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Abstract
Biorefineries contribute to a circular bioeconomy using renewable feedstock to produce commodity and specialty chemicals 
as an alternative to petroleum chemicals. Using waste streams such as food waste and agricultural waste as a feedstock for 
biorefineries is a promising approach for obtaining value-added products in an economically feasible and sustainable way. 
The conversion of biomass to chemicals offers diverse opportunities but poses new technological challenges. This paper 
aims to review the current state of food and agricultural waste valorisation by giving a brief technical overview, summa-
rizing the current state of the bio-based market, and identifying the current barriers to scaling-up biorefineries. Utilizing 
lignocellulosic biomass in biorefineries calls for pre-treatment due to its complex structure, in which biomass is broken 
into monosaccharides, building blocks of value-added products. Different state of the art technologies for lignocellulose 
pre-treatment is introduced in the review followed by a brief explanation of the role of the hydrolysis and fermentation. The 
economic aspect of chemical production from biomass waste at an industrial scale is also introduced by giving an overview 
of some recent techno-economic studies.
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Introduction

With the decreasing supply of fossil fuels, the demand 
for a renewable alternative to petroleum-based chemicals 
and fuels is rising. Bio-based chemicals and biofuels have 
drawn much interest in recent years as utilizing biore-
sources shifts the dependence of the chemical industry 
from fossil fuels to a more sustainable source. Further-
more, the use of low-cost and abundant waste biomass 
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(agricultural residues, food processing waste, food residu-
als) provides a means to efficiently valorise the by-prod-
ucts of biomass production, thereby closing the loop and 
contributing to a global circular bioeconomy [1]. Although 
research interest has increased, the growth of the bio-based 
chemical economy is still slow, and the majority of bio-
based chemicals are not yet market-competitive due to low 
oil prices, high feedstock costs, and a lack of consistent 
policies [2].

Integrated biorefineries offer an alternative to fossil-based 
refineries using different biomass feedstocks and a combi-
nation of technologies to generate biofuels and bio-based 
chemicals. Main platform chemicals, which can be the base 
for a range of different derivatives that are generated in inte-
grated biorefineries, are alcohols, organic acids (e.g. formic 
acid, levulinic acid), and furanics (e.g. 5-hydroxymethylfur-
fural (5-HMF), furfurals) [3].

Food waste is a major organic waste stream, diverse in 
composition, and rich in functionalized molecules. Also, it 
is produced along all stages of the food supply chain -from 
agricultural production, storage and distribution to its con-
sumption (Fig. 1). Disposal of food waste via landfilling, 
composting or incineration has adverse environmental 
impacts. According to a 2013 report from FAO [4], the car-
bon footprint of food losses is estimated at 3.3 billion tons 
of CO2 equivalent of greenhouse gasses (GHG) and corre-
sponds to a cost of US$750 billion annually. The valorisation 
of food waste into value-added products is promising and 
has widely been studied [5].

Agricultural waste is another major stream of organic 
waste, originating from the non-edible part of plant material, 
produced during the harvesting and processing of agricul-
tural crops (corn stover, rice husk, and sugarcane bagasse)
[6]. It consists mostly of lignocellulosic biomass and is 
inevitably produced in large amounts for food production. 
Crop residues were estimated at 5 billion tons globally in 
2013 [7]. Commonly, agricultural waste is composted or 

simply disposed of, but it has been considered a feedstock 
for bioenergy as well as successfully utilized in biorefineries.

Unlike petroleum, organic matter is more variable in 
composition and generally contains more oxygen but less 
hydrogen and carbon than petroleum. This abundance in 
functionalized groups opens up new possibilities in terms 
of chemical products, but brings about some technological 
issues as the current industry is built around petroleum [8].

Lignocellulosic biomass consists of cellulose (35–54%), 
hemicellulose (19–34%), and lignin (11–30%) [9]. Cellulose 
has a complicated structure due to the repeating 1,4-beta 
glycosidic bonds between the glucose molecules and starch 
[10]. Lignin is a three-dimensional, cross-linked biopoly-
mer with phenylpropane units, while hemicellulose consists 
of various pentoses with xylose being the most abundant 
component. Cellulose, hemicellulose and lignin do not have 
the same chemical reactivities [11] and are not efficiently 
converted into sugars by enzymes alone [12]. To make the 
biomass more available to enzymes and thereby improve 
conversion, physicochemical pre-treatments are used [12]. 
Efficient and affordable methods include depolymerization 
and partial deoxygenation [13], and hydrolyzation of ligno-
cellulosic biomass [10].

