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Abstract
Spinal scoliosis, a prevalent spinal deformity impacting both physical and mental well-being, has a significant genetic 
component, though the exact pathogenic mechanisms remain elusive. This review offers a comprehensive exploration 
of current research on embryonic spinal development, focusing on the genetic and biological intricacies governing axial 
elongation and straightening. Zebrafish, a vital model in developmental biology, takes a prominent role in understanding 
spinal scoliosis. Insights from zebrafish studies illustrate genetic and physiological aspects, including notochord development 
and cerebrospinal fluid dynamics, revealing the anomalies contributing to scoliosis. In this review, we acknowledge existing 
challenges, such as deciphering the unique dynamics of human spinal development, variations in physiological curvature, 
and disparities in cerebrospinal fluid circulation. Further, we emphasize the need for caution when extrapolating findings 
to humans and for future research to bridge current knowledge gaps. We hope that this review will be a beneficial frame of 
reference for the guidance of future studies on animal models and genetic research for spinal scoliosis.
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Introduction

Spinal scoliosis is a common spinal deformity that hin-
ders the physical and mental state of affected individuals. 
Research indicates a crucial role of genetic factors in the 
occurrence of spinal scoliosis. However, the precise mecha-
nisms underlying its pathogenesis remain unclear. In this 
review, we discuss current studies on the embryonic devel-
opment of the spine and factors contributing to deformities, 
elucidating the genetic and biological mechanisms mediat-
ing axial elongation and straightening during the develop-
mental process.

Zebrafish, due to its particular morphology, structure and 
genetic characters, is a widely employed model for inves-
tigations in developmental biology, genetics, and clinical 
medicine for a variety of conditions such as spinal scolio-
sis. We summarize the latest findings from studies on spi-
nal scoliosis, with a particular focus on zebrafish, explor-
ing the genetic and physiological processes of notochord 

development and cerebrospinal fluid dynamics. In addition, 
we discuss how defects in these processes contribute to the 
development of spinal scoliosis. Moreover, we have high-
lighted aspects that remain unknown as well as the potential 
application of novel animal models and genetic research that 
should be considered to guide future studies in understand-
ing the pathogenesis of spinal scoliosis.

Development of the spine (extension, 
straightening)

The developmental process of the spine is crucial for the 
normal growth of vertebrates. The notochord, originating 
from the mesoderm, exhibits a rod-like structural organiza-
tion [1, 2]. During embryonic development, the notochord 
demonstrates diverse differentiation capabilities, giving rise 
to vital structures such as the neural tube, lungs, liver, pan-
creas, and gastrointestinal tract [3, 4]. Serving as a transient 
structure, the notochord gradually regresses and eventually 
disappears after embryonic development concludes [5].

During embryonic development, the vertebrate spine 
undergoes two key processes facilitating its elongation and 
straightening. First, notochordal cells undergo vacuolization. 
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These cells, with a characteristic diameter of up to 50 μm, 
undergo continuous expansion, forming a bundle-like 
arrangement with fluid-filled interiors [6, 7]. The enlarge-
ment of these cell volumes establishes a statically stable 
framework capable of resisting mechanical stress, simulta-
neously maintaining the embryonic axis, and enabling the 
symmetric development of surrounding bone tissues [8, 9]. 
Moreover, these vacuolized cells undergo cavitation that 
divides the notochord into distinct functional differentia-
tion units. Simultaneously, the surrounding sheath cell epi-
thelium provides developmental guidance by inducing the 
migration of bone segments in the somite toward the midline 
and dorsal side. Ultimately, vertebral bodies and interver-
tebral fibrous rings form while muscle segments gradually 
construct the trunk muscles [10–12]. These two processes 
function in balance as some vacuolized notochordal cells 
accumulate below the ossification region and others frag-
ment within the intervertebral disc tissue to form the nucleus 
pulpous [7, 13, 14].

In summary, the extension and straightening of the 
vertebrate embryonic axis involves interference with 
vacuolized notochordal cells and the sheath cell epithelium 
surrounding the notochord. Disturbances such as impaired 
vacuolization of notochordal cells, inadequate expansion of 
vacuolized cells, and fragmentation before maturation can 
lead to developmental abnormalities in the spine [8, 15, 16].

