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Abstract
Background Neuroinflammation plays a dominant role in the progression of postoperative cognitive dysfunction (POCD). 
This study was carried out to explore the neuroprotective effect of Chikusetsu saponin IVa (ChIV) against sevoflurane-induced 
neuroinflammation and cognitive impairment.
Methods The neuroprotective activity of ChIV against sevoflurane-induced cognitive dysfunction in aged rats was evalu-
ated by Morris water maze, NOR test and Y-maze test, respectively. The expression of NLRP3, ASC and caspase-1, pro-
inflammatory cytokines and apoptotic-related protein were detected in the hippocampus and primary neurons using western 
blot. TUNEL assay and immunohistochemistry staining were applied to assess the apoptotic cell and number of NLRP3-
positive cells in the hippocampus. The oxiSelectIn Vitro ROS/RNS assay kit was used to detect the ROS level. The CCK-8 
assay was applied to measure the viability of primary neurons. Flow cytometry was carried out to determine cell apoptosis.
Results Pretreatment with ChIV significantly alleviated neurological dysfunction in aged rat exposure to sevoflurane. Mecha-
nistically, ChIV treatment significantly alleviated sevoflurane-induced apoptotic cell and neuroinflammation. Of note, the 
neuroprotective effect of ChIV against sevoflurane-induced neurotoxicity through blocking NLRP3/caspase-1 pathway. 
In consistent with in vivo studies, ChIV was also able to repress sevoflurane-induced apoptosis and neuroinflammation in 
primary neurons. Furthermore, pretreatment with NLRP3/caspase-1 pathway inhibitor (MCC950) significantly augmented 
the neuroprotective effect of ChIV.
Conclusion Our finding confirmed that ChIV provides a neuroprotective effect against sevoflurane-induced neuroinflamma-
tion and cognitive impairment by blocking the NLRP3/caspase-1 pathway, which may be an effective strategy for the clinical 
treatment of elderly patients with POCD induced by anesthesia.
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Introduction

Postoperative cognitive dysfunction (POCD) is one of the 
important complications following major surgery and anes-
thesia in elderly patients, presenting cognitive function 

impairment such as learning and memorizing, which could 
increase complications and mortality [1, 2]. According to the 
latest research, the pathogenesis of POCD includes increased 
neuron apoptosis, neurogenesis decline, synaptic plasticity 
impairment, and neurodegeneration caused by neuroinflam-
mation, oxidative stress, and cholinergic system disorder in 
the central nervous system [3, 4]. In addition, several studies 
have shown that anesthetics such as sevoflurane and isoflu-
rane exposure induced neuroinflammation and neuronal cell 
death in the hippocampus, resulted in cognitive dysfunction 
in aged rats [5, 6]. Of note, neuroinflammation plays a key 
role in the onset of POCD in elderly patients [7, 8].

The inflammation-related mechanisms of POCD include 
peripheral inflammation and central inflammation. Sterile 
surgery results in the release of systemic pro-inflammatory 
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factors, destroying the integrity of the blood–brain barrier 
(BBB), and promoting macrophage migration into the brain 
parenchyma, and then causes related neuroinflammation [8]. 
Studies have shown that surgery could lead to inflammation 
and activation of glial cells in rat hippocampus, and ulti-
mately lead to POCD [9, 10]. As the center of learning and 
memory, the hippocampus extensively expresses IL-1β and 
TNF-α receptors. These pro-inflammatory factor receptors 
play an important role in normal learning and memory, but 
in a pathological state, the hippocampus was more vulner-
able to pro-inflammatory factor damage, which ultimately 
leads to POCD [11, 12]. Interestingly, inflammasomes are 
a set of intracellular protein complexes, which drive host 
and immune response by releasing cytokines and inducing 
pyroptosis. The NOD-like receptor protein 3 (NLRP3) was 
an essential inflammasome in immune response and could 
be activated by anesthesia administration [13]. NLRP3 
inflammasome contains NLRP3, apoptotic speck protein 
(ASC) and procaspase-1. The NLRP3 inflammasome regu-
lated maturation and release of pro-inflammatory cytokines, 
such as IL-1 and IL-18 through cleaving caspase-1, which 
results in a large number of inflammatory factors secre-
tion and over-induces inflammatory cytokines to form an 
“inflammatory waterfall effect” and cause the activation of 
immune/inflammatory response [14–16]. Recent studies 
confirmed that anesthesia-induced the secretion of IL-1β 
and IL-18 to promote neuroinflammation and neurotoxicity 
by activating the NLRP3 inflammasome in the hippocam-
pus of aged rats [13, 17]. Besides, in vivo experiments 
showed that anti-TNF-α antibody cholinesterase inhibitors, 
IL-1β receptor antagonists, non-steroidal anti-inflammatory 
drugs and cholinergic agonists could reduce the expression 
of inflammatory factors in peripheral and hippocampus, and 
improve the cognitive function of animals after operation 
[18]. Inflammation was a defensive response of the body 
to external noxious stimuli, but the inappropriate dosage of 
anti-inflammation drugs affects the body’s physiological 
function. At present, most of the anti-inflammation drugs 
are non-tissue-specific and have large side effects [19, 20]. 
Of note, the role of POCD alleviation was mainly focused 
on animal experiments, and the safety of its application in 
clinical research is still unclear [3, 21]. Therefore, it is par-
ticularly important to find alternative active drugs with fewer 
side effects in the clinical treatment of POCD.