Recalcitrance of lignocellulosic biomass, its ability to 
resist biological decomposition, is caused by the complex 
structures in the plant cell wall. Some factors that affect 
recalcitrance are the amount and structure of lignin and 
hemicellulose present, the degree of polymerization and 
crystallinity of cellulose, biomass porosity, and cellulose 
accessibility [14]. These various factors interact to create 
recalcitrance, and the degree of contribution of each factor is 
not well defined [15]. However, lignin content is considered 
as one of the most significant contributors to recalcitrance 
[16].

Thermochemical, biochemical, and chemical processes 
are three main pathways for the conversion of biomass. 
Thermal treatment of biomass results in solid, liquid or 

Fig. 1   Stages of food waste 
production and their main 
components
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gaseous products which are further upgraded to synthetic 
biofuels. In biochemical pathways, fungi generate enzymes 
that degrade lignin, hemicellulose, and polyphenols. This 
process has a slow production rate; therefore, the biological 
processes are often combined with appropriate pre-treatment 
methods [13]. Finally, the chemical pathway consists of the 
catalytic hydrolysis of cellulosic biomass with acids which 
are in an aqueous solution or in a heterogeneous phase [17].

Previous reviews have focused on either food waste or 
agricultural biomass as a stand-alone raw material/feedstock 
and the following aspects were considered: (i) the different 
pre-treatment techniques for food waste to enhance biofuel 
production and the recovery of value-added products, (ii) 
to assess the different food waste reutilization techniques 
such as composting, anaerobic digestion, fermentation, and 
thermochemical conversion based on their energy require-
ments, for the production of value-added products, (iii) the 
challenges and possibilities on the value addition of food 
and kitchen waste, (iv) the application of the yeast Yarrowia 
lipolytica for the conversion of agri-food wastes and related 
waste biomass into useful products, (v) the conversion of 
food waste to bioactive compounds, biofuels, and bioplas-
tics, (vi) the framework for the design, analysis, and assess-
ment of an agricultural and forestry waste based biorefin-
ery, (vii) the production of nanocellulose-based value-added 
products from various biomass wastes, (viii) the recycling 
of food, agricultural, and industrial wastes as pore-forming 
agents for sustainable porous ceramic production, (ix) the 
application of agro-industrial biowastes as organic fertilizers 
and the production of biochar, and (x) the barriers in sup-
ply chain, technical knowledge and the need to efficiently 
implement policies and regulatory frameworks in "waste to 
wealth" projects.

This paper reviews the research advances and scientific 
knowledge on the utilization of food and agricultural waste 
for value-added chemicals. Both food waste and agricultural 
waste are presented due to the similarities of processing 
technologies and final products. Hence, the specific objec-
tives of this review are to give an overview of: (i) the val-
orisation of food waste into chemicals, (ii) the valorisation 

of agricultural waste into chemicals, and (iii) the economic 
feasibility of different valorisation technologies.

Chemicals

The global petrochemical production of chemicals and poly-
mers is estimated to be 330 million tons, while the bio-based 
counterpart is estimated to be 90 million tons, mainly in the 
form of a handful of chemicals: methanol, ethylene, propyl-
ene, butadiene, benzene, toluene and xylene [2]. Bio-based 
chemicals play a major role in moving chemical production 
toward sustainability and challenging the linear nature of 
current petrochemical processes [18]. Currently, more than 
80% of the global biochemical production capacity is for 
bioethanol production. Due to economic challenges, the co-
production of various chemicals and materials in a biore-
finery may be necessary to make the process feasible [2]. 
Many previous reviews have reported different methods of 
converting food waste or lignocellulosic biomass into chemi-
cals, such as those listed in Table 1.

Platform chemicals

Platform chemicals are key building blocks that can be con-
verted to a wide range of commodity and specialty chemi-
cals. In 2004, the US Department of Energy screened 300 
promising chemicals that can act as platform chemicals [19]. 
According to a 2010 analysis, the sugar-derived platform 
chemicals that continue to have high potential are lactic 
acid, succinic acid, glycerol, furanics, hydroxypropionic 
acid/aldehyde, ethanol, sorbitol, xylitol, and levulinic acid 
[2]. The platform chemicals that are currently being or have 
been produced from biomass on an industrial scale are etha-
nol, lactic acid, sorbitol, levulinic acid, succinic acid, and 
2,5-furandicarboxylic acid. Additionally, various platform 
chemical-derived polymers have successfully been com-
mercialized, including polylactic acid (PLA), polyethylene-
furanoate (PEF), poly-γ-glutamic acid (γ-PGA), and their 
products [20].