In addition, variations or deficiencies in the sheath cell 
epithelium and poor collagen secretion may render the 
notochordal sheath unable to effectively resist internal 
pressure, causing overexpression of ossification cells in 
certain regions, resulting in insufficient cartilage deposition, 
and ultimately triggering developmental abnormalities 
[17–19].

Spinal deformities in humans related to genetics typically 
include congenital scoliosis (CS), idiopathic scoliosis 
(IS), and neuromuscular or acquired scoliosis. Congenital 
scoliosis results from vertebral and rib malformations, 
occurring in approximately one in 1000 individuals [15]. 
Clinical and animal studies have shown that congenital 
scoliosis manifests as faulty vertebral segmentation, 
including hemivertebrae and wedge-shaped vertebrae [20, 
21]. Current research indicates a strong correlation between 
congenital scoliosis and gene–environment interactions, 
with disruptions in the NOTCH signaling pathway 
playing a major role in vertebral segmentation loss under 
environmental stress [20, 22, 23].

In contrast, idiopathic scoliosis clinically presents 
as a three-dimensional rotational curvature of the spine 
without vertebral malformations, neurological-muscular 
abnormalities, or functional impairments. It affects about 
4% of the population, representing over 80% of scoliosis 
cases, and is the most common spinal disorder in children 
and adolescents [24]. The term “idiopathic” signifies that 

the cause of this condition is not yet clear [25]. Several 
hypotheses related to the pathogenesis of idiopathic 
scoliosis have been proposed, including abnormalities in 
central nervous system development, abnormal spinal bone 
growth, bone metabolism, biomechanical environmental 
issues and hormonal imbalances [26–31]. Moreover, genetic 
factors play a crucial role as the probability of idiopathic 
scoliosis development is significantly higher in monozygotic 
twins compared to dizygotic twins (70% vs. 36%) [32]. In 
addition, there are genetic associations between congenital 
and idiopathic scoliosis [33–35].

To study human spinal deformities, researchers have con-
ducted extensive studies by establishing animal models of 
spinal deformities. Early research generally focused on natu-
ral observation of small animals, such as the progression of 
thoracic scoliosis in 5–6-week-old chicks. It was found that 
the imbalance of paraspinal muscle development causes sco-
liosis. More studies have shown that differential expression 
of collagen is an important factor in causing scoliosis [36]. 
In addition, researchers selectively ablated the intercostal 
arteries of the thoracic vertebrae at four levels in rabbits 
through thoracotomy to create a rabbit model of scoliosis 
(Fig. 1). During the experiment, it was observed that some 
animals developed scoliosis after selective intercostal artery 
ablation. Histological examination revealed changes in the 
vertebral epiphyseal plate and the spinal cord, affecting the 
proprioceptive function of paraspinal muscles in tone con-
trol [37].

A series of studies have shown that melatonin plays a key 
role in the occurrence and development of scoliosis. Thus, a 
type of research in animal models uses pinealectomy (PINX) 
to create animal models of scoliosis (Fig. 2).

PINX chicken model

In 1959, Thillard completed the first pineal gland 
excision (PINX) model. Postoperative spinal curvature 
was observed in 65% of pinealectomized chicken [38]. 

Fig. 1  Selective intercostal arteries ablation
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Until 1983, Machida and Duboussett extended this 
idiopathic scoliosis model through morphological 
correlation mapping [39]. It has been confirmed that the 
neurotransmitter or neurohormone system in the pineal 
gland is the main factor contributing to this experimental 
type of scoliosis.

To prove the hypothesis that melatonin deficiency is 
related to spinal deformity, Machida et  al. concluded 
that melatonin metabolism plays an important role in the 
occurrence and development of scoliosis, with the total 
incidence rate of scoliosis in PINX chickens ranging from 
80 to 100% [39–45]. However, other researchers have 
reported significant differences in scoliosis incidence 
[46–65]. Bagnall et  al. used 105 newly hatched Shan 
Hubbard chickens. After 5  weeks of PINX melatonin 
treatment, over 50% of the chickens still suffered from 
scoliosis. Therefore, the use of melatonin alone cannot 
effectively reduce the incidence of scoliosis in PINX 
chickens.

PINX fish (Atlantic salmon) model

To exclude the effects of body posture and gravity on 
spinal development and further demonstrate how melatonin 
deficiency alone promotes scoliosis, researchers evaluated 
the spinal development of PINX Atlantic salmon [66]. The 
spinal movement of salmon is mainly limited to lateral 
bending. The results of this study showed that 82% of 
pinealectomized fish exhibited abnormal spinal curvature. 
In addition, the calcium, phosphorus, and total mineral 
content in the vertebrae of PINX salmon were significantly 
reduced. It was concluded that melatonin may play a crucial 
role in spinal bone growth, bone mineralization, and the 
development of scoliosis.