Chikusetsu saponin IVa (ChIV), a triterpenoid saponins 
derived from Chinese medicine Rhizoma Panacis japonica, 
which exhibited antioxidant, antitumor, cardiovascular pro-
tection, antivirus, neuroprotective, anti-inflammation, and 
nervous system protection [22–24]. For example, Wang et al. 
confirmed that ChIV attenuates isoprenaline-induced myo-
cardial fibrosis by activating autophagy [25]. Yuan et al. [26] 
found that ChIV ameliorates high fat diet-induced inflam-
mation by inhibition of NLRP3 inflammasome activation. 

In vitro studies found that ChIV significantly inhibited 
cancer cell migration, invasion and induced cell apoptosis 
[24, 27]. Recently, accumulating evidence has shown that 
ChIV plays an important in regulating isoflurane-induced 
neurotoxicity [28, 29]. Besides, the neuroprotective effect 
of ChIV on methyl-4-phenylpyridinium ion  (MPP+)-induced 
cytotoxicity and  H2O2-induced oxidative stress have also 
been confirmed in vitro studies [30]. However, the role of 
ChIV in sevoflurane-induced neuroinflammation and cog-
nitive impairment and the underlying mechanism have not 
been explored. In this study, the effect of ChIV on sevoflu-
rane-induced neuroinflammation and cognitive impairment 
through regulating the NLRP3/caspase-1 pathway was inves-
tigated using rat and cellular models. Our data confirmed 
that ChIV attenuates sevoflurane-induced apoptosis and 
inflammation by blocking the NLRP3/caspase-1 pathway, 
which suggested that ChIV exerted neuroprotective effects 
against anesthesia-induced neurotoxicity.

Materials and methods

Animals and treatment

Male Sprague–Dawley rat (80 weeks old) were purchased 
from the Trophic Animal Feed High-tech Co., Ltd (Jiangsu, 
China) and maintained in a pathogen-free facility. All ani-
mal experiments were reviewed and approved by the Animal 
Ethics Committee of Kunshan Traditional Chinese Medi-
cine Hospital. After one week of adaptive feeding, a total 
of 108 rats were randomly divided into four groups (n = 27 
rats/group): control, sevoflurane, ChIV (Sigma, USA), and 
sevoflurane + ChIV. Rats in the control group were received 
to 20% oxygen for 3 h, while rats in the sevoflurane group 
were exposed to 4% sevoflurane + 20% oxygen for 3 h. Rats 
in ChIV group were injected intraperitoneally with 30 mg/
kg ChIV for 12 h. Rats in sevoflurane + ChIV group were 
injected intraperitoneally with 30 mg/kg ChIV for 12 h prior 
to 4% sevoflurane + 20% oxygen for 3 h. And the detailed 
description of the experimental protocol as shown in Fig. S1.