Table 1   Literature review on biorefinery approach for food and agricultural wastes

Feedstock Process(es) Product(s) Review

Food waste Bioconversion VFAs, biofuels [106]
Unavoidable food processing waste Fermentation, extraction Citric acid, levulinic acid, PHA [107]

Fermentation Enzymes [108]
Bioconversion PHA [109]

Agricultural wastes Fermentation, anaerobic digestion VFAs, hydrogen, methane [110]
Lignocellulosic biomass Biosynthesis 2,5-FDCA [111]

Catalysis Succinic acid, levulinic acid, furfural [112]
Grape winery waste Hydrolysis, fermentation Lactic acid [113]
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The production of a target platform molecule can be 
selectively optimized for by the selection of the right strain 
of microorganism, or through bioengineering metabolic 
pathways, which also makes it possible to produce mol-
ecules that are non-natural metabolites such as 1,4-butan-
ediol [21].

One example is the production of 2,5- furandicarboxylic 
acid (FDCA) by bioconversion. FDCA is a platform mol-
ecule synthesizable from C6 sugars via HMF that has prom-
ising applications in biopolymer production as a replacement 
for the oil-derived terephthalate. Conventional chemical 
routes of synthesis are harsh and require organic solvents or 
metal catalysts, so more environmentally friendly biological 
routes such as whole cell or enzymatic conversion processes 
have been proposed [22]. In a study by Yang et al. [23], 
2000 mg/L of HMF could be converted to 1276 mg/L FDCA 
by Burkholderia cepacia H-2 at a pH of 7.0 and 28 °C.

Genetically engineering microorganisms by expressing 
the genes for enzymes that take part in the conversion pro-
cess, such as HMF oxidase and HMF/furfural oxidoreduc-
tase has been used to increase the efficiency of conversion 
of HMF into FDCA [24] [25]. In a study by Yuan et al. [25], 
genetically engineered Raoultella ornithinolytica BF60 was 
used and compared to the wild type, the final FDCA concen-
tration increased from 51 to 93 mM, and the ratio of con-
version increased from 51.0% to 93.6%. Although the yield 
achieved by biocatalysis is comparable to metal catalysts, 
high concentrations of HMF are toxic to microorganisms 
and so only low HMF concentrations (under 2 g/L) can be 
used, reducing the overall productivity [26].

Sugars from food crops such as sugar beet and corn are 
commonly used as feedstock, but, to avoid competition with 
food sources and to minimize feedstock costs, food waste has 
been studied as an alternate feedstock [27]. The conversion 
of lignocellulose-containing food waste biomass is more dif-
ficult than that of starchy biomass since the cellulosic mate-
rial has to be broken down by pre-treatment and chemical or 
enzymatic hydrolysis [28]. Cellulose can be broken apart by 
acid or enzymatic hydrolysis into monosaccharide glucose 
units, which can be further processed to a wide range of C1 
to C6 molecules. Hemicellulose contains C5 sugars such as 
xylose, galactose, mannose, and arabinose which are pre-
cursors of xylitol or furfural. It is difficult to get high yields 
from lignocellulosic biomass due to the complexity of the 
biomass structure [3]. The pre-treatment of lignocellulose 
by thermochemical methods produces compounds that are 
inhibitory to microorganisms, such as aliphatic acids (acetic, 
formic, levulinic acid), furan derivatives (furfural, 5-hydrox-
ymethylfurfural) and phenolic compounds (phenol, vanil-
lin, p-hydroxybenzoic acid). Detoxification methods that 
are commonly used include evaporation, solvent extraction, 
overliming with calcium hydroxide, activated charcoal, ion 
exchange resins, and enzymatic detoxification [29].

Lactic acid (LA) is one of the top biomass derived chemi-
cals, with a wide range of possible transformations to sol-
vents, chemicals and fuel precursors [30]. LA is the basis of 
polylactic acid (PLA), which is a biodegradable polymer that 
can be used for packaging materials and currently makes up 
35% of the bioplastic market. LA is produced primarily by 
fermentation as opposed to chemical synthesis, since lactic 
fermentation by the right microorganism can produce LA 
isomers with high optical activity [28], which is a crucial 
parameter in that it affects its intrinsic value and determines 
the structure of derived products [31]. It also has low costs 
as it can use cheap substrates, consumes little energy and 
produces high yields relatively quickly [32].

Lactic acid may be produced by naturally occurring or 
engineered bacteria such as lactic acid bacteria, Bacillus 
strains, Escherichia coli, and Corynebacterium glutami-
cum [28]. Particularly, high optical density lactic acid (99% 
enantiomeric excess) has been obtained in continuous batch 
fermentation by the strains Sporolactobacillus laevolacticus 
and Sporolactobacillus inulinus [33].

The main difficulties in producing LA- and LA-based 
chemicals are the separation and purification processes [3]. 
Additionally, the fermentation process is inhibited by low 
pH as the accumulation of lactic acid lowers the pH below 
the optimum value (pH 5–7). Therefore, alkali bases such 
as Ca(OH)2, CaCO3, NH4OH or NaOH have to be added 
continuously to neutralize the fermentation broth. The addi-
tion of bases produces a stoichiometric amount of various 
lactate salts and low-value by-products like gypsum, which 
is formed when precipitating calcium carbonate with sul-
phuric acid [30].