Congenital melatonin deficiency rodent (mouse) 
model and PINX bipedal rodent (rat) model

To further demonstrate the relationship between melatonin 
and induced scoliosis, researchers established a mouse 
model of AA-NAT gene knock-out strain (C57BL/6  J) 
with congenital melatonin deficiency. Many studies have 
found that the bone density (BMD) of C57BL/6 J mice 
is significantly lower, indicating that this model may 
be ideal for evaluating the effects of melatonin on bones 
[67–72]. Machida et  al. used PINX bipedal C57BL/6  J 
mice to evaluate the development of scoliosis. The results 
showed that the spinal deformity rate of bipedal mice with 
melatonin deficiency was 25%. They believe that treatment 
with exogenous melatonin can prevent the development of 
scoliosis in both models. The same team achieved a higher 
induction rate of scoliosis by amputating the forelimbs of 
C57BL/6 J mice without PINX. The incidence of scoliosis 
in mice with simple forelimb amputation is twofold lower 
than in bipedal C57BL/6 J mice. However, when PINX was 
administered in melatonin-rich C3H/HeJ mice, the incidence 
of scoliosis increased to 70%. This result is consistent with 
early reports that spinal deformities are more likely to occur 
in the presence of both melatonin deficiency and bipedal 
posture.

Many researchers have conducted similar studies in 
rats. O’Kelly et  al. conducted PINX in rats to evaluate 
the incidence of scoliosis [54]. Compared with chicken 
models, PINX alone cannot induce spinal curvature in any 
rodent model [39, 40, 42, 44]. Rodents that walk on four 
legs are different from vertebrates that walk on two legs 
and are not affected by the crucial dynamic mechanical 
force of posture leading to the development of scoliosis. 
Therefore, researchers developed a bipedal rat model (with 
two forelimbs and tails removed from 3-week-old rats, food 
and water placed at a high position to gradually enhance the 
upright posture). The conclusion is that in the melatonin 
deficiency model after pinealectomy, any interference with 
balance and other postural mechanisms, especially bipedal 
posture, may promote the development of spinal deformities.

Non‑human primate PINX (rhesus monkey) model

Due to the success of these experiments, researchers 
began to develop interest in non-human primates. In 2005, 
Cheung et  al. conducted PINX in bipedal non-human 
primates [73]. Among 18 rhesus monkeys with PINX, 
10 showed a significant decrease in melatonin secretion, 
but none of them showed the expected scoliosis after 
29 months of postoperative follow-up. The limitation of 
this study is that monkeys are unable to move freely or 
stand upright in cages, which limits their natural posture 
[74]. Therefore, the spine is not affected by gravity, which 

Fig. 2  Animal models of scoliosis by pinealectomy
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is a crucial factor leading to the development of scoliosis. 
These findings further emphasize the importance of 
posture and posture-related mechanical forces, not just 
melatonin deficiency, which may be crucial for the 
development of scoliosis.

Recent studies have discovered spontaneous spinal 
deformities in wild populations of teleost fish, particularly 
zebrafish [75, 76]. Zebrafish are becoming increasingly 
popular among researchers for several reasons: (1) strong 
reproductive ability and large numbers; (2) similar spinal 
morphology and structure to humans, with many highly 
conserved genetic genes; (3) mechanical conditions of 
the spine during swimming in teleost fish are similar to 
human bipedalism; (4) transparent zebrafish embryos 
facilitate observation during external development; (5) 
comprehensive knowledge of the zebrafish genome allows 
for high-throughput bidirectional genetic regulation; and 
(6) the convenient size of the body for Micro-CT and 
scanning electron microscope analysis [77–86]. As a 
result, studies have been gravitating toward the use of 
zebrafish to establish models as well as to perform gene 
editing and sequencing to understand the pathogenesis of 
spinal deformities.

Zebrafish model of scoliosis and related 
genes

Recent years, many researchers have intervened in the 
embryonic and juvenile development of zebrafish specimens 
through gene knock-in or knock-out methods, successfully 
producing zebrafish variants with spinal deformity (Fig. 3).