Behavioral and cognitive tests

Morris water maze

After pretreatment with ChIV and a combination of sevo-
flurane exposure, rats in each group were feed to the 31 day 
(D31). The Morris water maze was used to assess the cog-
nitive and memory function of rats according to the previ-
ous studies [31]. Briefly, the acquisition tests were carried 
out for four consecutive days. Each quadrant (N, S, E, and 
W) was trained alternately according to the animal num-
ber. For five consecutive days, the probe training session 
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was performed twice a day. During the training session, 
experimental animals were guided to approach and locate 
the hidden platform by swimming. The latency period the 
rats spent to find the hidden platform was recorded. The 
distance the rats had traveled before getting to the platform 
was also documented. At the end of the training sessions, 
the platform was removed. Then, the rats were put into water 
to swim without any interference for 2 min. Thereafter, the 
time spent on the number of crossing the previous platform 
by rats was recorded. The time spent in the target quadrant 
by rats was also documented.

NOR test

A novel object recognition test (NOR test) was used to eval-
uate memory performance, which was conducted following 
the protocols described in previous studies [32]. An open 
field apparatus with a size of 60 × 60 × 30 cm was utilized as 
the test box. The act of rubbing or touching objects with the 
nose was considered exploratory. The identification index 
was carried out according to the following equation: (the 
time spent in the new object—the time spent in the familiar 
objects)/(the total time spent by exploring two objects).

Y‑maze test

Y-maze test was used to evaluate the immediate spatial 
working memory according to the previous studies [32]. 
Briefly, rats were accustomed to the apparatus for 0.5 h 
before the test. Then a rat was placed at the end of an arm 
and allowed to explore the maze for 10 min. When rats were 
continuedly entered into three arms in alternating order was 
defined as successive spontaneous alternation (SA). The per-
centage of SA was calculated using the formula: the number 
of successive SA/the total number of times to explore the 
maze.

Cell culture and treatment

Cultures of the primary hippocampal neurons were per-
formed as described previously [31]. Briefly, Sprague–Daw-
ley (male, postnatal D1) rats were purchased from Trophic 
Animal Feed High-tech Co., Ltd (Jiangsu, China) and were 
used for cell isolation. Following the removal of meninges, 
cerebral hippocampi were isolated from rat brains. The tis-
sue samples were added to a dissociation medium before 
mechanical dissociation. Then, the cell pellet was obtained 
by mild centrifugation (2000 rpm for 3 min at room tem-
perature) followed by seeding in 3.5 cm culture dishes in the 
dissociation medium at a density of 3 × 105 cells per milli-
liter. Before cell plating, each cell culture dish was pretreated 
with 0.1% poly-d-lysine (Sigma, USA) at room temperature 
for 2 h followed by rinsing twice with PBS. Cells were kept 

in an incubator under 5%  CO2 at 37 °C. The medium was 
replaced at 24 h with a 48 mL serum-free medium. Sevoflu-
rane was given in the atmosphere at a concentration of 4.0% 
using an anesthesia machine.

Western blot

Total protein was extracted for western blotting analysis. The 
PVDF (polyvinylidene fluoride) was incubated overnight at 
4 °C with the primary TNF-α antibody (1:1000, ab6671, 
Abcam, UK), IL-6 antibody (1:1000, ab9324, Abcam, UK), 
IL-1β antibody (1:1000, ab9722, Abcam, UK), Bax antibody 
(1:1000, ab32503, Abcam, UK), Bcl-2 antibody (1:1000, 
ab196495, Abcam, UK), Cleaved-caspase-3 antibody 
(1:2000, ab49822, Abcam, UK), NLRP3 antibody (1:1000, 
ab232401, Abcam, UK), ASC antibody (1:500, sc-271054, 
Santa Cruz, USA) and caspase-1 antibody (1:500, sc-56036, 
Santa Cruz, USA), and then with horseradish peroxidase-
coupled secondary antibody (IgG-HRP, 1:1000, #7076, 
Cell Signaling Technology, USA). Signa was detected with 
chemiluminescence using an ECL kit (Bio-Rad, USA).

TUNEL assay

The apoptotic cell in the hippocampus tissues of rats in each 
group was determined by the TUNEL assay. In short, the 
pretreated samples were counterstained by the Anti-NeuN 
antibody (1:1000, ab128886, Abcam, UK) for 5 min at room 
temperature. Subsequently, samples were washed three times 
with PBS and placed on the microscopic glass to further 
analyze the number of TUNEL-positive cells.