Separation of LA from fermentation is conventionally 
done by precipitation, but other separation processes with 
less by-products have been developed, including dialysis, 
electrodialysis, membrane processes, and distillation [34]. 
Separation and purification stages take up half of the produc-
tion cost, so optimizing these processes are crucial for the 
economic feasibility of lactic acid production [35]. Kwan 
et al. [36] investigated the production of lactic acid from 
various food waste types, mixed food waste, bakery waste, 
and food waste powder. Food waste powder is the product of 
a commercial food waste processor that reduces the size of 
food waste by 70%, reducing transport costs and improving 
the efficiency of collection and utilization. The food waste 
underwent fungal hydrolysis and then via fermentation by 
Lactobacillus casei Shirota, and produced lactic acid with 
conversion yields 0.27, 0.25, and 0.23 g/g for mixed food 
waste, mixed food waste powder, and bakery waste, respec-
tively. The successful conversion suggests that mixed food 
waste in urban areas could be valorised by such a process 
[36].

Another one of the top bio-based chemicals is levulinic 
acid, a short chain fatty acid with a ketone and a carboxyl 
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group, which is a versatile platform molecule due to its 
functional groups [37]. It can be the precursor of various 
industrially significant chemicals like pharmaceuticals, sol-
vents, polymers, and biofuels. Despite its various potential 
uses, commercial production is not yet fully developed, and 
technical advances need to be made before commercializa-
tion [38].

Levulinic acid can be synthesized from cellulose or hex-
oses like glucose and fructose with 5-HMF as an intermedi-
ate, and from hemicellulose or pentoses with furfural as an 
intermediate [39]. In the process of conversion, cellulose is 
hydrolyzed into hexoses which are dehydrated to 5-HMF by 
acid catalysis, then rehydrated to levulinic acid and formic 
acid [40]. This process can be effectively done in a one-pot 
approach with homogeneous acid catalysts [41]. Table 2 
summarizes the important characteristics of some platform 
chemicals that can be derived from food and agricultural 
wastes.

Value added biomolecules

Bio-based molecules, biologically synthesized molecules 
such as phytochemicals and functional materials, natural 
biopolymers can be derived directly from biomass through 
extraction instead of being synthetized from petroleum-
based chemicals [58]. Natural biopolymers such as cellulose, 
chitin, pectin, starch, and xylan can be extracted from food 
and agricultural waste, and have biocompatible and biode-
gradable qualities [59]. They have been used in pharmaceu-
ticals, food and biomaterials but applications for biomedical 
purposes have also been explored [60]. Food waste streams 
like fruit wastes contain valuable compounds such as anti-
oxidant phytochemicals (phenolic compounds, flavonoids, 
carotene) that can be recovered and reused. Phytochemicals 
are bioactive non-nutritive plant chemicals that may have 
health-related effects [61], and are in high demand for food, 
pharmaceutical, and cosmetic sectors [62]. These specialty 
chemicals are generally obtained from food waste by physi-
cal or thermal extraction [5].

Enzyme-assisted extraction (EAE) is an environmentally 
friendly approach to traditional extraction methods that 
increases extraction efficiency by increasing the permeabil-
ity of the cell wall of plants. EAE uses lower temperature 
than conventional extraction methods, and combining it with 
solvent extraction has the benefit of requiring fewer organic 
solvents. Although EAE is a less harsh process and could 
potentially be useful in food applications, the current costs 
of enzymes still make it hard to implement [63].

Fruit waste is produced from fruit processing industries 
in a large amount. Industrial production of food waste allows 
the waste to be separated into homogeneous streams, making 
large scale extraction processes possible [64]. Mango peels 
contain 20–30% w/w pectin, and bioactive compounds such 

as dietary fiber, polyphenols, and carotenoids. Processing 
mangoes leaves 35–60% of waste of which around a half is 
from peels [65]. Matharu et al. [58] studied the biorefinery 
of mango peels by microwave assisted extraction of pectin, 
reporting to have 11.6% w/w of pectin extracted. Banerjee 
et al. [66] studied the extraction of pectin from mango peels 
using lemon juice as an acidifying agent at 80 °C by boil-
ing and by sonication reporting a yield of 0.27 g/g for both 
processes.

Citrus peel waste has been studied for several of its bioac-
tive components, such as the pectin, dietary fiber, and essen-
tial oils like limonene [62]. Additionally, β-carotene has 
been extracted from orange processing waste by ultrasonic 
and enzymatic processes with pectinase and ethanol solvent, 
showing potential for commercial production [67]. The con-
version of agricultural residues and biomass to value-added 
rare sugars and prebiotic oligosaccharides has been studied 
(Table 3), as they are a potential ingredient for functional 
foods with benefits to human health [114].