The establishment of a model of congenital scoliosis is 
generally achieved through gene editing and interference 
with the development of early embryonic notochord 
structures. It is reported that regulation of the activity of 
bisserine/threonine and tyrosine protein kinase (Dstyk) 
to reduce the number of vacuolized cells, shorten the 
embryonic axis, and thus affect spinal cord development, 
ultimately leading to late onset spinal deformities due to 
vertebral growth defects [87, 88]. Other ones overexpressed 
the pkd1a/b and pkd2 genes by upregulating them, leading to 
an abnormal increase in collagen in the epithelium of sheath 
cells of the notochord, resulting in excessive curvature of 
the dorsal side of the notochord and the formation of spinal 
deformities [89, 90]. The Leviathan variant is one of the 
more distinctive types. Mutations in the col8a1a gene result 
in the loss of type VIII collagen in the extracellular matrix of 
notochord cells, further affecting the position of osteoblasts 
and leading to vertebral defects in later development, 

Fig. 3  Zebrafish models of spinal scoliosis
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resulting in spinal deformities [91]. In addition to interfering 
with the notochord, some zebrafish variants that interfere 
with the development and segmentation of somites to create 
congenital spinal deformities have also been reported. 
Mutations in genes such as mine clock gene, myosin heavy 
chain, tbx6, her1−/−, her7−/− can all lead to developmental 
disorders of early embryonic somites, resulting in spinal 
deformities [92, 93].

Compared with congenital spinal deformities, idiopathic 
spinal deformities have more complex causes and a lack of 
clear etiology. At present, most of the reported interference 
is achieved through the function of specific structures during 
late embryonic development and juvenile development. The 
maturation, activity, and function of motile cilia are one of 
the main targets for the preparation of idiopathic scoliosis 
models. By editing genes such as ccdc151, ccdc40, dnaaf4, 
dnah10, and cfap298, the activity of motile cilia is interfered 
with, causing zebrafish to gradually form idiopathic 
scoliosis during juvenile development [94, 95]. Regarding 
the biogenesis of motile cilia, some scholars have used 
genetic variations such as kif6, kif7, and armc9 to interfere 
and obtain variants of zebrafish with idiopathic spinal 
deformities [96–98]. Meanwhile, some reports have edited 
genes such as sspo, uts2r3, and mapk7 to interfere with 
Reissner fiber, vasopressin receptor, and bone formation 
processes, thereby inducing zebrafish specimens to develop 
into idiopathic scoliosis variants [99–102].

Although zebrafish are similar to humans in terms 
of spinal morphology and development, they also have 
differences. However, due to their outstanding advantages 
as experimental specimens and the rapid development of 
gene editing and sequencing technology, zebrafish provides 
us with new perspectives and favorable tools for in-depth 
biological research on scoliosis.

The mechanical stress of the spine and the Piezo 
channel

After millions of years of evolution, humans have become 
bipedal vertebrates capable of upright walking, where the 
mechanical stress of gravity on the spine plays a crucial role. 
To maintain balance and achieve optimal range of motion 
in an upright posture, humans have evolved specific sagittal 
curvature of the spine and pelvis [103]. Importantly, it is the 
zebrafish that experience the same level of pressure exerted 
on the spine during swimming that recapitulate the effects 
of gravity on the human spine [76]. Recent studies have 
proposed sensory pathways capable of detecting mechanical 
stress and have identified the associated expression genes 
(Fig. 3). The Piezo pathway is widely present in the cell 
membranes of various human tissues, providing feedback 
for the conduction of mechanical stress. The Piezo genes 
include Piezo1 and Piezo2, with Piezo2 further divided 

into Piezo2a and Piezo2b [104]. Notably, Piezo1 gene is 
highly expressed in mesenchymal stem cells, osteoblasts, 
chondrocytes, and intervertebral disc nucleus pulposus 
[105]. Mutations or low expression of the Piezo1 gene 
can lead to reduced gene expression in chondrocytes and 
osteoblasts, resulting in wedge-shaped deformities of the 
vertebral bodies and thoracolumbar scoliosis [106–108]. 
Piezo2 gene plays a crucial role in proprioception and is 
mainly expressed in muscle spindles and tendon spindles. 
Mutations in this gene can cause joint deformities, vertebral 
fusion, spinal curvature, and hip joint malformation [109, 
110]. When selectively knocking out the Piezo1 and 
Piezo2a genes in zebrafish, a model of spinal curvature 
is achievable in mature zebrafish [111]. The genes and 
pathways present in both the human body and teleost make 
the spinal deformity model more clinically meaningful. 
At the same time, the stage of action of this gene is more 
focused on the development direction of embryonic bone 
and cartilage, which is closer to the current understanding of 
the occurrence and development of spinal deformities. This 
achievement forms a robust foundation for future research in 
understanding the intricacies of spinal deformities.