Determination of ROS level

The OxiSelectIn Vitro ROS/RNS Assay Kit (Cell Biolabs, 
USA) was applied to detect the level of ROS in the hip-
pocampus tissues and cell samples according to the previ-
ously described [33]. And the ROS level in each group was 
analyzed in triplicate using the commercial kits according 
to the manufacturer’s instructions.

CCK‑8 assay

Cell Counting Kit-8 (CCK-8, Sigma, Japan) was used to 
detect the proliferation of primary neurons. Cells were 
seeded in 96-well plates at 5000 cells per well and cultured 
in 5%  CO2 at 37 °C incubators for 2 h to adhere cells. Added 
10 μL of the cell proliferation reagent CCK-8 to each well 
and mixed then incubated for 2 h in the incubator. The dual-
wavelength microplate reader was used to measure the detec-
tion wavelength of 450–490 nm and reference wavelength 
600–650 nm (Beckman Coulter, USA). Each experiment was 
set up with three parallel repeats.
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Flow cytometry

Collected the samples mentioned above, washed with 
PBS, centrifuged at 800 × g for 6 min, suspended in ice-
cold 70% ethanol/PBS, centrifuged at 800 × g for another 
6 min, and suspended with PBS. Resuspended cells with 
100 μL medium and added 5 μL of annexin V and 1 μL of 
propidium iodide according to the manufacturer’s instruc-
tions of Alexa Fluor 488 Annexin V/Dead Cell Apoptosis 
Kit (Thermo Fisher, USA), and incubated for 15 min at room 
temperature. BD LSR II flow cytometry was used to detect 
cell apoptosis (BD Biosciences, USA).

Immunohistochemistry staining

The hippocampus tissues were collected and fixed with 
formalin neutral solution of 10% volume fraction, paraf-
fin-embedded and then sectioned. Subsequently, the DAB 
horseradish peroxidase color development Kit (Beyotime, 
China) was applied to the conjugated NLRP3 antibody 
(1:1000, ab214185, Abcam, UK) staining at room tem-
perature. The slides were dyed with hematoxylin for 30 s, 
dehydrated and fixed, and then sealed with neutral glue. 
In addition, all stained images were observed and photo-
graphed with a fluorescence microscope (Olympus, Japan) 
at 400 × magnification.

Statistical analysis

The experimental data and image preprocessing were 
analyzed by SPSS 20 statistical software (IBM, USA) 
and GraphPad Prism7.0 software (La Jolla, USA), 
respectively. Differences in the escape latency in MWM 
was analyzed using Two-way ANOVA with repeated 

measurements. Besides, Student’s t-test was used to ana-
lyze the significant differences between the two groups, 
and the differences between multiple groups were com-
pared by one-way ANOVA and followed by Tukey’s post 
hoc test. Moreover, p < 0.05 was identified as statistically 
significant.

Results

ChIV alleviates sevoflurane‑induced neurological 
dysfunction in memory and learning

Morris water maze test showed that sevoflurane exposure 
significantly enhanced the escape latency of rats compared 
with the control group and only ChIV treatment group 
(p < 0.01, Fig.  1a), while ChIV treatment significantly 
decreased the escape latency (p < 0.001, Fig. 1a). Moreover, 
sevoflurane significantly decreased the number of platforms 
crossed by the aged rats, but alleviated by ChIV administra-
tion (p < 0.001, Fig. 1b). Furthermore, compared with rats 
treated with sevoflurane or ChIV only, the time spent in the 
target quadrant of rats treated with ChIV before sevoflurane 
exposure was increased (p < 0.01, Fig. 1c). Taken together, 
ChIV reversed the inhibitory effect of sevoflurane exposure 
on neurological dysfunction in memory and learning.