Integrated biorefineries

An integrated biorefinery is a facility that merges several 
conversion technologies to produce value-added products 
such as fuels, power, and chemicals from biomass [68]. Bio-
chemical pathways are fundamental to establish integrated 
biorefineries. Agricultural waste (mainly lignocellulosic 
biomass) is widely known as a cleaner replacement for fos-
sil fuels and is commonly used as a substrate in biorefiner-
ies. Agricultural residues such as wheat straw, sugarcane 
bagasse, corn stover, forest products (hardwood and soft-
wood), and dedicated crops such as switchgrass and salix 
are all lignocellulosic materials [69]. Most plant materials 
mainly consist of cellulose, hemicellulose, lignin, and pectin 
[70]. These components are demanding in the sense of suc-
cessful conversion of biomass to value-added products, and 
as such require sophisticated pre-treatment. The goal of pre-
treatment is to disrupt the crystalline structure of cellulose 
by breaking down the lignin structure which surrounds it.

Further aims are the removal of lignin and hemicellu-
lose, and the increase of the lignocellulosic biomass poros-
ity. Under those circumstances acids or enzymes can eas-
ily access and hydrolyze the cellulose [69]. Nevertheless, 
pre-treatment processes are commonly the most expensive 
element of the whole biomass to fuel conversion process 
[71]. Pre-treatment must produce the following results: (i) 
excellent sugar formation or the ability to subsequently form 
sugars by hydrolysis, (ii) prevention of carbohydrate loss 
due to degradation, (iii) prevention of byproduct formation, 
(iv) profitability. Pre-treatment methods can be categorized 
into physical, physicochemical, chemical, biological, electri-
cal, and hybrid technologies [69]. Choosing a pre-treatment 
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strategy that can efficiently hydrolyze the carbohydrates in 
the biomass into monosaccharides leads to a quicker process 
with a higher yield of sugar. Furthermore, the particle size of 
lignocellulosic biomass is minimized and the glucose yield 
is increased due to the quick enzymatic hydrolysis. Finally, 
there is a decrease in enzymatic action inhibition, as well as 
in energy needs [72].

While food waste composition differs source to source, 
its main constituents are organic fractions, carbohydrates, 
proteins, and lipids [62]. As these constituents are easily 
biodegradable, food waste can be directly fed to the bioreac-
tor without pre-treatment [73].

Saccharification

Saccharification process breaks lignocellulosic biomass 
compounds into monosaccharides which act as platform 
chemicals for value-added products. The predominant mon-
osaccharides obtained are glucose and xylose [74]. When 
talking in general terms, saccharification of lignocellulosic 
biomass which is not pretreated can yield less than 20% of 
aggregate sugars. On the other side, when lignocellulosic 
biomass is pretreated, the yield can reach up to 90% with 
diverse pre-treatment strategies [75]. The processes that 

integrate different saccharification pre-treatment techniques 
are introduced below.

Mechanocatalytic process

Liu et al. [76] designed a particular mechanocatalytic pro-
cess to produce high-quality glucose with high sugar titer 
and high yield from agricultural cellulosic biomass. The 
process unites mix-milling of solid P2O5 with corn stover or 
corn stover-xylose residues and successive saccharification 
ahead of which hemicellulose is recovered. They indicate 
that the precipitation of lignin allowed fermentative upgrad-
ing to ethanol without the need for detoxification treatment. 
Direct hydrolysis of the milled cellulose in water without 
adding mineral acids for the production of ethanol is the 
new approach. Typically, enzymatic saccharification is used. 
Figure 2 schematically shows the described mechanocata-
lytic process.

The mechanocatalytic process conducted by Liu et al. 
[76] resulted in a high yield of fermentable sugars (app. 
75%) with high concentrations up to 31 g/L with no use 
of organic solvents. Furthermore, the hemicellulose was 
recovered in the form of xylose which led to a decrease 
of furfural and acetic acid concentrations in the hydro-
lysate from the remaining residue. The sulfur-free lignin 

Fig. 2   The mechanocatalytic 
process for the production of 
high-quality glucose and etha-
nol introduced by Liu et al. [76]
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was obtained from the hydrolysate with precipitation. 
Finally, with fed-batch fermentation of undetoxified con-
centrated hydrolysate, ethanol titer of over 42 g/L from 
corn stover-xylose residues was obtained. P2O5, added in 
Liu et al. [76] during the mix-milling process, engenders 
decrystallization, and depolymerization of cellulose into 
oligosaccharides. H3PO4 is generated in the process, which 
hydrolyzes oligosaccharides into glucose.