Cerebrospinal fluid circulation stability, 
motile cilia, Reissner fiber, and tactile 
neurons

The stability of cerebrospinal fluid (CSF) circulation is 
paramount for the homeostasis of the central nervous system 
[112]. In vertebrates, CSF secreted by the choroid plexus 
of the brain ventricles serves not only as a medium for 
nutrient transport and metabolic waste removal but also as 
a source of various signaling molecules [113]. Disruption 
of normal CSF circulation can lead to severe neurological 
disorders [114]. In zebrafish larvae, motile cilia are widely 
distributed in various tissues, including liver macrophages, 
olfactory cells, pronephric ducts, choroid plexus epithelium, 
and sperm [115, 116]. The rhythmic beating of motile cilia 
on the surface of the choroid plexus epithelium ensures 
the stable circulation of CSF in the brain ventricles and 
the central canal of the spinal cord [117–119]. Therefore, 
studies have found a close association between choroid 
plexus epithelial cilia dysfunction, reduced CSF flow, 
increased neuroinflammation, and spinal deformities in 
genetically edited zebrafish, suggesting that treatments or 
interventions targeting related factors can improve spinal 
deformities. However, such mutants often struggle to survive 
to adulthood which makes it a difficult model to study in the 
long term [120, 121].

In contrast, the circulation of CSF in humans primarily 
relies on arterial pulsation and respiratory movements. In 
individuals with primary ciliary dyskinesia, a condition 
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where cilia are immotile, hydrocephalus is rarely 
observed, indicating that the function of motile cilia 
within the human spinal cord is not yet well understood. 
Further research is needed to comprehend the role of 
motile cilia in the development and homeostasis of the 
human ventricles [122–124].

Reissner fiber, initially described by Reissner in 1860 
within the body of hagfish [125], is a highly conserved 
structure found widely in the spinal cords of vertebrates 
[126–130]. Although Reissner fiber was first observed 
in the human spinal cord in 1922 by Agduhr [131], 
subsequent studies using antibodies against glycoproteins 
specific to the connecting filum or Reissner fiber, derived 
from human or chimpanzee sources, failed to produce 
immune reactions [132–134]. As an extracellular 
glycoprotein, Reissner fiber extends linearly from the 
brain along the central canal of the spinal cord to its 
base [135]. In zebrafish, Reissner fiber aggregates in the 
cerebrospinal fluid within the brain ventricle through the 
secretion of the SCO-Spodin protein by the connecting 
filum, floating and traversing the central axis of the spinal 
cord [128]. Current research suggests that the absence of 
Reissner fiber does not affect ciliary movement and CSF 
flow, but the rhythmic beating of cilia plays a crucial role 
in the aggregation of Reissner fiber [128, 135]. However, 
the function of Reissner fiber remains unclear.

Tactile neurons (CSF-cNs) are GABAergic sensory 
neurons widely distributed on the ventral and dorsal 
sides of the central canal of the spinal cords in vertebrates 
[136]. Over a century ago, it was hypothesized that the 
connecting filum interacts with Reissner fiber to form 
a “sagittal position organ” with a mechanical sensory 
system that maintains the stability of the body axis 
[137]. Recent studies using zebrafish experiments have 
found direct contact between tactile neurons and Reissner 
fiber [138]. The absence of Reissner fiber renders tactile 
neurons incapable of responding to mechanical stimuli 
such as axial bending, indicating that the function of 
Reissner fiber is like that of a physical rope along the 
central axis, aiding tactile neurons in sensing changes 
in the body axis. Studies have conducted in-depth 
molecular studies on tactile neurons, indicating that the 
vasopressin neuropeptide expressed by tactile neurons, 
when activated by stimuli, causes the adjacent muscles to 
contract, maintaining the body axis and reducing bending. 
Abnormalities in the vasopressin signaling pathway can 
cause Tactile nerves (CSF-cNs) to be unable to sense the 
mechanical stress changes that occur in the Reissner fiber 
during trunk bending, making it difficult to adjust and 
control the axial development of the embryonic spine in 
time, ultimately resulting in spinal deformities [139–141].