ChIV alleviates sevoflurane‑induced impairment 
in memory recognition and spatial working memory

To further expand our findings, we attempt to assess the 
effect of ChIV on the memory recognition and spatial work-
ing memory of rats exposed to sevoflurane. As shown in 
Fig. 2a, b, sevoflurane exposure significantly decreased 

Fig. 1  ChIV alleviates sevoflurane-induced neurological dysfunction 
in memory and learning. a Effect of ChIV on the escape latency of 
rats exposure to sevoflurane; b Effect of ChIV on the platform cross-
ing of rats exposure to sevoflurane; c Effect of ChIV on the time spent 

in the target quadrant of rats exposed to sevoflurane. Data represent 
the mean ± SEM of n = 6 rat per group. **p < 0.01, ***p < 0.001, com-
pared with the control group; ##p < 0.01, ###p < 0.001, compared with 
the sevoflurane group
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the discrimination index of short- or long-term memory 
compared with the control group and ChIV treatment only 
(p < 0.001). However, ChIV pretreatment significantly ele-
vated memory recognition in sevoflurane exposure to rats 
(p < 0.001, Fig. 2a, b). Besides, sevoflurane exposure notably 
decreased the spatial working memory of rats compared with 
the control group (p < 0.001, Fig. 2c), but ChIV treatment 
was restored the downregulation effect of sevoflurane on 
spontaneous alterations (p < 0.001, Fig. 2c). Whereas, there 
was no significant difference between the control group and 
ChIV treatment only group (p > 0.05). Taken together, ChIV 
alleviates sevoflurane-induced memory impairment.

ChIV decreases sevoflurane‑induced 
neuroinflammation and apoptosis in rat 
hippocampus

Neuroinflammation and apoptotic cells play an important 
role in regulating anesthesia-induced neurotoxicity [32]. 
In this study, our data revealed that sevoflurane exposure 
significantly promoted the expression of pro-inflammatory 
cytokines (IL-6, IL-1β, and TNF-α) in the hippocampal 
region of rats compared with the control group by west-
ern blot (all p < 0.001, Fig. 3a). In contrast, ChIV treatment 
decreased the expression levels of IL-6, IL-1β and TNF-α 
in the hippocampal region of rats treated with sevoflurane 
exposure (all p < 0.01, Fig. 3a). Meanwhile, TUNEL analysis 
results showed that the number of apoptotic cells in the hip-
pocampus of rat exposure to sevoflurane was significantly 
increased compared with the control group (p < 0.001, 
Fig.  3b, c). However, ChIV pretreatment significantly 
decreased cell apoptosis in the hippocampus of rat exposure 
to sevoflurane (p < 0.01, Fig. 3b, c). In addition, we found 

that compared with the control group and ChIV treatment 
only group, sevoflurane exposure significantly increased the 
ROS levels in the hippocampus of rats (p < 0.001, Fig. 3d), 
but this upregulation effect was diminished by ChIV pre-
treatment (p < 0.01, Fig. 3d). Furthermore, western blot 
showed that sevoflurane exposure significantly decreased 
anti-apoptotic related protein Bcl-2 expression in the hip-
pocampus of rats (p < 0.001, Fig. 3e), and increased the lev-
els of the pro-apoptotic related protein cleaved-caspase-3 
and Bax (all p < 0.001), while treatment with ChIV signifi-
cantly decreased sevoflurane-induced cell apoptosis in the 
hippocampus (all p < 0.001). Taken together, ChIV rescued 
sevoflurane-induced neuroinflammation and apoptosis in the 
rat hippocampus.

ChIV inhibits sevoflurane‑induced NLRP3 
inflammasome activation

As we knew, NLRP3 inflammasome was upregulated in 
the development of several inflammatories, ischemia–rep-
erfusion injury and metabolic diseases, etc. [34, 35]. As 
expected, our experiment confirmed that the expression of 
NLRP3, ASC and caspase-1 were upregulated in the hip-
pocampus of rats exposed to sevoflurane compared with 
the control group (all p < 0.001, Fig. 4a). Meanwhile, the 
expression of IL-1β and IL-18 was upregulated in the hip-
pocampus of rat exposure to sevoflurane (both p < 0.001). In 
contrast, the increases were abolished by ChIV pretreatment 
(all p < 0.001, Fig. 4a). In addition, immunohistochemical 
staining showed that the number of NLRP3-positive cells in 
the hippocampal of aged rats’ exposure to sevoflurane was 
higher than in the control group and ChIV treatment only 
group (p < 0.001, Fig. 4b, c). However, ChIV pretreatment 

Fig. 2  ChIV alleviates sevoflurane-induced impairment in memory 
recognition and spatial working memory. a Effect of ChIV on the 
short-term memory of rats exposure to sevoflurane was determined 
by NOR test; b Effect of ChIV on the long-term memory of rats 
exposure to sevoflurane was determined by NOR test; c Effect of 

ChIV on the spatial working memory of rats exposure to sevoflurane 
was determined by Y-maze test. Data represent the mean ± SEM of 
n = 6 rat per group. ***p < 0.001, compared with the control group; 
###p < 0.001, compared with the sevoflurane group
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repressed this effect (p < 0.01). Taken together, ChIV 
prevented sevoflurane-induced NLRP3 inflammasome 
activation.