Mechanoenzymatic process

Biocatalytic processes that depend on the action of cellu-
lase or hemicellulase enzymes are characterized as promis-
ing milder alternatives to the chemical hydrolysis of cel-
lulose and hemicellulose. Unfortunately, these enzymes are 
too slow in depolymerizing cellulosic biomass and as such 
require pre-treatment to make the biopolymers more avail-
able for the enzymes [74]. Mechanoenzymatic reactive aging 
(RAging) process is a novel approach for enzyme catalysis 
and cellulose saccharification without a need for pre-treat-
ment, bulk solvent, acids, or transition metals [77].

According to Zhou et al. [17], catalytic conversion of 
lignocellulosic biomass faces a big challenge due to its 
complex chemical composition which makes production of 
target fuels and chemicals less convenient. A great part of 
lignocellulosic biomass is cellulose [9], which has the sim-
plest structure of all components. Cellulose is made up of 
only anhydrous glucose units, making it significantly simpler 
than the structure of hemicelluloses, which consist of numer-
ous diverse sugar monomers, or lignin, which consists of 
complex biopolymers. Nevertheless, the decomposition of 
hemicellulose and lignin can be executed more easily than 
that of cellulose, which is energy-intensive and demanding 
[17]. High solids concentrations reduce the conversion rate 
for enzymatic processes due to mass-transfer limitations and 
enzyme inhibition by hemicellulose, reaction products, or 
other compounds [78, 79]. This is known as the solid-state 
effect.

One of the promising technologies to overcome this effect 
is mechanoenzymology, which is a technology that com-
bines mechanical and enzymatic treatments to enhance their 
joint impact on fiber reactivity [80]. Hammerer et al. [74] 
reported approximately 90% yields of glucose and xylose 
monosaccharides with mechanoenzymatic saccharification. 
Lignocellulosic biomass was pre-milled for 60–90 min into 
a fine powder to which enzymes were added. During the 
mechanoenzymology process, enzymes tolerate mechani-
cal stress [77]. Furthermore, they stay active in most solid 
mixtures [81]. Most importantly, mechanoenzymology is not 
affected by solubility issues and the solid effect state which 
normally weakens enzymatic saccharification of lignocel-
lulosic biomass at high solid loadings [74].

Hydrolysis

Hydrolysis is the degradation process of polysaccharides 
in an aqueous medium catalyzed by an enzyme or acid 
[82]. Correspondingly, food waste and agricultural waste 
undergo acid or enzymatic hydrolysis to generate glucose, 
peptides, and amino acids [83]. Hydrolysis of cellulose 
and hemicellulose yields hexoses and pentoses which can 
be further transformed to ethanol, lipids, bioproducts, and 
chemicals with fermentation [84]. When looking from the 
economic point of view, enzymatic hydrolysis has been 
recognized as most crucial to achieve efficient conversion 
of biomass to biofuel [85]. There are many other advan-
tages of enzymatic hydrolysis over chemical hydrolysis 
including high efficiency, low energy requirements, low 
deterioration, low corrosion impact, and decreased genera-
tion of fermentation inhibitors [86]. The optimal condi-
tions for enzymatic hydrolysis of cellulose are tempera-
tures between 45 and 55℃, pH values 4.5–5, and mixing 
conditions that are necessary to allow adequate mass and 
heat transfer for enzyme–substrate interaction [87].

Fermentation

Fermentation is the biological conversion process of 
complex substrates into simple compounds by different 
microorganisms, for instance, bacteria and fungi [88]. 
The hydrolysate recovered after chemical and enzymatic 
hydrolysis is frequently used as feedstock material for 
the fermentation process, which results in value-added 
products [85]. Various studies using biological treatment 
of food waste types are outlined in Table 4. Solid-state 
fermentation uses low-cost agricultural residues as the 
substrate.

Bioprocesses are carried out in the absence or near-
absence of free water. Nevertheless, moisture content of 
a substrate must be sufficient to support the growth and 
metabolic activity of microorganisms. The solid matrix 
can act as the source of carbon and other nutrients or it 
can be an inert material which serves as a platform for 
growth of the microorganisms. Solid-state fermentation 
gives higher yields compared to the liquid fermentation 
due to its design which resembles closely to the natural 
environment where used microorganisms thrive. Industrial 
products developed by solid-state fermentation are various 
enzymes, biopolymers, biosurfactants, organic acids, pig-
ments, secondary metabolites, biofertilizers, and biopesti-
cides, and flavoring agents [89]. Dark fermentation or aci-
dogenesis is a bioprocess which converts food waste into 
carboxylic acids (lactic, propionic, butyric, acetic, valeric 
acid) and solvents in the liquid phase, and biohydrogen 
and CO2 in the gas phase [90].
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Economic feasibility

In order for the conversion processes of food and agricul-
tural waste to be implemented industrially, their economic 
feasibility and process efficiencies must be analyzed. The 
feasibility of the process can induce investment interest in 
the waste to raw materials biorefinery market. Growth is 
expected in the bio-based market, especially focused on 
conversion of raw waste materials into value-added build-
ing blocks [2]. For example, the portion of the market for 
succinic acid produced from bio-based feedstock grew from 
five percent in 2009 of the total succinic acid market to half 
of the market in 2020 [2].

