-3/-7 without affecting NF-κB 
regulation [102].

Nepalolide A

A plant of Chinese traditional medicine Carpesium nepa-
lense is a source of sesquiterpene lactone nepalolide A. In 
C6 rat glioma cells, nepalolide A is found to suppress signal-
ing induced by lipopolysaccharide and cytokine and inhibit 
IκB protein phosphorylation. Therefore, inhibition of NF-κB 
activation by nepalolide A was mediated by blockade of the 

Table 1   Effects of indicated natural products on the NF-κB signaling pathway in GBM cells

PI3K phosphoinositide 3-kinase, Akt protein kinase B, NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells, PLD-1 phospholi-
pase D1, MMP-9 matrix metalloproteinase-9, MGMT O-6-methylguanine-DNA methyltransferase, AP-1 Activator protein-1, IKKβ inhibitor of 
nuclear factor kappa-B kinase subunit beta, COX-2 cyclooxygenase-2, IκBα inhibitor of kappa B, iNOS inducible nitric oxide synthase, DMC 
demethoxycurcumin

Natural product Cell line (s) Dose (s) Effect (s) Reference (s)

Resveratrol GBM-initiating cells
T98 cells

0–20 µM
0–800 µM

(1) Inhibition of PI3K/Akt/NF-κB
(2) Suppression of MMP-2
(3) Downregulation of MGMT

[62, 64]

Quercetin C6 rat cells
U87 cells

0–200 µM
0–50 µM

(1) Modulating caspase-3 activation
(2) Modulating NF-κB translocation
(3) Suppression of NF-κB-induced PLD-1 expression

[70, 73]

Isothiocyanate U87 cells 0–40 µM
0–50 µM

(1) Suppression of NF-κB
(2) Downregulation of MMP-9
(3) Inhibiting expression of MGMT via NF-κB pathway

[82, 83]

Apigenin C6 rat cells 0–40 μg/mL (1) Inhibition of MMP-9
(2) Inhibition of NF-κB and AP-1

[78]

Alantolactone U87 cells
U251 cells

0–50 µM (1) Blocking IKKβ kinase activity
(2) Interrupting NF-κB/COX-2

[93]

Sulforaphane T98 cells
U87 cells

20 and 40 µM (1) Inhibition of NF-κB
(2) Inhibition of IκBα protein level

[87, 113]

Baicalein U251 cells 0–40 µM Inhibition of NF-κB-p65 activity and its expression [96]
Parthenolide U373 cells

U87 cells
U251 cells
LN18 cells

0–50 µM
0–40 µM

(1) Inhibition of NF-κB
(2) Inhibition of Akt
(3) Induction of Apoptosis
(4) Down-regulation of MGMT gene expression

[100, 101]

Nepalolide A C6 rat cells 2–10 μM (1) Inhibition of IκB protein phosphorylation
(2) Inhibition of NF-κB activation
(3) Inhibition of the iNOS expression

[103]

Curcumin U87 cells
T67 cells
T98 cells
C6 rat cells

0–50 µM
0–50 µM
0–50  μg/mL (DMC)
5–10 µM

(1) Inhibition of AP-1 and NF-κB
(2) Inhibition of PI3K/Akt pathway
(3) Inhibition of NF-κB/COX-2
(4) Inhibition of Akt/NF-κB pathway

[109–112]
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degradation of IκB, leading to inhibition of the iNOS expres-
sion [103].

Curcumin

Curcumin, as a polyphenol isolated from the root of the 
rhizome, Curcuma longa, possesses antioxidant and anti-
inflammatory activities through a reduction in AP-1 and 
NF-κB activity [104]. Curcumin has been lately initiated 
in phase I clinical trials to treat several high-risk cancers 
[105], The newest literature indicates that curcumin may 
have many beneficial impacts in GBM cells, including 
inhibition of angiogenesis, invasion, and cell development 
[106–108]. The outcomes of curcumin on GBM develop-
ment were examined in human (U87MG, T67, and T98G) 
and rat (C6) GBM cell lines. Curcumin reduced cell survival 
in a caspase- and p53-independent manner, an effect cor-
related with the inhibition of AP-1 and NF-κB signaling 
pathways via the prevention of constitutive JNK and Akt 
activation [109].

Furthermore, curcumin augments the antitumor activ-
ity of nimustine (an alkylating agent) against GBM by 

suppressing the PI3K/Akt and NF-κB/COX-2 signaling 
cascades [110]. Besides, in a study was done by Fratantonio 
et al., curcumin potentiates the anti-GBM activity of pacli-
taxel in rat C6 cells through inhibition of NF-κB activation 
[111]. Recently, demethoxycurcumin (DMC, a curcumi-
noid) has shown anti-proliferative impacts by inhibition of 
the Akt/NF-κB pathway in U87 cells [112]. As shown in 
Table 1, we summarized the potential natural product affect-
ing the NF-κB signaling pathway in GBM.

As mentioned, despite numerous therapeutic approaches, 
only minimal survival improvements have been made for 
GBM patients [2, 4, 44]. Chemotherapy is commonly 
approved for the treatment of many tumors, but the 
Blood–Brain Barrier (BBB), as a specific framework, pre-
vents the majority of chemotherapeutic agents from reaching 
the tumor [114]. Hence, the function of nano-technology is 
motivated by the need to mask the physicochemical char-
acteristics of therapeutic drugs to extend half-life through 
the BBB [115]. This might be achieved by encapsulating 
some natural products discussed here (such as resveratrol 
and curcumin) in many different types of nanosystems, such 
as liposomes, lipid, and polymeric nanoparticles.

Fig. 3   Natural product targeting 
the NF-κB pathway in GBM. 
IKK inhibitor of NF-kappa B 
kinase, NF-κB nuclear factor 
kappa-light-chain-enhancer 
of activated B cells, TNF-α 
tumor necrosis factor-alpha, IL 
interleukin
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Concluding comments

Increasing proof supports the critical functions of the NF-κB 
signaling pathway in the pathobiology of GBM. Since 
NF-κB primarily induces an aggressive phenotype, consid-
erable effort has been made to incorporate NF-κB inhibition 
into GBM therapy; however, currently, no specific success 
has been achieved. Although some small molecule inhibitors 
of the NF-κB pathway, mainly inhibitors of IKK proteins, 
are already accessible, more particular inhibitors of IKK and 
other upstream kinases need to reach clinical studies to prove 
their effectiveness in GBM patients (Fig. 3).

In the current study, we have reviewed a series of stud-
ies on the NF-κB signaling pathway in GBM, and a new 
strategy to anti-GBM therapy based on natural products. It 
is believed that curcumin (  as a first clinically tested agent in‏
GBM patients‏ ,(‏parthenolide, resveratrol‏,‏ and quercetin have 
promising NF-κB modulatory effects against GBM. Since 
the NF-κB modulators have shown low toxicity against nor-
mal astrocytes, which imply their cancer cell selectivity, we 
strongly suggest that the natural products reviewed here are 
potential agents to develop specific clinical trials, conse-
quently find a better solution for treating GBM.
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