ChIV reverses sevoflurane‑induced apoptotic cell 
and inflammation activation in vitro

To further explore the protective effect of ChIV on pri-
mary neurons against sevoflurane-induced neurotoxicity, 
we attempt to examine the role of ChIV in the primary 
neurons treated with sevoflurane. CCK-8 analysis results 
showed that ChIV at both concentrations of 40 and 50 μM 
notably decreased the viability of the primary neurons 
(p < 0.01, Fig. 5a), but ChIV at 10, 20 and 30 μM did 
not affect the cell viability. Meanwhile, and the concen-
tration of 30 μM of ChIV was chosen for the follow-up 

experiments. Pretreatment with ChIV at 30 μM for 6 h 
significantly ameliorated sevoflurane-induced the death 
of neurons (p < 0.001, Fig. 5b). However, no significant 
difference was observed in both control group and ChIV 
treatment only group (p > 0.05). In addition, ChIV mark-
edly blocked sevoflurane-induced apoptotic cell (p < 0.001, 
Fig. 5c, d), which was consistent with the results of west-
ern blot (Fig. 5e). Furthermore, sevoflurane treatment 
significantly increased the expression of IL-1β, IL-18, 
NLRP3, ASC, caspase-1 and proinflammatory cytokines 
secretion (all p < 0.001, Fig. 5f), while pretreatment with 
ChIV reverses sevoflurane-induced neuronal inflam-
mation (p < 0.001). Similarly, in accordance with our 
findings in vivo, the ROS generation was significantly 
upregulated in primary neurons treated with sevoflurane 
(p < 0.001, Fig. 5g), but ChIV pretreatment decreased the 

Fig. 3  ChIV decreases sevoflurane-induced neuroinflammation and 
apoptosis in rat hippocampus. a The expression of proinflammatory 
cytokines in the hippocampus of rats were measured by western blot; 
b, c The number of TUNEL positive cells in the hippocampus were 
detected by TUNEL fluorescent assay; d The level of ROS in the hip-

pocampus was detected by oxiSelect In Vitro ROS/RNS assay kit; e: 
Western blot was applied to determine the expression of apoptotic 
related proteins in the hippocampus. Data represent the mean ± SEM 
of n = 3 rat per group. ***p < 0.001, compared with the control group; 
##p < 0.01, ###p < 0.001, compared with the sevoflurane group
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ROS production. Collectively, ChIV exerts neuroprotec-
tive against sevoflurane-induced injury.

ChIV exerts neuroprotective activities 
against sevoflurane‑induced neuroinflammation 
by blocking NLRP3/caspase‑1 pathway

To further determine the role of the NLRP3/caspase-1 
pathway in ChIV alleviates sevoflurane-induced neuro-
inflammation and apoptotic cell, we examined the pri-
mary neuron viability, death and apoptosis, inflamma-
tory cytokines secretion and ROS production. As shown 
in Fig. 6a, MCC950, a highly potent specific NLRP3/
caspase-1 pathway inhibitor, was augmented the inhibi-
tory effect of ChIV on sevoflurane-induced the death 
of primary neurons (p < 0.05). Flow cytometry analysis 
results showed that the anti-apoptotic activity of ChIV 
in primary neurons treated with sevoflurane was further 
enhanced by MCC950 administration (p < 0.05, Fig. 6b, 
c). In addition, the expression of cleaved-caspase-3 and 
Bax were decreased in ChIV pretreatment primary neurons 
(p < 0.001, Fig. 6d, f), as well as upregulated the level 
of Bcl-2 protein (p < 0.001). Similarly, MCC950 addition 
upregulated the anti-apoptotic activity of ChIV (p < 0.05). 