Table 5 summarizes some feasibility studies on the valori-
sation of food waste. One such study was performed by Lam 
et al. [99], focusing on the production of succinic acid from 
1 ton per day of bakery waste via fermentation. Simulation 
software SuperPro Designer® 8.0 was used to perform the 
mass and energy balances of the process, necessary to assess 
the economic variables affecting the feasibility [99]. This 
project was found to be economically feasible, with a return 
on investment (ROI) of 12.8%, a breakeven of the capital 
investment at 7.2 years, and an internal rate of return (IRR) 
of 15.3%. The price of succinic acid used in this study was 
$9 per kilogram, which was the market price at the time of 
their research. A sensitivity analysis showed that the prices 
of the products, such as succinic acid and biomass, affected 
the profitability of the plant most significantly. The only 
issue may occur if the amount of incoming bakery waste 
drops below 0.26 tons per day, approximately 25% of the 
amount of waste the plant is designed to convert [99].

Kwan et al. [27] performed techno-economic analysis of 
a food waste valorisation process for three different plant 
scenarios: lactic acid, lactide, and PLA, each with a capac-
ity of 10 tons of food waste powder per hour. Although all 
scenarios were shown to be economically feasible (Table 5), 
the most promising of the three scenarios was the lactic acid 
production process, with the highest annual net profits, high-
est net present value, and lowest payback period [27]. The 

resulting overall conversion yields of 3.1 tons of 80% LA 
solution, 1.7 tons of lactide and 1.3 tons of PLA point to 
these processes being an efficient approach to food waste 
recycling. In another study, Kwan et al. [36] found that a 
decentralized approach to food waste recycling could also be 
advantageous for the bioconversion of food waste in urban 
areas.

Integrated biorefineries are a promising strategy of pro-
ducing value from food and agricultural waste by pairing 
the production of value-added products with energy pro-
duction. Demichelis et al. [100] performed a comparison 
of three different scenarios of food waste utilization for LA 
and biogas production. One scenario presented an integrated 
biorefinery which produced lactic acid and biofuels from 
food waste, while the other two only produced LA or biogas 
(Demichelis et al., 2018). This integrated biorefinery option 
proved to be the most profitable of the three explored, with 
an annual net revenue of $879,000 for 20 tons per day of 
food waste utilized, and a selling price of LA of $1360 per 
ton. Integrating the processes by sequential LA production 
via separate hydrolysis and fermentation (SHF) followed by 
biogas production resulted in a reduced amount of waste 
generated, reduced digester volume for biogas production, 
and enhanced value of the products [100].

The economic potential of valorizing food processing 
waste has also been studied. Mango processing waste biore-
finery for pectin and seed oil extraction was evaluated in a 
study by Arora et al. [101] to be potentially profitable in case 
the plant had minimum 10 tons per hour capacity. It was 
shown that co-production of pectin and seed oil was the most 
optimal with IRR 34% and a payback period of 2.4 years, 
compared to production of only one of the products [101].

The valorisation of grape seed pomace in a biorefinery 
was assessed by Jin et al. [102], in which the production of 
a combination of seed oil, polyphenols and biochar were 
compared. A biorefinery approach with all three products 
showed the best profitability with an IRR of 34.3%, and pay-
back period of 2.5 years. Only producing grape seed oil had 
the worst economic performance with a negative net present 

Table 5   The results of the techno-economic feasibility studies reviewed, showing the product produced by the process investigated, amount of 
food waste processed, the selling price, and the annual net revenue generated

References Product(s) Feasibility Food waste processed 
(tons/day)

Selling price Net revenue gen-
erated ($USD/
year)

Lam et al. [99] Succinic Acid Yes 1 $9/kg $374,041
Kwan et al. [27] Lactic Acid

Lactide
Polylactic Acid

Yes 227
227
227

$1874/ton
$2800/ton
$5215/ton

$22,184,000
$11,646,000
$20,038,000

Demichelis et al. [100] Lactic Acid + Biogas (inte-
grated biorefinery)

Yes 20 €1360/ton (LA) $879,000
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value. The sensitivity was mostly related to plant capacity 
and polyphenol selling price [102].