Considerations

Despite the significant contributions of numerous studies 
towards a deeper understanding of embryonic axial 
elongation, straightening, spinal development, and the 
molecular biology mechanisms underlying deformities, 
several critical considerations must be acknowledged:

1) The uniqueness of human spinal development: while 
extensive research has shed light on the molecular 
intricacies of axial elongation and spinal development in 
various vertebrates, the unique characteristics of human 
spinal development remain incompletely understood. As 
a bipedal species with distinct vertebral dynamics, the 
developmental processes in humans differ from those 
observed in other vertebrates [142, 143].

2) Physiological curvature discrepancies: the presence of 
natural physiological curvatures in the human spine 
(cervical lordosis, thoracic kyphosis, lumbar lordosis) 
contrasts with the generally straight spine observed in 
our closest relatives, such as chimpanzees [144].

3) Existing research results may not fully explain the 
mechanisms underlying the developmental changes 
in the human spine from embryonic to adult stages, 
including elongation, straightening, and physiological 
curvatures.

4) Cerebrospinal fluid circulation disparities: unlike 
experimental animals commonly used in research, 
human cerebrospinal fluid circulation relies significantly 
on arterial pulsation and respiratory movements. 
Consequently, the functional implications and potential 
effects highlighted by studies on motile cilia may not 
necessarily translate directly to spinal development and 
deformities in humans [133, 134].

5) Absence of tactile neurons and Reissner fiber in humans: 
the absence of conclusive evidence regarding tactile 
neurons and Reissner fiber (RF) in the human spinal 
cord raises serious doubts about the direct applicability 
of findings related to the interactions between motile 
cilia, tactile neurons, and RF observed in experimental 
animals [131–133].

In light of these considerations, it is imperative 
to approach the interpretation of research outcomes 
with caution, recognizing the unique aspects of human 
spinal development and the limitations in replicating 
experimental results directly to the human context. Future 
investigations are needed to address these specificities to 
advance our comprehension of the complexities associated 
with human spinal development and deformities.
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Summary and future perspective

Critical role of the notochord in spinal development

The notochord emerges as a pivotal factor in the process 
of spinal development, playing essential roles in providing 
templates, organizing structures, and facilitating 
arrangements. The expansion, accumulation, and 
arrangement of notochordal vacuolated cells contribute 
significantly to the elongation of the spinal cord, 
maintaining axial alignment. However, the notochord’s 
involvement extends beyond spinal development, 
influencing the embryonic development of various vital 
organs. Precision and selectivity in intervening with 
upstream genes are crucial aspects to be addressed in 
future research, considering the potential impact on the 
overall development of embryos. Challenges arise, as 
interference may compromise the viability of experimental 
specimens up to maturity.

Distinctive dynamics of cerebrospinal fluid 
circulation in humans

The unique modality of cerebrospinal f luid (CSF) 
circulation in humans sets it apart from other species. 
The mechanism underlying the role of motile cilia on 
the ependymal cells of the spinal canal’s membrane 
warrants further exploration. The distinctive nature of CSF 
circulation in humans demands an in-depth investigation 
into the functioning of motile cilia on the ependymal cells 
of the spinal canal’s membrane.

Absence of evidence for Reissner fiber and tactile 
neurons in the human spinal cord

Currently, there is an absence of conclusive evidence 
supporting the existence of Reissner fiber and tactile 
neurons within the central canal of the human spinal cord. 
Consequently, caution must be exercised in extrapolating 
findings from animal experiments and genetic studies to 
the human context. As bipedal organisms, humans exhibit 
variations in spinal morphology throughout different growth 
stages. Understanding whether these variations correlate 
with microscopic structural changes in the spinal cord 
during fetal development, birth, and the transition to upright 
ambulation in adolescence is imperative. This evolution 
in spinal morphology in humans is likely influenced by a 
combination of external and intrinsic factors.

In summary, the intricacies of spinal development 
and related phenomena necessitate ongoing research that 

delves into the molecular and biomechanical intricacies. 
Rigorous exploration of these aspects will contribute 
not only to expanding our fundamental understanding of 
spinal deformities but also to the potential development 
of targeted interventions and therapeutic strategies in the 
future.
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