Furthermore, sevoflurane significantly increased pro-
inflammatory cytokine secretion (p < 0.001, Fig. 6e, g, h) 
and ROS production (p < 0.001, Fig. 6i), while MCC950 
and ChIV strongly repressed the expression of proin-
flammatory cytokines and ROS production (all p < 0.05, 
Fig. 6e, g–i). In conclusion, these results confirmed that 
ChIV ameliorates sevoflurane-induced neuroinflamma-
tion and neurotoxicity in primary neurons by blocking the 
NLRP3/caspase-3 pathway.

Discussion

POCD refers to the persistent impairment of memory, 
abstract thinking, and orientation in patients undergoing 
anesthesia surgery, accompanied by decreased social activ-
ity, such as changes in personality, social ability, cognitive 
ability, and skills after surgery [36, 37]. POCD has become 
a major health problem for the elderly [38, 39]. Therefore, 
it is an urgent need to clarify the correlation relationship 
between anesthetic exposure and the onset and progression 
of cognitive impairment after surgery. In this study, our 
results showed that ChIV pretreatment significantly allevi-
ated sevoflurane-induced the dysfunctions of memory and 

Fig. 4  ChIV inhibits sevoflurane-induced NLRP3 inflammasome acti-
vation. a Western blot was used to detect the expression of NLRP3, 
ASC, caspase-1, IL-1β and IL-18 in the hippocampus of rats exposed 
to sevoflurane; b, c Immunohistochemical staining was applied to 

evaluate the number of NLRP3 positive cells in the hippocampus. 
Data represent the mean ± SEM of n = 3 rat per group. ***p < 0.001, 
compared with the control group; ###p < 0.001, compared with the 
sevoflurane group
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Fig. 5  ChIV reverses sevoflurane-induced apoptotic cell and inflam-
mation activation in vitro. a, b CCK-8 was used to detect the viabil-
ity of primary neurons; c, d Flow cytometry was applied to detect 
the apoptotic cells; e, f Western blot was applied to detect the pro-
tein level; g The level of ROS in the hippocampus was detected by 

oxiSelect In  Vitro ROS/RNS assay kit. ***p < 0.001, compared with 
treatment with ChIV at 0 μM; ###p < 0.001, compared with the control 
group; ▲▲p < 0.01, ▲▲▲p < 0.001, compared with the sevoflurane 
group
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cognition in aged rats, which was related to the regulation of 
neuroinflammation and apoptosis. In accordance with pre-
vious studies, the expression of proinflammation cytokines 
was overexpressed in sevoflurane-induced neurocognitive 

impairment in aged rats hippocampus [40]. These findings 
suggested that hyper-inflammatory response may be asso-
ciated with sevoflurane-induced cognitive impairment and 
neurotoxicity in aged rats.

Fig. 6  ChIV exerts neuroprotective activities against sevoflurane-
induced neuroinflammation by blocking NLRP3/caspase-1 pathway. a 
The viability of primary neurons was detected by CCK-8 assay; b, c 
The apoptosis of primary neurons was determined by flow cytometry; 
d, f western blot was applied to measure the expression of cleaved 
caspase-3, Bax, and Bcl-2; g, h Western blot was used to detect the 