Biorefineries with sugarcane bagasse as a feedstock have 
been shown to be potentially profitable. Ntimbani et al. [103] 
evaluated the production of furfural, ethanol, or co-produc-
ing the two from sugarcane bagasse in a biorefinery annexed 
to a sugar mill. Among the scenarios, producing furfural 
only was the most profitable because of lower investment 
costs (IRR = 12.92%), but co-producing furfural and ethanol 
was more feasible without energy sales (IRR = 10.30%). The 
fluctuations in IRR caused by the variability in chemical 
selling prices decreased when co-producing furfural and 
ethanol compared to producing only one chemical [103]. 
Another study assessed adding a biorefinery to an existing 
sugar mill to co-produce xylitol or glutamic acid with elec-
tricity. Profitability increased for both biorefinery scenarios 
compared to combustion, with the IRR increasing from 
10.3% for just combustion to 12.3% and 31.2% for co-pro-
duction with xylitol and glutamic acid, respectively [104].

One aspect of economic feasibility which connected all of 
these studies is that the feasibility of the processes was sensi-
tive to the changing market prices of the platform chemicals 
being produced. The fluctuating selling price of the plat-
form chemicals being produced greatly affects whether these 
processes can be shown to be economically feasible at an 
industrial scale, as indicated by the sensitivity tests of each 
study. Additionally, shifts in the petroleum market would 
also affect investors’ disposition toward embracing a bio-
based market. If oil prices plummet, interest in expending 
the capital costs needed to shift to biorefinery products may 
be lost.

Future perspectives

The need for increased resource recycling and a sustain-
able circular economy is evident. The high volatility of oil 
prices and their sensitivity to geopolitical issues are prompt-
ing countries to invest in alternative fuel sources [2]. The 
future expansion of biochemicals depends on the availability 
of biomass feedstock. However, the harvesting of biomass 
could potentially endanger food safety or cause deforesta-
tion, necessitating the development of policies to ensure sus-
tainable practices [125]. A circular and biobased economy 
concept has been introduced in the EU as a policy objective, 
in which biorefineries are highlighted as a key technology 
[105].

In the EU, the collection and reuse of food waste and 
agricultural waste is receiving more focus, with EU direc-
tives and policies making the collection of biodegradable 
waste mandatory by 2023, and include food waste valorisa-
tion as a method to manage unavoidable food waste [126]. 
The increased collection of biodegradable waste brings 

opportunities to expand and incentivize the bioeconomy 
in a sustainable way. The shift to a bio-based economy is 
expected to be gradual, and it is not expected that bio-based 
alternatives will phase out petrochemicals in this decade 
[105]. According to another report, the global bioenergy 
crop potentials in 2050 will be between 44 and 133 EJ/yr, 
while the total global primary bio-energy potentials in 2050 
may vary between 160 and 270 EJ/yr [127]. From a circular 
economy view point, the production of energy and other 
value-added products (e.g. platform chemicals) from waste 
biomass is considered to be highly sustainable for develop-
ing countries.

The implementation of new environmental policies and 
carbon taxes will assist in making this industry competitive. 
Food waste and agricultural waste valorisation is a growing 
field of research with promising results and various prac-
tical applications. Most bio-based chemicals are not yet 
produced on an industrial scale nor are market competitive, 
so the optimization of chemical processes to the properties 
of biomass is necessary. Economic pathways in integrated 
biorefineries for simultaneous biofuel and platform chemical 
for further processing need to be defined to make integrated 
biorefineries compatible with fossil-based refineries [105]. 
Techno-economic feasibility depends on the ability to scale 
up these processes to an industrial scale, requiring plants 
with the ability to treat thousands of tons of waste per year. 
This requires an improvement in the handling and logistics 
of biomass in large quantities, and advancements in the tech-
nological aspects of industrial scale processes [18].

Conclusions

Food and agricultural waste valorisation are an increasingly 
growing field of research. The most common platform chem-
icals produced from biomass on an industrial scale are etha-
nol, lactic acid, succinic acid, levulinic acid, sorbitol, and 
2,5-furandicarboxylic acid. The production of these chemi-
cals has proven to be currently economically viable, and 
more chemical products are expected to become viable as 
the chemical industry transitions toward more bio-based and 
circular solutions. Converting food and agricultural waste 
into value-added chemicals is a sustainable way of waste 
management. Biorefineries provide the technological basis 
for the versatile conversion of biomass waste to chemicals by 
subjecting biomass to saccharification, hydrolysis, and fer-
mentation. Technical aspects of the separation, purification, 
and pre-treatment of recalcitrant lignocellulosic biomass still 
need to be addressed, and an integrated biorefinery approach 
which combines biochemical and biofuel production is nec-
essary for the practical considerations of biomass valorisa-
tion. It is expected that bio-based chemicals and fuels will 
play an increasingly large role in the future economy.
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