expression of inflammatory-related proteins; i The level of ROS 
in the hippocampus was detected by oxiSelect In  Vitro ROS/RNS 
assay kit. ***p < 0.001, compared with the control group; ##p < 0.01, 
###p < 0.001, compared with the sevoflurane group; ▲p < 0.05, com-
pared with the sevoflurane + ChIV group
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In the current study, the active ingredients of Chinese 
herbal medicine have significant therapeutic effects on anes-
thesia-induced neurotoxicity and cognitive dysfunction [41, 
42]. For example, ChIV was extracted from Chinese medi-
cine Rhizoma Panacis japonica, which possessed pharmaco-
logical functions including antitumor [43], antioxidant [28] 
and immunomodulatory [44], cardio-protection [45] and 
anti-obesity [46]. Interestingly, previous studies have been 
shown that the neuroprotective effect of ChIV against iso-
flurane-induced neurotoxicity and cognitive deficits [29]. In 
our present study, we found that ChIV not only exerted neu-
roprotective activity against sevoflurane exposure induced 
cognitive deficit of aged rats but also decreased neuroinflam-
mation in the hippocampus. In addition, ChIV decreased 
lipopolysaccharide (LPS)-induced oxidative stress and 
proinflammatory cytokines secretion [44, 47]. Meanwhile, 
increasing evidence indicates that oxidative stress plays an 
important role in anesthesia-induced neurotoxicity [48, 49]. 
In our experiments, ChIV decreased the ROS production 
and the expression of IL-1β, IL-6, and TNF-α during aged 
rats exposure to sevoflurane, which revealed that ChIV pro-
vides protection resistant to sevoflurane-induced oxidative 
stress and inflammatory response. Furthermore, treatment 
with ChIV alleviates PC12 cell injury and apoptosis [50]. 
Neuronal apoptosis could be aggravated the deterioration 
of neuropathic diseases, such as cerebral ischemia–reper-
fusion injury [51], neurotoxicity [52], Parkinson’s disease 
[53], and stroke [54], etc. Of note, neuronal apoptosis in 
the hippocampus can lead to neuronal damage, cognitive 
impairment and even death [55, 56]. Our study showed that 
pretreatment with ChIV decreased the expression of cleaved-
caspase-3 and Bax, as well as upregulated Bax protein level 
in the hippocampus of aged rats exposure to sevoflurane, 
and these results are consistent with the expression of the 
apoptotic-related protein in vitro.

Accumulating evidence has been shown that NLRP3 
inflammasome activated was a critical initiator of the 
inflammatory response, which was interacted with apopto-
sis-associated speck-like protein (ASC) to induce caspase-1 
cleavage and maturation and secretion of IL-1β and IL-18 
[57, 58]. Of note, previous studies confirmed that NLRP3/
caspase-1 pathway activation was involved in anesthesia-
induced neurotoxicity [59]. In this study, we also found that 
sevoflurane exposure was significantly increased the expres-
sion of NLRP3, ASC, caspase-1, and secretion of IL-1β and 
IL-18 in the hippocampus of aged rats and primary neu-
rons. Meanwhile, several studies in the last few years indi-
cate that pretreatment with MCC950 (an NLRP3/caspase-1 
pathway inhibitor) ameliorated isoflurane-induced cogni-
tive dysfunction and neuroinflammation [60]. Caspase 1, 
the effector protease of the inflammasome, is activated dur-
ing pyroptosis and cleaves the proinflammatory cytokines 
interleukin-1β (IL-1β) and IL-18 [61]. This proinflammatory 

microenvironment is favorable for tumor initiation and pro-
gression, as increased serum levels of proinflammatory ILs 
such as IL-1β and IL-18 have been observed in several types 
of cancer [62, 63]. Recently, inhibition of pyroptosis has 
been considered as a novel strategy to eradicate neurotoxic-
ity induced by anesthesia [60, 64]. In addition, clinical stud-
ies have shown that hyper-inflammatory cytokines triggered 
neuronal injury and promoted microglia activation in the 
central nervous system, leading to impairment of memory 
and learning functions in elderly patients [65]. Similarly, 
our experiments showed that sevoflurane exposure induced 
memory and learning impairment and increased the num-
ber of NLRP3-positive cells in the hippocampus of aged 
rats. Importantly, MCC950 addition was exerted a protective 
effect against sevoflurane-induced primary neuron damage. 
These findings suggested that the NLRP3/caspase-1 path-
way may be a critical therapeutic target for POCD. How-
ever, some limitations still exist in the current study. First, 
the underlying molecular mechanisms that contribute the 
regulatory role of ChIV on NLRP3/caspase-1 pathway are 
still poorly understood and need to be addressed in future 
studies. Secondly, the pharmacokinetic characteristics and 
safety of ChIV in vivo also have not yet fully determined. 
Moreover, due to practical constraints, the number of ani-
mals used for behavioral experiments was small. To make 
our results more convincing, we should validate our current 
findings in a large sample.

Conclusion

In summary, our studies revealed that ChIV pre-treatment 
confers neuroprotective effect against sevoflurane-induced 
neuroinflammation and cognitive dysfunction through 
blocking the NLRP3/caspase-1 pathway, which provides 
a new therapeutic method for POCD by anesthesia.
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